blob: 6e7b62f3330b5fcd904227325b488b38d3700d04 [file] [log] [blame]
/*
** Copyright 2013 The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
// Put any local test functions into the extern below.
extern "C" {
}
#define FENCEPOST_LENGTH 8
#define MAX_MEMCPY_TEST_SIZE 2048
#define MAX_MEMCPY_BUFFER_SIZE (3 * MAX_MEMCPY_TEST_SIZE)
#define MAX_MEMSET_TEST_SIZE 2048
#define MAX_MEMSET_BUFFER_SIZE (3 * MAX_MEMSET_TEST_SIZE)
#define MAX_STRING_TEST_SIZE 1024
#define MAX_STRING_BUFFER_SIZE (3 * MAX_STRING_TEST_SIZE)
#define MAX_STRCAT_DST_SIZE 32
const int kStringAligns[][4] = {
// All zeroes to use the values returned from malloc.
{ 0, 0, 0, 0 },
{ 1, 0, 1, 0 },
{ 2, 0, 2, 0 },
{ 4, 0, 4, 0 },
{ 8, 0, 8, 0 },
{ 8, 0, 4, 0 },
{ 4, 0, 8, 0 },
{ 8, 0, 8, 1 },
{ 8, 0, 8, 2 },
{ 8, 0, 8, 3 },
{ 8, 1, 8, 0 },
{ 8, 2, 8, 0 },
{ 8, 3, 8, 0 },
{ 4, 0, 4, 1 },
{ 4, 0, 4, 2 },
{ 4, 0, 4, 3 },
{ 4, 1, 4, 0 },
{ 4, 2, 4, 0 },
{ 4, 3, 4, 0 },
};
#define STRING_ALIGN_LEN (sizeof(kStringAligns)/sizeof(int[4]))
// Return a pointer into the current string with the specified alignment.
void *getAlignedPtr(void *orig_ptr, int alignment, int or_mask) {
uint64_t ptr = reinterpret_cast<uint64_t>(orig_ptr);
if (alignment > 0) {
// When setting the alignment, set it to exactly the alignment chosen.
// The pointer returned will be guaranteed not to be aligned to anything
// more than that.
ptr += alignment - (ptr & (alignment - 1));
ptr |= alignment | or_mask;
}
return reinterpret_cast<void*>(ptr);
}
char *setString(char *str, size_t size) {
for (size_t i = 0; i < size; i++) {
str[i] = (char)(32 + (i % 96));
}
str[size] = '\0';
return str;
}
char *allocateString() {
char *str = reinterpret_cast<char*>(malloc(MAX_STRING_BUFFER_SIZE+1));
if (!str) {
return NULL;
}
return setString(str, MAX_STRING_BUFFER_SIZE);
}
void setFencepost(uint8_t *buffer) {
for (int i = 0; i < FENCEPOST_LENGTH; i += 2) {
buffer[i] = 0xde;
buffer[i+1] = 0xad;
}
}
bool verifyFencepost(uint8_t *buffer) {
for (int i = 0; i < FENCEPOST_LENGTH; i += 2) {
if (buffer[i] != 0xde || buffer[i+1] != 0xad) {
uint8_t expected_value;
if (buffer[i] == 0xde) {
i++;
expected_value = 0xad;
} else {
expected_value = 0xde;
}
printf(" mismatch at fencepost[%d], expected %d found %d\n",
i, expected_value, buffer[i]);
return false;
}
}
return true;
}
bool doStrcmpExpectEqual(char *string1, char *string2, const int align[4],
int (*test_strcmp)(const char *s1, const char *s2),
bool verbose) {
char *align_str1 = (char*)getAlignedPtr(string1, align[0], align[1]);
char *align_str2 = (char*)getAlignedPtr(string2, align[2], align[3]);
for (size_t i = 0; i < MAX_STRING_TEST_SIZE; i++) {
for (size_t j = 0; j < i; j++) {
align_str1[j] = (char)(32 + (j % 96));
align_str2[j] = align_str1[j];
}
align_str1[i] = '\0';
align_str2[i] = '\0';
// Set the characters after the string terminates to different values
// to verify that the strcmp is not over checking.
for (size_t j = i+1; j < i+64; j++) {
align_str1[j] = (char)(32 + j);
align_str2[j] = (char)(40 + j);
}
if (verbose) {
printf("Testing size %d, align_str1=%p[%d,%d], align_str2=%p[%d,%d]\n",
i, align_str1, align[0], align[1], align_str2, align[2], align[3]);
}
if (test_strcmp(align_str1, align_str2) != 0) {
printf(" Failed at size %d, src1 %p, src2 %p\n",
i, align_str1, align_str2);
return false;
}
}
return true;
}
bool doStrcmpExpectDiff(char *string1, char *string2, const int diff_align[2],
const int align[4], char diff_char,
int (*test_strcmp)(const char *s1, const char *s2),
bool verbose) {
char *align_str1 = (char*)getAlignedPtr(string1, align[0], align[1]);
char *align_str2 = (char*)getAlignedPtr(string2, align[2], align[3]);
for (int i = 0; i < MAX_STRING_TEST_SIZE; i++) {
// Use valid ascii characters, no unprintables characters.
align_str1[i] = (char)(32 + (i % 96));
if (align_str1[i] == diff_char) {
// Assumes that one less than the diff character is still a valid
// character.
align_str1[i] = diff_char-1;
}
align_str2[i] = align_str1[i];
}
align_str1[MAX_STRING_TEST_SIZE] = '\0';
align_str2[MAX_STRING_TEST_SIZE] = '\0';
// Quick check to make sure that the strcmp knows that everything is
// equal. If it's so broken that it already thinks the strings are
// different, then there is no point running any of the other tests.
if (test_strcmp(align_str1, align_str2) != 0) {
printf(" strcmp is too broken to do difference testing.\n");
return false;
}
// Get a pointer into the string at the specified alignment.
char *bad = (char*)getAlignedPtr(align_str1+MAX_STRING_TEST_SIZE/2,
diff_align[0], diff_align[1]);
char saved_char = bad[0];
bad[0] = diff_char;
if (verbose) {
printf("Testing difference, align_str1=%p[%d,%d], align_str2=%p[%d,%d]\n",
align_str1, align[0], align[1], align_str2, align[2], align[3]);
}
if (test_strcmp(align_str1, align_str2) == 0) {
printf(" Did not miscompare at size %d, src1 %p, src2 %p, diff %p\n",
MAX_STRING_TEST_SIZE, align_str1, align_str2, bad);
return false;
}
bad[0] = saved_char;
// Re-verify that something hasn't gone horribly wrong.
if (test_strcmp(align_str1, align_str2) != 0) {
printf(" strcmp is too broken to do difference testing.\n");
return false;
}
bad = (char*)getAlignedPtr(align_str2+MAX_STRING_TEST_SIZE/2, diff_align[0],
diff_align[1]);
bad[0] = diff_char;
if (verbose) {
printf("Testing reverse difference, align_str1=%p[%d,%d], align_str2=%p[%d,%d]\n",
align_str1, align[0], align[1], align_str2, align[2], align[3]);
}
if (test_strcmp(align_str1, align_str2) == 0) {
printf(" Did not miscompare at size %d, src1 %p, src2 %p, diff %p\n",
MAX_STRING_TEST_SIZE, align_str1, align_str2, bad);
return false;
}
return true;
}
bool doStrcmpCheckRead(int (*test_strcmp)(const char *s1, const char *s2),
bool verbose) {
// In order to verify that the strcmp is not reading past the end of the
// string, create some strings that end near unreadable memory.
long pagesize = sysconf(_SC_PAGE_SIZE);
char *memory = (char*)memalign(pagesize, 2 * pagesize);
if (memory == NULL) {
perror("Unable to allocate memory.\n");
return false;
}
// Make the second page unreadable and unwritable.
if (mprotect(&memory[pagesize], pagesize, PROT_NONE) != 0) {
perror("Unable to set protection of page.\n");
return false;
}
size_t max_size = pagesize < MAX_STRING_TEST_SIZE ? pagesize-1 : MAX_STRING_TEST_SIZE;
// Allocate an extra byte beyond the string terminator to allow us to
// extend the string to be larger than our protected string.
char *other_string = (char *)malloc(max_size+2);
if (other_string == NULL) {
perror("Unable to allocate memory.\n");
return false;
}
char *string;
for (size_t i = 0; i <= max_size; i++) {
string = &memory[pagesize-i-1];
for (size_t j = 0; j < i; j++) {
other_string[j] = (char)(32 + (j % 96));
string[j] = other_string[j];
}
other_string[i] = '\0';
string[i] = '\0';
if (verbose) {
printf("Testing size %d, strings equal.\n", i);
}
if (test_strcmp(other_string, string) != 0) {
printf(" Failed at size %d, src1 %p, src2 %p\n", i, other_string, string);
return false;
}
if (verbose) {
printf("Testing size %d, strings equal reverse strings.\n", i);
}
if (test_strcmp(string, other_string) != 0) {
printf(" Failed at size %d, src1 %p, src2 %p\n", i, string, other_string);
return false;
}
// Now make other_string longer than our protected string.
other_string[i] = '1';
other_string[i+1] = '\0';
if (verbose) {
printf("Testing size %d, strings not equal.\n", i);
}
if (test_strcmp(other_string, string) == 0) {
printf(" Failed at size %d, src1 %p, src2 %p\n", i, other_string, string);
return false;
}
if (verbose) {
printf("Testing size %d, strings not equal reverse the strings.\n", i);
}
if (test_strcmp(string, other_string) == 0) {
printf(" Failed at size %d, src1 %p, src2 %p\n", i, string, other_string);
return false;
}
}
return true;
}
bool runStrcmpTest(int (*test_strcmp)(const char *s1, const char *s2),
bool verbose) {
char *string1 = allocateString();
char *string2 = allocateString();
if (string1 == NULL || string2 == NULL) {
perror("Unable to allocate memory.\n");
return false;
}
printf(" Verifying equal sized strings at different alignments.\n");
for (size_t i = 0; i < STRING_ALIGN_LEN; i++) {
if (!doStrcmpExpectEqual(string1, string2, kStringAligns[i], test_strcmp,
verbose)) {
return false;
}
}
// Test the function finds strings with differences at specific locations.
const int diff_aligns[][2] = {
{ 4, 0 },
{ 4, 1 },
{ 4, 2 },
{ 4, 3 },
{ 8, 0 },
{ 8, 1 },
{ 8, 2 },
{ 8, 3 },
};
printf(" Verifying different strings at different alignments.\n");
for (size_t i = 0; i < sizeof(diff_aligns)/sizeof(int[2]); i++) {
// First loop put the string terminator at the chosen alignment.
for (size_t j = 0; j < STRING_ALIGN_LEN; j++) {
if (!doStrcmpExpectDiff(string1, string2, diff_aligns[i],
kStringAligns[j], '\0', test_strcmp, verbose)) {
return false;
}
}
// Second loop put a different character at the chosen alignment.
// This character is guaranteed not to be in the original string.
for (size_t j = 0; j < STRING_ALIGN_LEN; j++) {
if (!doStrcmpExpectDiff(string1, string2, diff_aligns[i],
kStringAligns[j], '\0', test_strcmp, verbose)) {
return false;
}
}
}
printf(" Verifying strcmp does not read too many bytes.\n");
if (!doStrcmpCheckRead(test_strcmp, verbose)) {
return false;
}
printf(" All tests pass.\n");
return true;
}
bool doStrlenCheck(size_t size, char *string, int align, int or_mask,
size_t (*test_strlen)(const char *), bool verbose) {
char *aligned_string = reinterpret_cast<char*>(getAlignedPtr(string, align, or_mask));
size_t len;
if (verbose) {
printf("Testing size %d, align=%p[%d,%d]\n", size, aligned_string, align, or_mask);
}
aligned_string[size] = '\0';
len = test_strlen(aligned_string);
if (len != size) {
printf("Failed at size %d, length returned %u, align=%p[%d,%d]\n",
size, len, aligned_string, align, or_mask);
return false;
}
if (verbose) {
printf("Testing size %d with extra zeros after string, align=%p[%d,%d]\n",
size, aligned_string, align, or_mask);
}
for (size_t j = size+1; j <= size+16; j++) {
aligned_string[j] = '\0';
}
len = test_strlen(aligned_string);
if (len != size) {
printf("Failed at size %d, length returned %u with zeroes after string, align=%p[%d,%d]\n",
size, len, aligned_string, align, or_mask);
return false;
}
for (size_t j = size; j <= size+16; j++) {
aligned_string[j] = (char)(32 + (j % 96));
}
return true;
}
bool runStrlenTest(size_t (*test_strlen)(const char *),
bool verbose) {
char *string = allocateString();
if (string == NULL) {
perror("Unable to allocate memory.\n");
return false;
}
// Check different string alignments. All zeroes indicates that the
// unmodified malloc values should be used.
const int aligns[][2] = {
// All zeroes to use the values returned from malloc.
{ 0, 0 },
{ 1, 0 },
{ 2, 0 },
{ 4, 0 },
{ 8, 0 },
{ 16, 0 },
{ 32, 0 },
{ 8, 1 },
{ 8, 2 },
{ 8, 3 },
{ 4, 1 },
{ 4, 2 },
{ 4, 3 },
};
printf(" Verifying string lengths at different alignments.\n");
for (size_t i = 0; i < sizeof(aligns)/sizeof(int[2]); i++) {
for (size_t j = 0; j <= MAX_STRING_TEST_SIZE; j++) {
if (!doStrlenCheck(j, string, aligns[i][0], aligns[i][1], test_strlen, verbose)) {
return false;
}
}
}
printf(" Verifying strlen does not read past end of string.\n");
// In order to verify that strlen is not reading past the end of the
// string, create strings that end near unreadable memory.
long pagesize = sysconf(_SC_PAGE_SIZE);
char *memory = (char*)memalign(pagesize, 2 * pagesize);
if (memory == NULL) {
perror("Unable to allocate memory.\n");
return false;
}
// Make the second page unreadable and unwritable.
if (mprotect(&memory[pagesize], pagesize, PROT_NONE) != 0) {
perror("Unable to set protection of page.\n");
return false;
}
size_t max_size = pagesize < MAX_STRING_TEST_SIZE ? pagesize-1 : MAX_STRING_TEST_SIZE;
for (long i = 0; i < pagesize; i++) {
memory[i] = (char)(32 + (i % 96));
}
size_t len;
for (size_t i = 0; i < sizeof(aligns)/sizeof(int[2]); i++) {
for (size_t j = 0; j <= max_size; j++) {
string = &memory[pagesize-j-1];
string[j] = '\0';
if (verbose) {
printf("Testing size %d overread, align=%p[%d,%d]\n",
j, string, aligns[i][0], aligns[i][1]);
}
len = test_strlen(string);
if (len != j) {
printf(" Failed at size %u, returned %u, align=%p[%d,%d]\n",
j, len, string, aligns[i][0], aligns[i][1]);
return false;
}
string[j] = (char)(32 + (j % 96));
}
}
printf(" All tests pass.\n");
return true;
}
bool runStrcpyTest(char *(*test_strcpy)(char *, const char *),
bool verbose) {
char *src = allocateString();
if (src == NULL) {
perror("Unable to allocate memory.\n");
return false;
}
char *dst = allocateString();
if (dst == NULL) {
perror("Unable to allocate memory.\n");
return false;
}
printf(" Verifying string lengths at different alignments.\n");
char *src_align;
char *dst_align;
char *dst_ret;
for (size_t i = 0; i < STRING_ALIGN_LEN; i++) {
for (size_t copy_len = 0; copy_len <= MAX_STRING_TEST_SIZE; copy_len++) {
if (kStringAligns[i][0]) {
src_align = reinterpret_cast<char*>(getAlignedPtr(src+FENCEPOST_LENGTH, kStringAligns[i][0], kStringAligns[i][1]));
dst_align = reinterpret_cast<char*>(getAlignedPtr(dst+FENCEPOST_LENGTH, kStringAligns[i][2], kStringAligns[i][3]));
} else {
src_align = src;
dst_align = dst;
}
setString(src_align, copy_len);
memset(dst_align, 0, copy_len+1);
if (dst_align != dst) {
setFencepost(reinterpret_cast<uint8_t*>(&dst_align[-FENCEPOST_LENGTH]));
}
setFencepost(reinterpret_cast<uint8_t*>(&dst_align[copy_len+1]));
if (verbose) {
printf("Testing copy_len %u, src_align=%p[%d,%d], dst_align=%p[%d,%d]\n",
copy_len, src_align, kStringAligns[i][0], kStringAligns[i][1],
dst_align, kStringAligns[i][2], kStringAligns[i][3]);
}
dst_ret = test_strcpy(dst_align, src_align);
if (dst_ret != dst_align) {
printf("copy_len %u returned incorrect value: expected %p, got %p\n",
copy_len, dst_align, dst_ret);
return false;
}
if (memcmp(src_align, dst_align, copy_len) != 0) {
printf("copy_len %u failed to copy properly: src and dst aren't equal\n", copy_len);
return false;
}
if (dst_align != dst && !verifyFencepost(reinterpret_cast<uint8_t*>(&dst_align[-FENCEPOST_LENGTH]))) {
printf("copy_len %u fencepost before dst was overwritten\n", copy_len);
return false;
}
if (!verifyFencepost(reinterpret_cast<uint8_t*>(&dst_align[copy_len+1]))) {
printf("copy_len %u fencepost at end of dst was overwritten\n", copy_len);
return false;
}
}
}
printf(" All tests pass.\n");
return true;
}
bool runStrcatTest(char *(*test_strcat)(char *, const char *),
bool verbose) {
char *src = allocateString();
if (src == NULL) {
perror("Unable to allocate memory.\n");
return false;
}
char *dst = allocateString();
if (dst == NULL) {
perror("Unable to allocate memory.\n");
return false;
}
printf(" Verifying string lengths at different alignments.\n");
char *src_align;
char *dst_align;
char *dst_ret;
for (size_t i = 0; i < STRING_ALIGN_LEN; i++) {
for (size_t dst_len = 0; dst_len <= MAX_STRCAT_DST_SIZE; dst_len++) {
for (size_t copy_len = 0; copy_len <= MAX_STRING_TEST_SIZE; copy_len++) {
if (kStringAligns[i][0]) {
src_align = reinterpret_cast<char*>(getAlignedPtr(src+FENCEPOST_LENGTH, kStringAligns[i][0], kStringAligns[i][1]));
dst_align = reinterpret_cast<char*>(getAlignedPtr(dst+FENCEPOST_LENGTH, kStringAligns[i][2], kStringAligns[i][3]));
} else {
src_align = src;
dst_align = dst;
}
setString(src_align, copy_len);
memset(dst_align, 'd', dst_len);
memset(dst_align+dst_len, 0, copy_len+1);
if (dst_align != dst) {
setFencepost(reinterpret_cast<uint8_t*>(&dst_align[-FENCEPOST_LENGTH]));
}
setFencepost(reinterpret_cast<uint8_t*>(&dst_align[copy_len+dst_len+1]));
if (verbose) {
printf("Testing copy_len %u, dst_len %u, src_align=%p[%d,%d], dst_align=%p[%d,%d]\n",
copy_len, dst_len, src_align, kStringAligns[i][0], kStringAligns[i][1],
dst_align, kStringAligns[i][2], kStringAligns[i][3]);
}
dst_ret = test_strcat(dst_align, src_align);
if (dst_ret != dst_align) {
printf("dst_len %u, copy_len %u returned incorrect value: expected %p, got %p\n",
dst_len, copy_len, dst_align, dst_ret);
return false;
}
for (size_t j = 0; j < dst_len; j++) {
if (dst_align[j] != 'd') {
printf("dst_len %u, copy_len %u: strcat overwrote dst string\n",
dst_len, copy_len);
return false;
}
}
if (memcmp(src_align, dst_align+dst_len, copy_len+1) != 0) {
printf("dst_len %u, copy_len %u failed to copy properly: src and dst aren't equal\n",
dst_len, copy_len);
return false;
}
if (dst_align != dst && !verifyFencepost(reinterpret_cast<uint8_t*>(&dst_align[-FENCEPOST_LENGTH]))) {
return false;
}
if (!verifyFencepost(reinterpret_cast<uint8_t*>(&dst_align[dst_len+copy_len+1]))) {
return false;
}
}
}
}
printf(" All tests pass.\n");
return true;
}
bool runMemcpyTest(void* (*test_memcpy)(void *dst, const void *src, size_t n),
bool verbose) {
uint8_t *dst = reinterpret_cast<uint8_t*>(malloc(MAX_MEMCPY_BUFFER_SIZE));
uint8_t *src = reinterpret_cast<uint8_t*>(malloc(MAX_MEMCPY_BUFFER_SIZE));
if (dst == NULL || src == NULL) {
perror("Unable to allocate memory.\n");
return false;
}
// Set the source to a known pattern once. The assumption is that the
// memcpy is not so broken that it will write in to the source buffer.
// However, do not write zeroes into the source so a very quick can be
// made to verify the source has not been modified.
for (int i = 0; i < MAX_MEMCPY_BUFFER_SIZE; i++) {
src[i] = i % 256;
if (src[i] == 0) {
src[i] = 0xaa;
}
}
const int aligns[][4] = {
// Src and dst use pointers returned by malloc.
{ 0, 0, 0, 0 },
// Src and dst at same alignment.
{ 1, 0, 1, 0 },
{ 2, 0, 2, 0 },
{ 4, 0, 4, 0 },
{ 8, 0, 8, 0 },
{ 16, 0, 16, 0 },
{ 32, 0, 32, 0 },
{ 64, 0, 64, 0 },
{ 128, 0, 128, 0 },
// Different alignments between src and dst.
{ 8, 0, 4, 0 },
{ 4, 0, 8, 0 },
{ 16, 0, 4, 0 },
{ 4, 0, 16, 0 },
// General unaligned cases.
{ 4, 0, 4, 1 },
{ 4, 0, 4, 2 },
{ 4, 0, 4, 3 },
{ 4, 1, 4, 0 },
{ 4, 2, 4, 0 },
{ 4, 3, 4, 0 },
// All non-word aligned cases.
{ 4, 1, 4, 0 },
{ 4, 1, 4, 1 },
{ 4, 1, 4, 2 },
{ 4, 1, 4, 3 },
{ 4, 2, 4, 0 },
{ 4, 2, 4, 1 },
{ 4, 2, 4, 2 },
{ 4, 2, 4, 3 },
{ 4, 3, 4, 0 },
{ 4, 3, 4, 1 },
{ 4, 3, 4, 2 },
{ 4, 3, 4, 3 },
{ 2, 0, 4, 0 },
{ 4, 0, 2, 0 },
{ 2, 0, 2, 0 },
// Invoke the unaligned case where the code needs to align dst to 0x10.
{ 128, 1, 128, 4 },
{ 128, 1, 128, 8 },
{ 128, 1, 128, 12 },
{ 128, 1, 128, 16 },
};
printf(" Verifying variable sized copies at different alignments.\n");
uint8_t *src_align, *dst_align;
for (size_t i = 0; i < sizeof(aligns)/sizeof(int[4]); i++) {
for (size_t len = 0; len <= MAX_MEMCPY_TEST_SIZE; len++) {
if (aligns[i][0]) {
src_align = (uint8_t*)getAlignedPtr(src+FENCEPOST_LENGTH, aligns[i][0],
aligns[i][1]);
dst_align = (uint8_t*)getAlignedPtr(dst+FENCEPOST_LENGTH, aligns[i][2],
aligns[i][3]);
} else {
src_align = src;
dst_align = dst;
}
if (verbose) {
printf("Testing size %d, src_align=%p[%d,%d], dst_align=%p[%d,%d]\n",
len, src_align, aligns[i][0], aligns[i][1],
dst_align, aligns[i][2], aligns[i][3]);
}
memset(dst_align, 0, len);
// Don't add a pre fencepost if we are using the value from the malloc.
if (dst_align != dst) {
setFencepost(&dst_align[-8]);
}
setFencepost(&dst_align[len]);
test_memcpy(dst_align, src_align, len);
for (size_t j = 0; j < len; j++) {
if (dst_align[j] != src_align[j] || !src_align[j]) {
if (!src_align[j]) {
printf(" src_align[%d] is 0, memcpy wrote into the source.\n", j);
} else {
printf(" mismatch at %d, expected %d found %d\n", j,
src_align[j], dst_align[j]);
}
printf(" Failed at size %d, src_align=%p[%d,%d], dst_align=%p[%d,%d]\n",
len, src_align, aligns[i][0], aligns[i][1],
dst_align, aligns[i][2], aligns[i][3]);
return false;
}
}
if (dst_align != dst && !verifyFencepost(&dst_align[-8])) {
printf(" wrote before the array.\n");
printf(" Failed at size %d, src_align=%p[%d,%d], dst_align=%p[%d,%d]\n",
len, src_align, aligns[i][0], aligns[i][1],
dst_align, aligns[i][2], aligns[i][3]);
return false;
}
if (!verifyFencepost(&dst_align[len])) {
printf(" wrote past the end of the array.\n");
printf(" Failed at size %d, src_align=%p[%d,%d], dst_align=%p[%d,%d]\n",
len, src_align, aligns[i][0], aligns[i][1],
dst_align, aligns[i][2], aligns[i][3]);
return false;
}
}
}
printf(" All tests pass.\n");
return true;
}
bool runMemsetTest(void* (*test_memset)(void *s, int c, size_t n),
bool verbose) {
uint8_t *buf = reinterpret_cast<uint8_t*>(malloc(MAX_MEMSET_BUFFER_SIZE));
if (buf == NULL) {
perror("Unable to allocate memory.\n");
return false;
}
const int aligns[][2] = {
// Use malloc return values unaltered.
{ 0, 0 },
// Different alignments.
{ 1, 0 },
{ 2, 0 },
{ 4, 0 },
{ 8, 0 },
{ 16, 0 },
{ 32, 0 },
{ 64, 0 },
// Different alignments between src and dst.
{ 8, 1 },
{ 8, 2 },
{ 8, 3 },
{ 8, 4 },
{ 8, 5 },
{ 8, 6 },
{ 8, 7 },
};
printf(" Verifying variable sized memsets at different alignments.\n");
uint8_t *buf_align;
for (size_t i = 0; i < sizeof(aligns)/sizeof(int[2]); i++) {
for (size_t len = 0; len <= MAX_MEMSET_TEST_SIZE; len++) {
if (aligns[i]) {
buf_align = (uint8_t*)getAlignedPtr(buf+FENCEPOST_LENGTH, aligns[i][0],
aligns[i][1]);
} else {
buf_align = buf;
}
if (verbose) {
printf("Testing size %d, buf_align=%p[%d,%d]\n",
len, buf_align, aligns[i][0], aligns[i][1]);
}
// Set the buffer to all zero without memset since it might be the
// function we are testing.
for (size_t j = 0; j < len; j++) {
buf_align[j] = 0;
}
// Don't add a pre fencepost if we are using the value from the malloc.
if (buf_align != buf) {
setFencepost(&buf_align[-8]);
}
setFencepost(&buf_align[len]);
int value = (len % 255) + 1;
test_memset(buf_align, value, len);
for (size_t j = 0; j < len; j++) {
if (buf_align[j] != value) {
printf(" Failed at size %d[%d,%d!=%d], buf_align=%p[%d,%d]\n",
len, j, buf_align[j], value, buf_align, aligns[i][0],
aligns[i][1]);
return false;
}
}
if (buf_align != buf && !verifyFencepost(&buf_align[-8])) {
printf(" wrote before the beginning of the array.\n");
printf(" Failed at size %d, buf_align=%p[%d,%d]\n",
len, buf_align, aligns[i][0], aligns[i][1]);
return false;
}
if (!verifyFencepost(&buf_align[len])) {
printf(" wrote after the end of the array.\n");
printf(" Failed at size %d, buf_align=%p[%d,%d]\n",
len, buf_align, aligns[i][0], aligns[i][1]);
return false;
}
}
}
printf(" All tests pass.\n");
return true;
}
int main(int argc, char **argv) {
bool verbose = false;
if (argc == 2 && strcmp(argv[1], "-v") == 0) {
verbose = true;
}
bool tests_passing = true;
printf("Testing strcmp...\n");
tests_passing = runStrcmpTest(strcmp, verbose) && tests_passing;
printf("Testing memcpy...\n");
tests_passing = runMemcpyTest(memcpy, verbose) && tests_passing;
printf("Testing memset...\n");
tests_passing = runMemsetTest(memset, verbose) && tests_passing;
printf("Testing strlen...\n");
tests_passing = runStrlenTest(strlen, verbose) && tests_passing;
printf("Testing strcpy...\n");
tests_passing = runStrcpyTest(strcpy, verbose) && tests_passing;
printf("Testing strcat...\n");
tests_passing = runStrcatTest(strcat, verbose) && tests_passing;
return (tests_passing ? 0 : 1);
}