blob: 88587dc3098afb38f29e1b5efede029005870bd4 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "environment.h"
#include <inttypes.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/resource.h>
#include <sys/utsname.h>
#include <unistd.h>
#include <limits>
#include <optional>
#include <set>
#include <unordered_map>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/parseint.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <procinfo/process.h>
#include <procinfo/process_map.h>
#if defined(__ANDROID__)
#include <android-base/properties.h>
#include <cutils/android_filesystem_config.h>
#endif
#include "IOEventLoop.h"
#include "command.h"
#include "event_type.h"
#include "kallsyms.h"
#include "read_elf.h"
#include "thread_tree.h"
#include "utils.h"
#include "workload.h"
namespace simpleperf {
std::vector<int> GetOnlineCpus() {
std::vector<int> result;
LineReader reader("/sys/devices/system/cpu/online");
if (!reader.Ok()) {
PLOG(ERROR) << "can't open online cpu information";
return result;
}
std::string* line;
if ((line = reader.ReadLine()) != nullptr) {
if (auto cpus = GetCpusFromString(*line); cpus) {
result.assign(cpus->begin(), cpus->end());
}
}
CHECK(!result.empty()) << "can't get online cpu information";
return result;
}
static void GetAllModuleFiles(const std::string& path,
std::unordered_map<std::string, std::string>* module_file_map) {
for (const auto& name : GetEntriesInDir(path)) {
std::string entry_path = path + "/" + name;
if (IsRegularFile(entry_path) && android::base::EndsWith(name, ".ko")) {
std::string module_name = name.substr(0, name.size() - 3);
std::replace(module_name.begin(), module_name.end(), '-', '_');
module_file_map->insert(std::make_pair(module_name, entry_path));
} else if (IsDir(entry_path)) {
GetAllModuleFiles(entry_path, module_file_map);
}
}
}
static std::vector<KernelMmap> GetModulesInUse() {
std::vector<KernelMmap> module_mmaps = GetLoadedModules();
if (module_mmaps.empty()) {
return std::vector<KernelMmap>();
}
std::unordered_map<std::string, std::string> module_file_map;
#if defined(__ANDROID__)
// Search directories listed in "File locations" section in
// https://source.android.com/devices/architecture/kernel/modular-kernels.
for (const auto& path : {"/vendor/lib/modules", "/odm/lib/modules", "/lib/modules"}) {
GetAllModuleFiles(path, &module_file_map);
}
#else
utsname uname_buf;
if (TEMP_FAILURE_RETRY(uname(&uname_buf)) != 0) {
PLOG(ERROR) << "uname() failed";
return std::vector<KernelMmap>();
}
std::string linux_version = uname_buf.release;
std::string module_dirpath = "/lib/modules/" + linux_version + "/kernel";
GetAllModuleFiles(module_dirpath, &module_file_map);
#endif
for (auto& module : module_mmaps) {
auto it = module_file_map.find(module.name);
if (it != module_file_map.end()) {
module.filepath = it->second;
}
}
return module_mmaps;
}
void GetKernelAndModuleMmaps(KernelMmap* kernel_mmap, std::vector<KernelMmap>* module_mmaps) {
kernel_mmap->name = DEFAULT_KERNEL_MMAP_NAME;
kernel_mmap->start_addr = 0;
kernel_mmap->len = std::numeric_limits<uint64_t>::max();
if (uint64_t kstart_addr = GetKernelStartAddress(); kstart_addr != 0) {
kernel_mmap->name = std::string(DEFAULT_KERNEL_MMAP_NAME) + "_stext";
kernel_mmap->start_addr = kstart_addr;
kernel_mmap->len = std::numeric_limits<uint64_t>::max() - kstart_addr;
}
kernel_mmap->filepath = kernel_mmap->name;
*module_mmaps = GetModulesInUse();
for (auto& map : *module_mmaps) {
if (map.filepath.empty()) {
map.filepath = "[" + map.name + "]";
}
}
}
bool ReadThreadNameAndPid(pid_t tid, std::string* comm, pid_t* pid) {
android::procinfo::ProcessInfo procinfo;
if (!android::procinfo::GetProcessInfo(tid, &procinfo)) {
return false;
}
if (comm != nullptr) {
*comm = procinfo.name;
}
if (pid != nullptr) {
*pid = procinfo.pid;
}
return true;
}
std::vector<pid_t> GetThreadsInProcess(pid_t pid) {
std::vector<pid_t> result;
android::procinfo::GetProcessTids(pid, &result);
return result;
}
bool IsThreadAlive(pid_t tid) {
return IsDir(android::base::StringPrintf("/proc/%d", tid));
}
bool GetProcessForThread(pid_t tid, pid_t* pid) {
return ReadThreadNameAndPid(tid, nullptr, pid);
}
bool GetThreadName(pid_t tid, std::string* name) {
return ReadThreadNameAndPid(tid, name, nullptr);
}
std::vector<pid_t> GetAllProcesses() {
std::vector<pid_t> result;
std::vector<std::string> entries = GetEntriesInDir("/proc");
for (const auto& entry : entries) {
pid_t pid;
if (!android::base::ParseInt(entry.c_str(), &pid, 0)) {
continue;
}
result.push_back(pid);
}
return result;
}
bool GetThreadMmapsInProcess(pid_t pid, std::vector<ThreadMmap>* thread_mmaps) {
thread_mmaps->clear();
return android::procinfo::ReadProcessMaps(pid, [&](const android::procinfo::MapInfo& mapinfo) {
thread_mmaps->emplace_back(mapinfo.start, mapinfo.end - mapinfo.start, mapinfo.pgoff,
mapinfo.name.c_str(), mapinfo.flags);
});
}
bool GetKernelBuildId(BuildId* build_id) {
ElfStatus result = GetBuildIdFromNoteFile("/sys/kernel/notes", build_id);
if (result != ElfStatus::NO_ERROR) {
LOG(DEBUG) << "failed to read /sys/kernel/notes: " << result;
}
return result == ElfStatus::NO_ERROR;
}
bool GetModuleBuildId(const std::string& module_name, BuildId* build_id,
const std::string& sysfs_dir) {
std::string notefile = sysfs_dir + "/module/" + module_name + "/notes/.note.gnu.build-id";
return GetBuildIdFromNoteFile(notefile, build_id) == ElfStatus::NO_ERROR;
}
/*
* perf event allow level:
* -1 - everything allowed
* 0 - disallow raw tracepoint access for unpriv
* 1 - disallow cpu events for unpriv
* 2 - disallow kernel profiling for unpriv
* 3 - disallow user profiling for unpriv
*/
static const char* perf_event_allow_path = "/proc/sys/kernel/perf_event_paranoid";
static std::optional<int> ReadPerfEventAllowStatus() {
std::string s;
if (!android::base::ReadFileToString(perf_event_allow_path, &s)) {
PLOG(DEBUG) << "failed to read " << perf_event_allow_path;
return std::nullopt;
}
s = android::base::Trim(s);
int value;
if (!android::base::ParseInt(s.c_str(), &value)) {
PLOG(ERROR) << "failed to parse " << perf_event_allow_path << ": " << s;
return std::nullopt;
}
return value;
}
bool CanRecordRawData() {
if (IsRoot()) {
return true;
}
#if defined(__ANDROID__)
// Android R uses selinux to control perf_event_open. Whether raw data can be recorded is hard
// to check unless we really try it. And probably there is no need to record raw data in non-root
// users.
return false;
#else
return ReadPerfEventAllowStatus() == -1;
#endif
}
std::optional<uint64_t> GetMemorySize() {
std::unique_ptr<FILE, decltype(&fclose)> fp(fopen("/proc/meminfo", "r"), fclose);
uint64_t size;
if (fp && fscanf(fp.get(), "MemTotal:%" PRIu64 " k", &size) == 1) {
return size * kKilobyte;
}
PLOG(ERROR) << "failed to get memory size";
return std::nullopt;
}
static const char* GetLimitLevelDescription(int limit_level) {
switch (limit_level) {
case -1:
return "unlimited";
case 0:
return "disallowing raw tracepoint access for unpriv";
case 1:
return "disallowing cpu events for unpriv";
case 2:
return "disallowing kernel profiling for unpriv";
case 3:
return "disallowing user profiling for unpriv";
default:
return "unknown level";
}
}
bool CheckPerfEventLimit() {
std::optional<int> old_level = ReadPerfEventAllowStatus();
// Root is not limited by perf_event_allow_path. However, the monitored threads
// may create child processes not running as root. To make sure the child processes have
// enough permission to create inherited tracepoint events, write -1 to perf_event_allow_path.
// See http://b/62230699.
if (IsRoot()) {
if (old_level == -1) {
return true;
}
if (android::base::WriteStringToFile("-1", perf_event_allow_path)) {
return true;
}
// On host, we may not be able to write to perf_event_allow_path (like when running in docker).
#if defined(__ANDROID__)
PLOG(ERROR) << "failed to write -1 to " << perf_event_allow_path;
return false;
#endif
}
if (old_level.has_value() && old_level <= 1) {
return true;
}
#if defined(__ANDROID__)
const std::string prop_name = "security.perf_harden";
std::string prop_value = android::base::GetProperty(prop_name, "");
if (prop_value.empty()) {
// can't do anything if there is no such property.
return true;
}
if (prop_value == "0") {
return true;
}
// Try to enable perf events by setprop security.perf_harden=0.
if (android::base::SetProperty(prop_name, "0")) {
sleep(1);
// Check the result of setprop, by reading allow status or the property value.
if (auto level = ReadPerfEventAllowStatus(); level.has_value() && level <= 1) {
return true;
}
if (android::base::GetProperty(prop_name, "") == "0") {
return true;
}
}
if (old_level.has_value()) {
LOG(ERROR) << perf_event_allow_path << " is " << old_level.value() << ", "
<< GetLimitLevelDescription(old_level.value()) << ".";
}
LOG(ERROR) << "Try using `adb shell setprop security.perf_harden 0` to allow profiling.";
return false;
#else
if (old_level.has_value()) {
LOG(ERROR) << perf_event_allow_path << " is " << old_level.value() << ", "
<< GetLimitLevelDescription(old_level.value()) << ". Try using `echo -1 >"
<< perf_event_allow_path << "` to enable profiling.";
return false;
}
#endif
return true;
}
#if defined(__ANDROID__)
static bool SetProperty(const char* prop_name, uint64_t value) {
if (!android::base::SetProperty(prop_name, std::to_string(value))) {
LOG(ERROR) << "Failed to SetProperty " << prop_name << " to " << value;
return false;
}
return true;
}
bool SetPerfEventLimits(uint64_t sample_freq, size_t cpu_percent, uint64_t mlock_kb) {
if (!SetProperty("debug.perf_event_max_sample_rate", sample_freq) ||
!SetProperty("debug.perf_cpu_time_max_percent", cpu_percent) ||
!SetProperty("debug.perf_event_mlock_kb", mlock_kb) ||
!SetProperty("security.perf_harden", 0)) {
return false;
}
// Wait for init process to change perf event limits based on properties.
const size_t max_wait_us = 3 * 1000000;
const size_t interval_us = 10000;
int finish_mask = 0;
for (size_t i = 0; i < max_wait_us && finish_mask != 7; i += interval_us) {
usleep(interval_us); // Wait 10ms to avoid busy loop.
if ((finish_mask & 1) == 0) {
uint64_t freq;
if (!GetMaxSampleFrequency(&freq) || freq == sample_freq) {
finish_mask |= 1;
}
}
if ((finish_mask & 2) == 0) {
size_t percent;
if (!GetCpuTimeMaxPercent(&percent) || percent == cpu_percent) {
finish_mask |= 2;
}
}
if ((finish_mask & 4) == 0) {
uint64_t kb;
if (!GetPerfEventMlockKb(&kb) || kb == mlock_kb) {
finish_mask |= 4;
}
}
}
if (finish_mask != 7) {
LOG(WARNING) << "Wait setting perf event limits timeout";
}
return true;
}
#else // !defined(__ANDROID__)
bool SetPerfEventLimits(uint64_t, size_t, uint64_t) {
return true;
}
#endif
template <typename T>
static bool ReadUintFromProcFile(const std::string& path, T* value) {
std::string s;
if (!android::base::ReadFileToString(path, &s)) {
PLOG(DEBUG) << "failed to read " << path;
return false;
}
s = android::base::Trim(s);
if (!android::base::ParseUint(s.c_str(), value)) {
LOG(ERROR) << "failed to parse " << path << ": " << s;
return false;
}
return true;
}
template <typename T>
static bool WriteUintToProcFile(const std::string& path, T value) {
if (IsRoot()) {
return android::base::WriteStringToFile(std::to_string(value), path);
}
return false;
}
bool GetMaxSampleFrequency(uint64_t* max_sample_freq) {
return ReadUintFromProcFile("/proc/sys/kernel/perf_event_max_sample_rate", max_sample_freq);
}
bool SetMaxSampleFrequency(uint64_t max_sample_freq) {
return WriteUintToProcFile("/proc/sys/kernel/perf_event_max_sample_rate", max_sample_freq);
}
bool GetCpuTimeMaxPercent(size_t* percent) {
return ReadUintFromProcFile("/proc/sys/kernel/perf_cpu_time_max_percent", percent);
}
bool SetCpuTimeMaxPercent(size_t percent) {
return WriteUintToProcFile("/proc/sys/kernel/perf_cpu_time_max_percent", percent);
}
bool GetPerfEventMlockKb(uint64_t* mlock_kb) {
return ReadUintFromProcFile("/proc/sys/kernel/perf_event_mlock_kb", mlock_kb);
}
bool SetPerfEventMlockKb(uint64_t mlock_kb) {
return WriteUintToProcFile("/proc/sys/kernel/perf_event_mlock_kb", mlock_kb);
}
ArchType GetMachineArch() {
#if defined(__i386__)
// For 32 bit x86 build, we can't get machine arch by uname().
ArchType arch = ARCH_UNSUPPORTED;
std::unique_ptr<FILE, decltype(&pclose)> fp(popen("uname -m", "re"), pclose);
if (fp) {
char machine[40];
if (fgets(machine, sizeof(machine), fp.get()) == machine) {
arch = GetArchType(android::base::Trim(machine));
}
}
#else
utsname uname_buf;
if (TEMP_FAILURE_RETRY(uname(&uname_buf)) != 0) {
PLOG(WARNING) << "uname() failed";
return GetTargetArch();
}
ArchType arch = GetArchType(uname_buf.machine);
#endif
if (arch != ARCH_UNSUPPORTED) {
return arch;
}
return GetTargetArch();
}
void PrepareVdsoFile() {
// vdso is an elf file in memory loaded in each process's user space by the kernel. To read
// symbols from it and unwind through it, we need to dump it into a file in storage.
// It doesn't affect much when failed to prepare vdso file, so there is no need to return values.
std::vector<ThreadMmap> thread_mmaps;
if (!GetThreadMmapsInProcess(getpid(), &thread_mmaps)) {
return;
}
const ThreadMmap* vdso_map = nullptr;
for (const auto& map : thread_mmaps) {
if (map.name == "[vdso]") {
vdso_map = &map;
break;
}
}
if (vdso_map == nullptr) {
return;
}
std::string s(vdso_map->len, '\0');
memcpy(&s[0], reinterpret_cast<void*>(static_cast<uintptr_t>(vdso_map->start_addr)),
vdso_map->len);
std::unique_ptr<TemporaryFile> tmpfile = ScopedTempFiles::CreateTempFile();
if (!android::base::WriteStringToFd(s, tmpfile->fd)) {
return;
}
Dso::SetVdsoFile(tmpfile->path, sizeof(size_t) == sizeof(uint64_t));
}
static bool HasOpenedAppApkFile(int pid) {
std::string fd_path = "/proc/" + std::to_string(pid) + "/fd/";
std::vector<std::string> files = GetEntriesInDir(fd_path);
for (const auto& file : files) {
std::string real_path;
if (!android::base::Readlink(fd_path + file, &real_path)) {
continue;
}
if (real_path.find("app") != std::string::npos && real_path.find(".apk") != std::string::npos) {
return true;
}
}
return false;
}
std::set<pid_t> WaitForAppProcesses(const std::string& package_name) {
std::set<pid_t> result;
size_t loop_count = 0;
while (true) {
std::vector<pid_t> pids = GetAllProcesses();
for (pid_t pid : pids) {
std::string process_name = GetCompleteProcessName(pid);
if (process_name.empty()) {
continue;
}
// The app may have multiple processes, with process name like
// com.google.android.googlequicksearchbox:search.
size_t split_pos = process_name.find(':');
if (split_pos != std::string::npos) {
process_name = process_name.substr(0, split_pos);
}
if (process_name != package_name) {
continue;
}
// If a debuggable app with wrap.sh runs on Android O, the app will be started with
// logwrapper as below:
// 1. Zygote forks a child process, rename it to package_name.
// 2. The child process execute sh, which starts a child process running
// /system/bin/logwrapper.
// 3. logwrapper starts a child process running sh, which interprets wrap.sh.
// 4. wrap.sh starts a child process running the app.
// The problem here is we want to profile the process started in step 4, but sometimes we
// run into the process started in step 1. To solve it, we can check if the process has
// opened an apk file in some app dirs.
if (!HasOpenedAppApkFile(pid)) {
continue;
}
if (loop_count > 0u) {
LOG(INFO) << "Got process " << pid << " for package " << package_name;
}
result.insert(pid);
}
if (!result.empty()) {
return result;
}
if (++loop_count == 1u) {
LOG(INFO) << "Waiting for process of app " << package_name;
}
usleep(1000);
}
}
namespace {
bool IsAppDebuggable(int user_id, const std::string& package_name) {
return Workload::RunCmd({"run-as", package_name, "--user", std::to_string(user_id), "echo",
">/dev/null", "2>/dev/null"},
false);
}
class InAppRunner {
public:
InAppRunner(int user_id, const std::string& package_name)
: user_id_(std::to_string(user_id)), package_name_(package_name) {}
virtual ~InAppRunner() {
if (!tracepoint_file_.empty()) {
unlink(tracepoint_file_.c_str());
}
}
virtual bool Prepare() = 0;
bool RunCmdInApp(const std::string& cmd, const std::vector<std::string>& args,
size_t workload_args_size, const std::string& output_filepath,
bool need_tracepoint_events);
protected:
virtual std::vector<std::string> GetPrefixArgs(const std::string& cmd) = 0;
const std::string user_id_;
const std::string package_name_;
std::string tracepoint_file_;
};
bool InAppRunner::RunCmdInApp(const std::string& cmd, const std::vector<std::string>& cmd_args,
size_t workload_args_size, const std::string& output_filepath,
bool need_tracepoint_events) {
// 1. Build cmd args running in app's context.
std::vector<std::string> args = GetPrefixArgs(cmd);
args.insert(args.end(), {"--in-app", "--log", GetLogSeverityName()});
if (log_to_android_buffer) {
args.emplace_back("--log-to-android-buffer");
}
if (need_tracepoint_events) {
// Since we can't read tracepoint events from tracefs in app's context, we need to prepare
// them in tracepoint_file in shell's context, and pass the path of tracepoint_file to the
// child process using --tracepoint-events option.
const std::string tracepoint_file = "/data/local/tmp/tracepoint_events";
if (!EventTypeManager::Instance().WriteTracepointsToFile(tracepoint_file)) {
PLOG(ERROR) << "Failed to store tracepoint events";
return false;
}
tracepoint_file_ = tracepoint_file;
args.insert(args.end(), {"--tracepoint-events", tracepoint_file_});
}
android::base::unique_fd out_fd;
if (!output_filepath.empty()) {
// A process running in app's context can't open a file outside it's data directory to write.
// So pass it a file descriptor to write.
out_fd = FileHelper::OpenWriteOnly(output_filepath);
if (out_fd == -1) {
PLOG(ERROR) << "Failed to open " << output_filepath;
return false;
}
args.insert(args.end(), {"--out-fd", std::to_string(int(out_fd))});
}
// We can't send signal to a process running in app's context. So use a pipe file to send stop
// signal.
android::base::unique_fd stop_signal_rfd;
android::base::unique_fd stop_signal_wfd;
if (!android::base::Pipe(&stop_signal_rfd, &stop_signal_wfd, 0)) {
PLOG(ERROR) << "pipe";
return false;
}
args.insert(args.end(), {"--stop-signal-fd", std::to_string(int(stop_signal_rfd))});
for (size_t i = 0; i < cmd_args.size(); ++i) {
if (i < cmd_args.size() - workload_args_size) {
// Omit "-o output_file". It is replaced by "--out-fd fd".
if (cmd_args[i] == "-o" || cmd_args[i] == "--app") {
i++;
continue;
}
}
args.push_back(cmd_args[i]);
}
char* argv[args.size() + 1];
for (size_t i = 0; i < args.size(); ++i) {
argv[i] = &args[i][0];
}
argv[args.size()] = nullptr;
// 2. Run child process in app's context.
auto ChildProcFn = [&]() {
stop_signal_wfd.reset();
execvp(argv[0], argv);
exit(1);
};
std::unique_ptr<Workload> workload = Workload::CreateWorkload(ChildProcFn);
if (!workload) {
return false;
}
stop_signal_rfd.reset();
// Wait on signals.
IOEventLoop loop;
bool need_to_stop_child = false;
std::vector<int> stop_signals = {SIGINT, SIGTERM};
if (!SignalIsIgnored(SIGHUP)) {
stop_signals.push_back(SIGHUP);
}
if (!loop.AddSignalEvents(stop_signals, [&]() {
need_to_stop_child = true;
return loop.ExitLoop();
})) {
return false;
}
if (!loop.AddSignalEvent(SIGCHLD, [&]() { return loop.ExitLoop(); })) {
return false;
}
if (!workload->Start()) {
return false;
}
if (!loop.RunLoop()) {
return false;
}
if (need_to_stop_child) {
stop_signal_wfd.reset();
}
int exit_code;
if (!workload->WaitChildProcess(true, &exit_code) || exit_code != 0) {
return false;
}
return true;
}
class RunAs : public InAppRunner {
public:
RunAs(int user_id, const std::string& package_name) : InAppRunner(user_id, package_name) {}
virtual ~RunAs() {
if (simpleperf_copied_in_app_) {
Workload::RunCmd({"run-as", package_name_, "--user", user_id_, "rm", "-rf", "simpleperf"});
}
}
bool Prepare() override;
protected:
std::vector<std::string> GetPrefixArgs(const std::string& cmd) {
std::vector<std::string> args = {"run-as",
package_name_,
"--user",
user_id_,
simpleperf_copied_in_app_ ? "./simpleperf" : simpleperf_path_,
cmd,
"--app",
package_name_};
if (cmd == "record") {
if (simpleperf_copied_in_app_ || GetAndroidVersion() >= kAndroidVersionS) {
args.emplace_back("--add-meta-info");
args.emplace_back("app_type=debuggable");
}
}
return args;
}
bool simpleperf_copied_in_app_ = false;
std::string simpleperf_path_;
};
bool RunAs::Prepare() {
// run-as can't run /data/local/tmp/simpleperf directly. So copy simpleperf binary if needed.
if (!android::base::Readlink("/proc/self/exe", &simpleperf_path_)) {
PLOG(ERROR) << "ReadLink failed";
return false;
}
if (simpleperf_path_.find("CtsSimpleperfTest") != std::string::npos) {
simpleperf_path_ = "/system/bin/simpleperf";
return true;
}
if (android::base::StartsWith(simpleperf_path_, "/system")) {
return true;
}
if (!Workload::RunCmd(
{"run-as", package_name_, "--user", user_id_, "cp", simpleperf_path_, "simpleperf"})) {
return false;
}
simpleperf_copied_in_app_ = true;
return true;
}
class SimpleperfAppRunner : public InAppRunner {
public:
SimpleperfAppRunner(int user_id, const std::string& package_name, const std::string& app_type)
: InAppRunner(user_id, package_name) {
// On Android < S, the app type is unknown before running simpleperf_app_runner. Assume it's
// profileable.
app_type_ = app_type == "unknown" ? "profileable" : app_type;
}
bool Prepare() override { return GetAndroidVersion() >= kAndroidVersionQ; }
protected:
std::vector<std::string> GetPrefixArgs(const std::string& cmd) {
std::vector<std::string> args = {"simpleperf_app_runner", package_name_};
if (user_id_ != "0") {
args.emplace_back("--user");
args.emplace_back(user_id_);
}
args.emplace_back(cmd);
if (cmd == "record" && GetAndroidVersion() >= kAndroidVersionS) {
args.emplace_back("--add-meta-info");
args.emplace_back("app_type=" + app_type_);
}
return args;
}
std::string app_type_;
};
} // namespace
static bool allow_run_as = true;
static bool allow_simpleperf_app_runner = true;
void SetRunInAppToolForTesting(bool run_as, bool simpleperf_app_runner) {
allow_run_as = run_as;
allow_simpleperf_app_runner = simpleperf_app_runner;
}
static int GetCurrentUserId() {
std::unique_ptr<FILE, decltype(&pclose)> fd(popen("am get-current-user", "r"), pclose);
if (fd) {
char buf[128];
if (fgets(buf, sizeof(buf), fd.get()) != nullptr) {
int user_id;
if (android::base::ParseInt(android::base::Trim(buf), &user_id, 0)) {
return user_id;
}
}
}
return 0;
}
std::string GetAppType(const std::string& app_package_name) {
if (GetAndroidVersion() < kAndroidVersionS) {
return "unknown";
}
std::string cmd = "simpleperf_app_runner " + app_package_name + " --show-app-type";
std::unique_ptr<FILE, decltype(&pclose)> fp(popen(cmd.c_str(), "re"), pclose);
if (fp) {
char buf[128];
if (fgets(buf, sizeof(buf), fp.get()) != nullptr) {
return android::base::Trim(buf);
}
}
// Can't get app_type. It means the app doesn't exist.
return "not_exist";
}
bool RunInAppContext(const std::string& app_package_name, const std::string& cmd,
const std::vector<std::string>& args, size_t workload_args_size,
const std::string& output_filepath, bool need_tracepoint_events) {
int user_id = GetCurrentUserId();
std::unique_ptr<InAppRunner> in_app_runner;
std::string app_type = GetAppType(app_package_name);
if (app_type == "unknown" && IsAppDebuggable(user_id, app_package_name)) {
app_type = "debuggable";
}
if (allow_run_as && app_type == "debuggable") {
in_app_runner.reset(new RunAs(user_id, app_package_name));
if (!in_app_runner->Prepare()) {
in_app_runner = nullptr;
}
}
if (!in_app_runner && allow_simpleperf_app_runner) {
if (app_type == "debuggable" || app_type == "profileable" || app_type == "unknown") {
in_app_runner.reset(new SimpleperfAppRunner(user_id, app_package_name, app_type));
if (!in_app_runner->Prepare()) {
in_app_runner = nullptr;
}
}
}
if (!in_app_runner) {
LOG(ERROR) << "Package " << app_package_name
<< " doesn't exist or isn't debuggable/profileable.";
return false;
}
return in_app_runner->RunCmdInApp(cmd, args, workload_args_size, output_filepath,
need_tracepoint_events);
}
void AllowMoreOpenedFiles() {
// On Android <= O, the hard limit is 4096, and the soft limit is 1024.
// On Android >= P, both the hard and soft limit are 32768.
rlimit limit;
if (getrlimit(RLIMIT_NOFILE, &limit) != 0) {
return;
}
rlim_t new_limit = limit.rlim_max;
if (IsRoot()) {
rlim_t sysctl_nr_open = 0;
if (ReadUintFromProcFile("/proc/sys/fs/nr_open", &sysctl_nr_open) &&
sysctl_nr_open > new_limit) {
new_limit = sysctl_nr_open;
}
}
if (limit.rlim_cur < new_limit) {
limit.rlim_cur = limit.rlim_max = new_limit;
if (setrlimit(RLIMIT_NOFILE, &limit) == 0) {
LOG(DEBUG) << "increased open file limit to " << new_limit;
}
}
}
std::string ScopedTempFiles::tmp_dir_;
std::vector<std::string> ScopedTempFiles::files_to_delete_;
std::unique_ptr<ScopedTempFiles> ScopedTempFiles::Create(const std::string& tmp_dir) {
if (access(tmp_dir.c_str(), W_OK | X_OK) != 0) {
return nullptr;
}
return std::unique_ptr<ScopedTempFiles>(new ScopedTempFiles(tmp_dir));
}
ScopedTempFiles::ScopedTempFiles(const std::string& tmp_dir) {
CHECK(tmp_dir_.empty()); // No other ScopedTempFiles.
tmp_dir_ = tmp_dir;
}
ScopedTempFiles::~ScopedTempFiles() {
tmp_dir_.clear();
for (auto& file : files_to_delete_) {
unlink(file.c_str());
}
files_to_delete_.clear();
}
std::unique_ptr<TemporaryFile> ScopedTempFiles::CreateTempFile(bool delete_in_destructor) {
CHECK(!tmp_dir_.empty());
std::unique_ptr<TemporaryFile> tmp_file(new TemporaryFile(tmp_dir_));
CHECK_NE(tmp_file->fd, -1) << "failed to create tmpfile under " << tmp_dir_;
if (delete_in_destructor) {
tmp_file->DoNotRemove();
files_to_delete_.push_back(tmp_file->path);
}
return tmp_file;
}
void ScopedTempFiles::RegisterTempFile(const std::string& path) {
files_to_delete_.emplace_back(path);
}
bool SignalIsIgnored(int signo) {
struct sigaction act;
if (sigaction(signo, nullptr, &act) != 0) {
PLOG(FATAL) << "failed to query signal handler for signal " << signo;
}
if ((act.sa_flags & SA_SIGINFO)) {
return false;
}
return act.sa_handler == SIG_IGN;
}
int GetAndroidVersion() {
#if defined(__ANDROID__)
static int android_version = -1;
if (android_version == -1) {
android_version = 0;
std::string s = android::base::GetProperty("ro.build.version.codename", "REL");
if (s == "REL") {
s = android::base::GetProperty("ro.build.version.release", "");
}
// The release string can be a list of numbers (like 8.1.0), a character (like Q)
// or many characters (like OMR1).
if (!s.empty()) {
// Each Android version has a version number: L is 5, M is 6, N is 7, O is 8, etc.
if (s[0] >= 'A' && s[0] <= 'Z') {
android_version = s[0] - 'P' + kAndroidVersionP;
} else if (isdigit(s[0])) {
sscanf(s.c_str(), "%d", &android_version);
}
}
}
return android_version;
#else // defined(__ANDROID__)
return 0;
#endif
}
std::string GetHardwareFromCpuInfo(const std::string& cpu_info) {
for (auto& line : android::base::Split(cpu_info, "\n")) {
size_t pos = line.find(':');
if (pos != std::string::npos) {
std::string key = android::base::Trim(line.substr(0, pos));
if (key == "Hardware") {
return android::base::Trim(line.substr(pos + 1));
}
}
}
return "";
}
bool MappedFileOnlyExistInMemory(const char* filename) {
// Mapped files only existing in memory:
// empty name
// [anon:???]
// [stack]
// /dev/*
// //anon: generated by kernel/events/core.c.
// /memfd: created by memfd_create.
return filename[0] == '\0' || (filename[0] == '[' && strcmp(filename, "[vdso]") != 0) ||
strncmp(filename, "//", 2) == 0 || strncmp(filename, "/dev/", 5) == 0 ||
strncmp(filename, "/memfd:", 7) == 0;
}
std::string GetCompleteProcessName(pid_t pid) {
std::string argv0;
if (!android::base::ReadFileToString("/proc/" + std::to_string(pid) + "/cmdline", &argv0)) {
// Maybe we don't have permission to read it.
return std::string();
}
size_t pos = argv0.find('\0');
if (pos != std::string::npos) {
argv0.resize(pos);
}
// argv0 can be empty if the process is in zombie state. In that case, we don't want to pass argv0
// to Basename(), which returns ".".
return argv0.empty() ? std::string() : android::base::Basename(argv0);
}
const char* GetTraceFsDir() {
static const char* tracefs_dir = nullptr;
if (tracefs_dir == nullptr) {
for (const char* path : {"/sys/kernel/debug/tracing", "/sys/kernel/tracing"}) {
if (IsDir(path)) {
tracefs_dir = path;
break;
}
}
}
return tracefs_dir;
}
std::optional<std::pair<int, int>> GetKernelVersion() {
static std::optional<std::pair<int, int>> kernel_version;
if (!kernel_version.has_value()) {
utsname uname_buf;
int major;
int minor;
if (TEMP_FAILURE_RETRY(uname(&uname_buf)) != 0 ||
sscanf(uname_buf.release, "%d.%d", &major, &minor) != 2) {
return std::nullopt;
}
kernel_version = std::make_pair(major, minor);
}
return kernel_version;
}
#if defined(__ANDROID__)
bool IsInAppUid() {
return getuid() % AID_USER_OFFSET >= AID_APP_START;
}
#endif
std::optional<uid_t> GetProcessUid(pid_t pid) {
std::string status_file = "/proc/" + std::to_string(pid) + "/status";
LineReader reader(status_file);
if (!reader.Ok()) {
return std::nullopt;
}
std::string* line;
while ((line = reader.ReadLine()) != nullptr) {
if (android::base::StartsWith(*line, "Uid:")) {
uid_t uid;
if (sscanf(line->data() + strlen("Uid:"), "%u", &uid) == 1) {
return uid;
}
}
}
return std::nullopt;
}
std::vector<ARMCpuModel> GetARMCpuModels() {
std::vector<ARMCpuModel> cpu_models;
LineReader reader("/proc/cpuinfo");
if (!reader.Ok()) {
return cpu_models;
}
auto add_cpu = [&](uint32_t processor, uint32_t implementer, uint32_t partnum) {
for (auto& model : cpu_models) {
if (model.implementer == implementer && model.partnum == partnum) {
model.cpus.push_back(processor);
return;
}
}
cpu_models.resize(cpu_models.size() + 1);
ARMCpuModel& model = cpu_models.back();
model.implementer = implementer;
model.partnum = partnum;
model.cpus.push_back(processor);
};
uint32_t processor = 0;
uint32_t implementer = 0;
uint32_t partnum = 0;
int parsed = 0;
std::string* line;
while ((line = reader.ReadLine()) != nullptr) {
std::vector<std::string> strs = android::base::Split(*line, ":");
if (strs.size() != 2) {
continue;
}
std::string name = android::base::Trim(strs[0]);
std::string value = android::base::Trim(strs[1]);
if (name == "processor") {
if (android::base::ParseUint(value, &processor)) {
parsed |= 1;
}
} else if (name == "CPU implementer") {
if (android::base::ParseUint(value, &implementer)) {
parsed |= 2;
}
} else if (name == "CPU part") {
if (android::base::ParseUint(value, &partnum) && parsed == 0x3) {
add_cpu(processor, implementer, partnum);
}
parsed = 0;
}
}
return cpu_models;
}
} // namespace simpleperf