blob: 0eed0d6877e18701b3b04d4f044d26ec129b268a [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <map>
#include <memory>
#include <regex>
#include <thread>
#include "command.h"
#include "environment.h"
#include "event_selection_set.h"
#include "get_test_data.h"
#include "record.h"
#include "record_file.h"
#include "test_util.h"
#include "thread_tree.h"
using namespace PerfFileFormat;
static std::unique_ptr<Command> RecordCmd() {
return CreateCommandInstance("record");
}
static bool RunRecordCmd(std::vector<std::string> v,
const char* output_file = nullptr) {
std::unique_ptr<TemporaryFile> tmpfile;
std::string out_file;
if (output_file != nullptr) {
out_file = output_file;
} else {
tmpfile.reset(new TemporaryFile);
out_file = tmpfile->path;
}
v.insert(v.end(), {"-o", out_file, "sleep", SLEEP_SEC});
return RecordCmd()->Run(v);
}
TEST(record_cmd, no_options) {
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(RunRecordCmd({}));
}
TEST(record_cmd, system_wide_option) {
TEST_REQUIRE_HW_COUNTER();
TEST_IN_ROOT(ASSERT_TRUE(RunRecordCmd({"-a"})));
}
void CheckEventType(const std::string& record_file, const std::string event_type,
uint64_t sample_period, uint64_t sample_freq) {
const EventType* type = FindEventTypeByName(event_type);
ASSERT_TRUE(type != nullptr);
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(record_file);
ASSERT_TRUE(reader);
std::vector<EventAttrWithId> attrs = reader->AttrSection();
for (auto& attr : attrs) {
if (attr.attr->type == type->type && attr.attr->config == type->config) {
if (attr.attr->freq == 0) {
ASSERT_EQ(sample_period, attr.attr->sample_period);
ASSERT_EQ(sample_freq, 0u);
} else {
ASSERT_EQ(sample_period, 0u);
ASSERT_EQ(sample_freq, attr.attr->sample_freq);
}
return;
}
}
FAIL();
}
TEST(record_cmd, sample_period_option) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
ASSERT_TRUE(RunRecordCmd({"-c", "100000"}, tmpfile.path));
CheckEventType(tmpfile.path, "cpu-cycles", 100000u, 0);
}
TEST(record_cmd, event_option) {
ASSERT_TRUE(RunRecordCmd({"-e", "cpu-clock"}));
}
TEST(record_cmd, freq_option) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
ASSERT_TRUE(RunRecordCmd({"-f", "99"}, tmpfile.path));
CheckEventType(tmpfile.path, "cpu-cycles", 0, 99u);
ASSERT_TRUE(RunRecordCmd({"-e", "cpu-clock", "-f", "99"}, tmpfile.path));
CheckEventType(tmpfile.path, "cpu-clock", 0, 99u);
ASSERT_FALSE(RunRecordCmd({"-f", std::to_string(UINT_MAX)}));
}
TEST(record_cmd, multiple_freq_or_sample_period_option) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
ASSERT_TRUE(RunRecordCmd({"-f", "99", "-e", "cpu-cycles", "-c", "1000000", "-e",
"cpu-clock"}, tmpfile.path));
CheckEventType(tmpfile.path, "cpu-cycles", 0, 99u);
CheckEventType(tmpfile.path, "cpu-clock", 1000000u, 0u);
}
TEST(record_cmd, output_file_option) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "sleep", SLEEP_SEC}));
}
TEST(record_cmd, dump_kernel_mmap) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
ASSERT_TRUE(RunRecordCmd({}, tmpfile.path));
std::unique_ptr<RecordFileReader> reader =
RecordFileReader::CreateInstance(tmpfile.path);
ASSERT_TRUE(reader != nullptr);
std::vector<std::unique_ptr<Record>> records = reader->DataSection();
ASSERT_GT(records.size(), 0U);
bool have_kernel_mmap = false;
for (auto& record : records) {
if (record->type() == PERF_RECORD_MMAP) {
const MmapRecord* mmap_record =
static_cast<const MmapRecord*>(record.get());
if (strcmp(mmap_record->filename, DEFAULT_KERNEL_MMAP_NAME) == 0 ||
strcmp(mmap_record->filename, DEFAULT_KERNEL_MMAP_NAME_PERF) == 0) {
have_kernel_mmap = true;
break;
}
}
}
ASSERT_TRUE(have_kernel_mmap);
}
TEST(record_cmd, dump_build_id_feature) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
ASSERT_TRUE(RunRecordCmd({}, tmpfile.path));
std::unique_ptr<RecordFileReader> reader =
RecordFileReader::CreateInstance(tmpfile.path);
ASSERT_TRUE(reader != nullptr);
const FileHeader& file_header = reader->FileHeader();
ASSERT_TRUE(file_header.features[FEAT_BUILD_ID / 8] &
(1 << (FEAT_BUILD_ID % 8)));
ASSERT_GT(reader->FeatureSectionDescriptors().size(), 0u);
}
TEST(record_cmd, tracepoint_event) {
TEST_IN_ROOT(ASSERT_TRUE(RunRecordCmd({"-a", "-e", "sched:sched_switch"})));
}
TEST(record_cmd, rN_event) {
TEST_REQUIRE_HW_COUNTER();
OMIT_TEST_ON_NON_NATIVE_ABIS();
size_t event_number;
if (GetBuildArch() == ARCH_ARM64 || GetBuildArch() == ARCH_ARM) {
// As in D5.10.2 of the ARMv8 manual, ARM defines the event number space for PMU. part of the
// space is for common event numbers (which will stay the same for all ARM chips), part of the
// space is for implementation defined events. Here 0x08 is a common event for instructions.
event_number = 0x08;
} else if (GetBuildArch() == ARCH_X86_32 || GetBuildArch() == ARCH_X86_64) {
// As in volume 3 chapter 19 of the Intel manual, 0x00c0 is the event number for instruction.
event_number = 0x00c0;
} else {
GTEST_LOG_(INFO) << "Omit arch " << GetBuildArch();
return;
}
std::string event_name = android::base::StringPrintf("r%zx", event_number);
TemporaryFile tmpfile;
ASSERT_TRUE(RunRecordCmd({"-e", event_name}, tmpfile.path));
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(tmpfile.path);
ASSERT_TRUE(reader);
std::vector<EventAttrWithId> attrs = reader->AttrSection();
ASSERT_EQ(1u, attrs.size());
ASSERT_EQ(PERF_TYPE_RAW, attrs[0].attr->type);
ASSERT_EQ(event_number, attrs[0].attr->config);
}
TEST(record_cmd, branch_sampling) {
TEST_REQUIRE_HW_COUNTER();
if (IsBranchSamplingSupported()) {
ASSERT_TRUE(RunRecordCmd({"-b"}));
ASSERT_TRUE(RunRecordCmd({"-j", "any,any_call,any_ret,ind_call"}));
ASSERT_TRUE(RunRecordCmd({"-j", "any,k"}));
ASSERT_TRUE(RunRecordCmd({"-j", "any,u"}));
ASSERT_FALSE(RunRecordCmd({"-j", "u"}));
} else {
GTEST_LOG_(INFO) << "This test does nothing as branch stack sampling is "
"not supported on this device.";
}
}
TEST(record_cmd, event_modifier) {
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(RunRecordCmd({"-e", "cpu-cycles:u"}));
}
TEST(record_cmd, fp_callchain_sampling) {
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(RunRecordCmd({"--call-graph", "fp"}));
}
TEST(record_cmd, fp_callchain_sampling_warning_on_arm) {
TEST_REQUIRE_HW_COUNTER();
if (GetBuildArch() != ARCH_ARM) {
GTEST_LOG_(INFO) << "This test does nothing as it only tests on arm arch.";
return;
}
ASSERT_EXIT(
{
exit(RunRecordCmd({"--call-graph", "fp"}) ? 0 : 1);
},
testing::ExitedWithCode(0), "doesn't work well on arm");
}
TEST(record_cmd, system_wide_fp_callchain_sampling) {
TEST_REQUIRE_HW_COUNTER();
TEST_IN_ROOT(ASSERT_TRUE(RunRecordCmd({"-a", "--call-graph", "fp"})));
}
bool IsInNativeAbi() {
static int in_native_abi = -1;
if (in_native_abi == -1) {
FILE* fp = popen("uname -m", "re");
char buf[40];
memset(buf, '\0', sizeof(buf));
fgets(buf, sizeof(buf), fp);
pclose(fp);
std::string s = buf;
in_native_abi = 1;
if (GetBuildArch() == ARCH_X86_32 || GetBuildArch() == ARCH_X86_64) {
if (s.find("86") == std::string::npos) {
in_native_abi = 0;
}
} else if (GetBuildArch() == ARCH_ARM || GetBuildArch() == ARCH_ARM64) {
if (s.find("arm") == std::string::npos && s.find("aarch64") == std::string::npos) {
in_native_abi = 0;
}
}
}
return in_native_abi == 1;
}
bool HasHardwareCounter() {
static int has_hw_counter = -1;
if (has_hw_counter == -1) {
has_hw_counter = 1;
#if defined(__arm__)
std::string cpu_info;
if (android::base::ReadFileToString("/proc/cpuinfo", &cpu_info)) {
std::string hardware = GetHardwareFromCpuInfo(cpu_info);
if (std::regex_search(hardware, std::regex(R"(i\.MX6.*Quad)"))) {
has_hw_counter = 0;
}
}
#endif
}
return has_hw_counter == 1;
}
TEST(record_cmd, dwarf_callchain_sampling) {
TEST_REQUIRE_HW_COUNTER();
OMIT_TEST_ON_NON_NATIVE_ABIS();
ASSERT_TRUE(IsDwarfCallChainSamplingSupported());
std::vector<std::unique_ptr<Workload>> workloads;
CreateProcesses(1, &workloads);
std::string pid = std::to_string(workloads[0]->GetPid());
ASSERT_TRUE(RunRecordCmd({"-p", pid, "--call-graph", "dwarf"}));
ASSERT_TRUE(RunRecordCmd({"-p", pid, "--call-graph", "dwarf,16384"}));
ASSERT_FALSE(RunRecordCmd({"-p", pid, "--call-graph", "dwarf,65536"}));
ASSERT_TRUE(RunRecordCmd({"-p", pid, "-g"}));
}
TEST(record_cmd, system_wide_dwarf_callchain_sampling) {
TEST_REQUIRE_HW_COUNTER();
OMIT_TEST_ON_NON_NATIVE_ABIS();
ASSERT_TRUE(IsDwarfCallChainSamplingSupported());
TEST_IN_ROOT(RunRecordCmd({"-a", "--call-graph", "dwarf"}));
}
TEST(record_cmd, no_unwind_option) {
TEST_REQUIRE_HW_COUNTER();
OMIT_TEST_ON_NON_NATIVE_ABIS();
ASSERT_TRUE(IsDwarfCallChainSamplingSupported());
ASSERT_TRUE(RunRecordCmd({"--call-graph", "dwarf", "--no-unwind"}));
ASSERT_FALSE(RunRecordCmd({"--no-unwind"}));
}
TEST(record_cmd, post_unwind_option) {
TEST_REQUIRE_HW_COUNTER();
OMIT_TEST_ON_NON_NATIVE_ABIS();
ASSERT_TRUE(IsDwarfCallChainSamplingSupported());
std::vector<std::unique_ptr<Workload>> workloads;
CreateProcesses(1, &workloads);
std::string pid = std::to_string(workloads[0]->GetPid());
ASSERT_TRUE(RunRecordCmd({"-p", pid, "--call-graph", "dwarf", "--post-unwind"}));
ASSERT_TRUE(RunRecordCmd({"-p", pid, "--call-graph", "dwarf", "--post-unwind=yes"}));
ASSERT_TRUE(RunRecordCmd({"-p", pid, "--call-graph", "dwarf", "--post-unwind=no"}));
}
TEST(record_cmd, existing_processes) {
TEST_REQUIRE_HW_COUNTER();
std::vector<std::unique_ptr<Workload>> workloads;
CreateProcesses(2, &workloads);
std::string pid_list = android::base::StringPrintf(
"%d,%d", workloads[0]->GetPid(), workloads[1]->GetPid());
ASSERT_TRUE(RunRecordCmd({"-p", pid_list}));
}
TEST(record_cmd, existing_threads) {
TEST_REQUIRE_HW_COUNTER();
std::vector<std::unique_ptr<Workload>> workloads;
CreateProcesses(2, &workloads);
// Process id can also be used as thread id in linux.
std::string tid_list = android::base::StringPrintf(
"%d,%d", workloads[0]->GetPid(), workloads[1]->GetPid());
ASSERT_TRUE(RunRecordCmd({"-t", tid_list}));
}
TEST(record_cmd, no_monitored_threads) {
TEST_REQUIRE_HW_COUNTER();
ScopedAppPackageName scoped_package_name("");
TemporaryFile tmpfile;
ASSERT_FALSE(RecordCmd()->Run({"-o", tmpfile.path}));
ASSERT_FALSE(RecordCmd()->Run({"-o", tmpfile.path, ""}));
}
TEST(record_cmd, more_than_one_event_types) {
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(RunRecordCmd({"-e", "cpu-cycles,cpu-clock"}));
ASSERT_TRUE(RunRecordCmd({"-e", "cpu-cycles", "-e", "cpu-clock"}));
}
TEST(record_cmd, mmap_page_option) {
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(RunRecordCmd({"-m", "1"}));
ASSERT_FALSE(RunRecordCmd({"-m", "0"}));
ASSERT_FALSE(RunRecordCmd({"-m", "7"}));
}
static void CheckKernelSymbol(const std::string& path, bool need_kallsyms,
bool* success) {
*success = false;
std::unique_ptr<RecordFileReader> reader =
RecordFileReader::CreateInstance(path);
ASSERT_TRUE(reader != nullptr);
std::vector<std::unique_ptr<Record>> records = reader->DataSection();
bool has_kernel_symbol_records = false;
for (const auto& record : records) {
if (record->type() == SIMPLE_PERF_RECORD_KERNEL_SYMBOL) {
has_kernel_symbol_records = true;
}
}
bool require_kallsyms = need_kallsyms && CheckKernelSymbolAddresses();
ASSERT_EQ(require_kallsyms, has_kernel_symbol_records);
*success = true;
}
TEST(record_cmd, kernel_symbol) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
ASSERT_TRUE(RunRecordCmd({"--no-dump-symbols"}, tmpfile.path));
bool success;
CheckKernelSymbol(tmpfile.path, true, &success);
ASSERT_TRUE(success);
ASSERT_TRUE(RunRecordCmd({"--no-dump-symbols", "--no-dump-kernel-symbols"}, tmpfile.path));
CheckKernelSymbol(tmpfile.path, false, &success);
ASSERT_TRUE(success);
}
// Check if the dso/symbol records in perf.data matches our expectation.
static void CheckDsoSymbolRecords(const std::string& path,
bool can_have_dso_symbol_records,
bool* success) {
*success = false;
std::unique_ptr<RecordFileReader> reader =
RecordFileReader::CreateInstance(path);
ASSERT_TRUE(reader != nullptr);
std::vector<std::unique_ptr<Record>> records = reader->DataSection();
bool has_dso_record = false;
bool has_symbol_record = false;
std::map<uint64_t, bool> dso_hit_map;
for (const auto& record : records) {
if (record->type() == SIMPLE_PERF_RECORD_DSO) {
has_dso_record = true;
uint64_t dso_id = static_cast<const DsoRecord*>(record.get())->dso_id;
ASSERT_EQ(dso_hit_map.end(), dso_hit_map.find(dso_id));
dso_hit_map.insert(std::make_pair(dso_id, false));
} else if (record->type() == SIMPLE_PERF_RECORD_SYMBOL) {
has_symbol_record = true;
uint64_t dso_id = static_cast<const SymbolRecord*>(record.get())->dso_id;
auto it = dso_hit_map.find(dso_id);
ASSERT_NE(dso_hit_map.end(), it);
it->second = true;
}
}
if (can_have_dso_symbol_records) {
// It is possible that there are no samples hitting functions having symbol.
// In that case, there are no dso/symbol records.
ASSERT_EQ(has_dso_record, has_symbol_record);
for (auto& pair : dso_hit_map) {
ASSERT_TRUE(pair.second);
}
} else {
ASSERT_FALSE(has_dso_record);
ASSERT_FALSE(has_symbol_record);
}
*success = true;
}
TEST(record_cmd, no_dump_symbols) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
ASSERT_TRUE(RunRecordCmd({}, tmpfile.path));
bool success;
CheckDsoSymbolRecords(tmpfile.path, true, &success);
ASSERT_TRUE(success);
ASSERT_TRUE(RunRecordCmd({"--no-dump-symbols"}, tmpfile.path));
CheckDsoSymbolRecords(tmpfile.path, false, &success);
ASSERT_TRUE(success);
OMIT_TEST_ON_NON_NATIVE_ABIS();
ASSERT_TRUE(IsDwarfCallChainSamplingSupported());
std::vector<std::unique_ptr<Workload>> workloads;
CreateProcesses(1, &workloads);
std::string pid = std::to_string(workloads[0]->GetPid());
ASSERT_TRUE(RunRecordCmd({"-p", pid, "-g"}, tmpfile.path));
CheckDsoSymbolRecords(tmpfile.path, true, &success);
ASSERT_TRUE(success);
ASSERT_TRUE(RunRecordCmd({"-p", pid, "-g", "--no-dump-symbols"}, tmpfile.path));
CheckDsoSymbolRecords(tmpfile.path, false, &success);
ASSERT_TRUE(success);
}
TEST(record_cmd, dump_kernel_symbols) {
TEST_REQUIRE_HW_COUNTER();
if (!IsRoot()) {
GTEST_LOG_(INFO) << "Test requires root privilege";
return;
}
TemporaryFile tmpfile;
ASSERT_TRUE(RunRecordCmd({"-a", "-o", tmpfile.path, "sleep", "1"}));
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(tmpfile.path);
ASSERT_TRUE(reader != nullptr);
std::map<int, SectionDesc> section_map = reader->FeatureSectionDescriptors();
ASSERT_NE(section_map.find(FEAT_FILE), section_map.end());
std::string file_path;
uint32_t file_type;
uint64_t min_vaddr;
std::vector<Symbol> symbols;
std::vector<uint64_t> dex_file_offsets;
size_t read_pos = 0;
bool has_kernel_symbols = false;
while (reader->ReadFileFeature(read_pos, &file_path, &file_type, &min_vaddr, &symbols,
&dex_file_offsets)) {
if (file_type == DSO_KERNEL && !symbols.empty()) {
has_kernel_symbols = true;
}
}
ASSERT_TRUE(has_kernel_symbols);
}
TEST(record_cmd, group_option) {
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(RunRecordCmd({"--group", "cpu-cycles,cpu-clock", "-m", "16"}));
ASSERT_TRUE(RunRecordCmd({"--group", "cpu-cycles,cpu-clock", "--group",
"cpu-cycles:u,cpu-clock:u", "--group",
"cpu-cycles:k,cpu-clock:k", "-m", "16"}));
}
TEST(record_cmd, symfs_option) {
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(RunRecordCmd({"--symfs", "/"}));
}
TEST(record_cmd, duration_option) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
ASSERT_TRUE(RecordCmd()->Run({"--duration", "1.2", "-p",
std::to_string(getpid()), "-o", tmpfile.path, "--in-app"}));
ASSERT_TRUE(
RecordCmd()->Run({"--duration", "1", "-o", tmpfile.path, "sleep", "2"}));
}
TEST(record_cmd, support_modifier_for_clock_events) {
for (const std::string& e : {"cpu-clock", "task-clock"}) {
for (const std::string& m : {"u", "k"}) {
ASSERT_TRUE(RunRecordCmd({"-e", e + ":" + m})) << "event " << e << ":"
<< m;
}
}
}
TEST(record_cmd, handle_SIGHUP) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
int pipefd[2];
ASSERT_EQ(0, pipe(pipefd));
int read_fd = pipefd[0];
int write_fd = pipefd[1];
char data[8] = {};
std::thread thread([&]() {
android::base::ReadFully(read_fd, data, 7);
kill(getpid(), SIGHUP);
});
ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "--start_profiling_fd",
std::to_string(write_fd), "sleep", "1000000"}));
thread.join();
close(write_fd);
close(read_fd);
ASSERT_STREQ(data, "STARTED");
}
TEST(record_cmd, stop_when_no_more_targets) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
std::atomic<int> tid(0);
std::thread thread([&]() {
tid = gettid();
sleep(1);
});
thread.detach();
while (tid == 0);
ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "-t", std::to_string(tid), "--in-app"}));
}
TEST(record_cmd, donot_stop_when_having_targets) {
TEST_REQUIRE_HW_COUNTER();
std::vector<std::unique_ptr<Workload>> workloads;
CreateProcesses(1, &workloads);
std::string pid = std::to_string(workloads[0]->GetPid());
uint64_t start_time_in_ns = GetSystemClock();
TemporaryFile tmpfile;
ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "-p", pid, "--duration", "3"}));
uint64_t end_time_in_ns = GetSystemClock();
ASSERT_GT(end_time_in_ns - start_time_in_ns, static_cast<uint64_t>(2e9));
}
TEST(record_cmd, start_profiling_fd_option) {
TEST_REQUIRE_HW_COUNTER();
int pipefd[2];
ASSERT_EQ(0, pipe(pipefd));
int read_fd = pipefd[0];
int write_fd = pipefd[1];
ASSERT_EXIT(
{
close(read_fd);
exit(RunRecordCmd({"--start_profiling_fd", std::to_string(write_fd)}) ? 0 : 1);
},
testing::ExitedWithCode(0), "");
close(write_fd);
std::string s;
ASSERT_TRUE(android::base::ReadFdToString(read_fd, &s));
close(read_fd);
ASSERT_EQ("STARTED", s);
}
TEST(record_cmd, record_meta_info_feature) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
ASSERT_TRUE(RunRecordCmd({}, tmpfile.path));
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(tmpfile.path);
ASSERT_TRUE(reader);
std::unordered_map<std::string, std::string> info_map;
ASSERT_TRUE(reader->ReadMetaInfoFeature(&info_map));
ASSERT_NE(info_map.find("simpleperf_version"), info_map.end());
ASSERT_NE(info_map.find("timestamp"), info_map.end());
#if defined(__ANDROID__)
ASSERT_NE(info_map.find("product_props"), info_map.end());
ASSERT_NE(info_map.find("android_version"), info_map.end());
#endif
}
// See http://b/63135835.
TEST(record_cmd, cpu_clock_for_a_long_time) {
std::vector<std::unique_ptr<Workload>> workloads;
CreateProcesses(1, &workloads);
std::string pid = std::to_string(workloads[0]->GetPid());
TemporaryFile tmpfile;
ASSERT_TRUE(RecordCmd()->Run(
{"-e", "cpu-clock", "-o", tmpfile.path, "-p", pid, "--duration", "3"}));
}
TEST(record_cmd, dump_regs_for_tracepoint_events) {
TEST_REQUIRE_HW_COUNTER();
TEST_REQUIRE_HOST_ROOT();
OMIT_TEST_ON_NON_NATIVE_ABIS();
// Check if the kernel can dump registers for tracepoint events.
// If not, probably a kernel patch below is missing:
// "5b09a094f2 arm64: perf: Fix callchain parse error with kernel tracepoint events"
ASSERT_TRUE(IsDumpingRegsForTracepointEventsSupported());
}
TEST(record_cmd, trace_offcpu_option) {
TEST_REQUIRE_HW_COUNTER();
// On linux host, we need root privilege to read tracepoint events.
TEST_REQUIRE_HOST_ROOT();
OMIT_TEST_ON_NON_NATIVE_ABIS();
TemporaryFile tmpfile;
ASSERT_TRUE(RunRecordCmd({"--trace-offcpu", "-f", "1000"}, tmpfile.path));
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(tmpfile.path);
ASSERT_TRUE(reader);
std::unordered_map<std::string, std::string> info_map;
ASSERT_TRUE(reader->ReadMetaInfoFeature(&info_map));
ASSERT_EQ(info_map["trace_offcpu"], "true");
CheckEventType(tmpfile.path, "sched:sched_switch", 1u, 0u);
}
TEST(record_cmd, exit_with_parent_option) {
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(RunRecordCmd({"--exit-with-parent"}));
}
TEST(record_cmd, clockid_option) {
TEST_REQUIRE_HW_COUNTER();
if (!IsSettingClockIdSupported()) {
ASSERT_FALSE(RunRecordCmd({"--clockid", "monotonic"}));
} else {
TemporaryFile tmpfile;
ASSERT_TRUE(RunRecordCmd({"--clockid", "monotonic"}, tmpfile.path));
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(tmpfile.path);
ASSERT_TRUE(reader);
std::unordered_map<std::string, std::string> info_map;
ASSERT_TRUE(reader->ReadMetaInfoFeature(&info_map));
ASSERT_EQ(info_map["clockid"], "monotonic");
}
}
TEST(record_cmd, generate_samples_by_hw_counters) {
TEST_REQUIRE_HW_COUNTER();
std::vector<std::string> events = {"cpu-cycles", "instructions"};
for (auto& event : events) {
TemporaryFile tmpfile;
ASSERT_TRUE(RecordCmd()->Run({"-e", event, "-o", tmpfile.path, "sleep", "1"}));
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(tmpfile.path);
ASSERT_TRUE(reader);
bool has_sample = false;
ASSERT_TRUE(reader->ReadDataSection([&](std::unique_ptr<Record> r) {
if (r->type() == PERF_RECORD_SAMPLE) {
has_sample = true;
}
return true;
}));
ASSERT_TRUE(has_sample);
}
}
TEST(record_cmd, callchain_joiner_options) {
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(RunRecordCmd({"--no-callchain-joiner"}));
ASSERT_TRUE(RunRecordCmd({"--callchain-joiner-min-matching-nodes", "2"}));
}
TEST(record_cmd, dashdash) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmpfile;
ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "--", "sleep", "1"}));
}
TEST(record_cmd, size_limit_option) {
TEST_REQUIRE_HW_COUNTER();
std::vector<std::unique_ptr<Workload>> workloads;
CreateProcesses(1, &workloads);
std::string pid = std::to_string(workloads[0]->GetPid());
TemporaryFile tmpfile;
ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "-p", pid, "--size-limit", "1k", "--duration",
"1"}));
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(tmpfile.path);
ASSERT_TRUE(reader);
ASSERT_GT(reader->FileHeader().data.size, 1000u);
ASSERT_LT(reader->FileHeader().data.size, 2000u);
ASSERT_FALSE(RunRecordCmd({"--size-limit", "0"}));
}
TEST(record_cmd, support_mmap2) {
// mmap2 is supported in kernel >= 3.16. If not supported, please cherry pick below kernel
// patches:
// 13d7a2410fa637 perf: Add attr->mmap2 attribute to an event
// f972eb63b1003f perf: Pass protection and flags bits through mmap2 interface.
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(IsMmap2Supported());
}
TEST(record_cmd, kernel_bug_making_zero_dyn_size) {
// Test a kernel bug that makes zero dyn_size in kernel < 3.13. If it fails, please cherry pick
// below kernel patch: 0a196848ca365e perf: Fix arch_perf_out_copy_user default
TEST_REQUIRE_HW_COUNTER();
std::vector<std::unique_ptr<Workload>> workloads;
CreateProcesses(1, &workloads);
std::string pid = std::to_string(workloads[0]->GetPid());
TemporaryFile tmpfile;
ASSERT_TRUE(RecordCmd()->Run({"-o", tmpfile.path, "-p", pid, "--call-graph", "dwarf,8",
"--no-unwind", "--duration", "1"}));
std::unique_ptr<RecordFileReader> reader = RecordFileReader::CreateInstance(tmpfile.path);
ASSERT_TRUE(reader);
bool has_sample = false;
ASSERT_TRUE(reader->ReadDataSection([&](std::unique_ptr<Record> r) {
if (r->type() == PERF_RECORD_SAMPLE && !r->InKernel()) {
SampleRecord* sr = static_cast<SampleRecord*>(r.get());
if (sr->stack_user_data.dyn_size == 0) {
return false;
}
has_sample = true;
}
return true;
}));
}
TEST(record_cmd, cpu_percent_option) {
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(RunRecordCmd({"--cpu-percent", "50"}));
ASSERT_FALSE(RunRecordCmd({"--cpu-percent", "0"}));
ASSERT_FALSE(RunRecordCmd({"--cpu-percent", "101"}));
}