blob: 407c5f08707f8accda551ae3f30a9d3b7281cb4d [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "utils.h"
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdio.h>
#include <sys/stat.h>
#include <unistd.h>
#include <algorithm>
#include <map>
#include <string>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <build/version.h>
#include <7zCrc.h>
#include <Xz.h>
#include <XzCrc64.h>
void OneTimeFreeAllocator::Clear() {
for (auto& p : v_) {
delete[] p;
}
v_.clear();
cur_ = nullptr;
end_ = nullptr;
}
const char* OneTimeFreeAllocator::AllocateString(std::string_view s) {
size_t size = s.size() + 1;
if (cur_ + size > end_) {
size_t alloc_size = std::max(size, unit_size_);
char* p = new char[alloc_size];
v_.push_back(p);
cur_ = p;
end_ = p + alloc_size;
}
strcpy(cur_, s.data());
const char* result = cur_;
cur_ += size;
return result;
}
android::base::unique_fd FileHelper::OpenReadOnly(const std::string& filename) {
int fd = TEMP_FAILURE_RETRY(open(filename.c_str(), O_RDONLY | O_BINARY));
return android::base::unique_fd(fd);
}
android::base::unique_fd FileHelper::OpenWriteOnly(const std::string& filename) {
int fd = TEMP_FAILURE_RETRY(open(filename.c_str(), O_WRONLY | O_BINARY | O_CREAT, 0644));
return android::base::unique_fd(fd);
}
std::unique_ptr<ArchiveHelper> ArchiveHelper::CreateInstance(const std::string& filename) {
android::base::unique_fd fd = FileHelper::OpenReadOnly(filename);
if (fd == -1) {
return nullptr;
}
// Simpleperf relies on ArchiveHelper to check if a file is zip file. We expect much more elf
// files than zip files in a process map. In order to detect invalid zip files fast, we add a
// check of magic number here. Note that OpenArchiveFd() detects invalid zip files in a thorough
// way, but it usually needs reading at least 64K file data.
static const char zip_preamble[] = {0x50, 0x4b, 0x03, 0x04 };
char buf[4];
if (!android::base::ReadFully(fd, buf, 4) || memcmp(buf, zip_preamble, 4) != 0) {
return nullptr;
}
if (lseek(fd, 0, SEEK_SET) == -1) {
return nullptr;
}
ZipArchiveHandle handle;
int result = OpenArchiveFd(fd.release(), filename.c_str(), &handle);
if (result != 0) {
LOG(ERROR) << "Failed to open archive " << filename << ": " << ErrorCodeString(result);
return nullptr;
}
return std::unique_ptr<ArchiveHelper>(new ArchiveHelper(handle, filename));
}
ArchiveHelper::~ArchiveHelper() {
CloseArchive(handle_);
}
bool ArchiveHelper::IterateEntries(
const std::function<bool(ZipEntry&, const std::string&)>& callback) {
void* iteration_cookie;
if (StartIteration(handle_, &iteration_cookie) < 0) {
LOG(ERROR) << "Failed to iterate " << filename_;
return false;
}
ZipEntry zentry;
std::string zname;
int result;
while ((result = Next(iteration_cookie, &zentry, &zname)) == 0) {
if (!callback(zentry, zname)) {
break;
}
}
EndIteration(iteration_cookie);
if (result == -2) {
LOG(ERROR) << "Failed to iterate " << filename_;
return false;
}
return true;
}
bool ArchiveHelper::FindEntry(const std::string& name, ZipEntry* entry) {
int result = ::FindEntry(handle_, name, entry);
if (result != 0) {
LOG(ERROR) << "Failed to find " << name << " in " << filename_;
return false;
}
return true;
}
bool ArchiveHelper::GetEntryData(ZipEntry& entry, std::vector<uint8_t>* data) {
data->resize(entry.uncompressed_length);
if (ExtractToMemory(handle_, &entry, data->data(), data->size()) != 0) {
LOG(ERROR) << "Failed to extract entry at " << entry.offset << " in " << filename_;
return false;
}
return true;
}
int ArchiveHelper::GetFd() {
return GetFileDescriptor(handle_);
}
void PrintIndented(size_t indent, const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
printf("%*s", static_cast<int>(indent * 2), "");
vprintf(fmt, ap);
va_end(ap);
}
void FprintIndented(FILE* fp, size_t indent, const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
fprintf(fp, "%*s", static_cast<int>(indent * 2), "");
vfprintf(fp, fmt, ap);
va_end(ap);
}
bool IsPowerOfTwo(uint64_t value) {
return (value != 0 && ((value & (value - 1)) == 0));
}
std::vector<std::string> GetEntriesInDir(const std::string& dirpath) {
std::vector<std::string> result;
DIR* dir = opendir(dirpath.c_str());
if (dir == nullptr) {
PLOG(DEBUG) << "can't open dir " << dirpath;
return result;
}
dirent* entry;
while ((entry = readdir(dir)) != nullptr) {
if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) {
continue;
}
result.push_back(entry->d_name);
}
closedir(dir);
return result;
}
std::vector<std::string> GetSubDirs(const std::string& dirpath) {
std::vector<std::string> entries = GetEntriesInDir(dirpath);
std::vector<std::string> result;
for (size_t i = 0; i < entries.size(); ++i) {
if (IsDir(dirpath + OS_PATH_SEPARATOR + entries[i])) {
result.push_back(std::move(entries[i]));
}
}
return result;
}
bool IsDir(const std::string& dirpath) {
struct stat st;
if (stat(dirpath.c_str(), &st) == 0) {
if (S_ISDIR(st.st_mode)) {
return true;
}
}
return false;
}
bool IsRegularFile(const std::string& filename) {
struct stat st;
if (stat(filename.c_str(), &st) == 0) {
if (S_ISREG(st.st_mode)) {
return true;
}
}
return false;
}
uint64_t GetFileSize(const std::string& filename) {
struct stat st;
if (stat(filename.c_str(), &st) == 0) {
return static_cast<uint64_t>(st.st_size);
}
return 0;
}
bool MkdirWithParents(const std::string& path) {
size_t prev_end = 0;
while (prev_end < path.size()) {
size_t next_end = path.find('/', prev_end + 1);
if (next_end == std::string::npos) {
break;
}
std::string dir_path = path.substr(0, next_end);
if (!IsDir(dir_path)) {
#if defined(_WIN32)
int ret = mkdir(dir_path.c_str());
#else
int ret = mkdir(dir_path.c_str(), 0755);
#endif
if (ret != 0) {
PLOG(ERROR) << "failed to create dir " << dir_path;
return false;
}
}
prev_end = next_end;
}
return true;
}
static void* xz_alloc(ISzAllocPtr, size_t size) {
return malloc(size);
}
static void xz_free(ISzAllocPtr, void* address) {
free(address);
}
bool XzDecompress(const std::string& compressed_data, std::string* decompressed_data) {
ISzAlloc alloc;
CXzUnpacker state;
alloc.Alloc = xz_alloc;
alloc.Free = xz_free;
XzUnpacker_Construct(&state, &alloc);
CrcGenerateTable();
Crc64GenerateTable();
size_t src_offset = 0;
size_t dst_offset = 0;
std::string dst(compressed_data.size(), ' ');
ECoderStatus status = CODER_STATUS_NOT_FINISHED;
while (status == CODER_STATUS_NOT_FINISHED) {
dst.resize(dst.size() * 2);
size_t src_remaining = compressed_data.size() - src_offset;
size_t dst_remaining = dst.size() - dst_offset;
int res = XzUnpacker_Code(&state, reinterpret_cast<Byte*>(&dst[dst_offset]), &dst_remaining,
reinterpret_cast<const Byte*>(&compressed_data[src_offset]),
&src_remaining, true, CODER_FINISH_ANY, &status);
if (res != SZ_OK) {
LOG(ERROR) << "LZMA decompression failed with error " << res;
XzUnpacker_Free(&state);
return false;
}
src_offset += src_remaining;
dst_offset += dst_remaining;
}
XzUnpacker_Free(&state);
if (!XzUnpacker_IsStreamWasFinished(&state)) {
LOG(ERROR) << "LZMA decompresstion failed due to incomplete stream";
return false;
}
dst.resize(dst_offset);
*decompressed_data = std::move(dst);
return true;
}
static std::map<std::string, android::base::LogSeverity> log_severity_map = {
{"verbose", android::base::VERBOSE},
{"debug", android::base::DEBUG},
{"info", android::base::INFO},
{"warning", android::base::WARNING},
{"error", android::base::ERROR},
{"fatal", android::base::FATAL},
};
bool GetLogSeverity(const std::string& name, android::base::LogSeverity* severity) {
auto it = log_severity_map.find(name);
if (it != log_severity_map.end()) {
*severity = it->second;
return true;
}
return false;
}
std::string GetLogSeverityName() {
android::base::LogSeverity severity = android::base::GetMinimumLogSeverity();
for (auto& pair : log_severity_map) {
if (severity == pair.second) {
return pair.first;
}
}
return "info";
}
bool IsRoot() {
static int is_root = -1;
if (is_root == -1) {
#if defined(__linux__)
is_root = (getuid() == 0) ? 1 : 0;
#else
is_root = 0;
#endif
}
return is_root == 1;
}
bool ProcessKernelSymbols(std::string& symbol_data,
const std::function<bool(const KernelSymbol&)>& callback) {
char* p = &symbol_data[0];
char* data_end = p + symbol_data.size();
while (p < data_end) {
char* line_end = strchr(p, '\n');
if (line_end != nullptr) {
*line_end = '\0';
}
size_t line_size = (line_end != nullptr) ? (line_end - p) : (data_end - p);
// Parse line like: ffffffffa005c4e4 d __warned.41698 [libsas]
char name[line_size];
char module[line_size];
strcpy(module, "");
KernelSymbol symbol;
int ret = sscanf(p, "%" PRIx64 " %c %s%s", &symbol.addr, &symbol.type, name, module);
if (line_end != nullptr) {
*line_end = '\n';
p = line_end + 1;
} else {
p = data_end;
}
if (ret >= 3) {
symbol.name = name;
size_t module_len = strlen(module);
if (module_len > 2 && module[0] == '[' && module[module_len - 1] == ']') {
module[module_len - 1] = '\0';
symbol.module = &module[1];
} else {
symbol.module = nullptr;
}
if (callback(symbol)) {
return true;
}
}
}
return false;
}
size_t GetPageSize() {
#if defined(__linux__)
return sysconf(_SC_PAGE_SIZE);
#else
return 4096;
#endif
}
uint64_t ConvertBytesToValue(const char* bytes, uint32_t size) {
if (size > 8) {
LOG(FATAL) << "unexpected size " << size << " in ConvertBytesToValue";
}
uint64_t result = 0;
int shift = 0;
for (uint32_t i = 0; i < size; ++i) {
uint64_t tmp = static_cast<unsigned char>(bytes[i]);
result |= tmp << shift;
shift += 8;
}
return result;
}
timeval SecondToTimeval(double time_in_sec) {
timeval tv;
tv.tv_sec = static_cast<time_t>(time_in_sec);
tv.tv_usec = static_cast<int>((time_in_sec - tv.tv_sec) * 1000000);
return tv;
}
constexpr int SIMPLEPERF_VERSION = 1;
std::string GetSimpleperfVersion() {
return android::base::StringPrintf("%d.build.%s", SIMPLEPERF_VERSION,
android::build::GetBuildNumber().c_str());
}
std::vector<int> GetCpusFromString(const std::string& s) {
std::set<int> cpu_set;
bool have_dash = false;
const char* p = s.c_str();
char* endp;
int last_cpu;
int cpu;
// Parse line like: 0,1-3, 5, 7-8
while ((cpu = static_cast<int>(strtol(p, &endp, 10))) != 0 || endp != p) {
if (have_dash && !cpu_set.empty()) {
for (int t = last_cpu + 1; t < cpu; ++t) {
cpu_set.insert(t);
}
}
have_dash = false;
cpu_set.insert(cpu);
last_cpu = cpu;
p = endp;
while (!isdigit(*p) && *p != '\0') {
if (*p == '-') {
have_dash = true;
}
++p;
}
}
return std::vector<int>(cpu_set.begin(), cpu_set.end());
}