blob: 9cec78480bfe0ebc78ed8580522f7acf6bd7b1b4 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kallsyms.h"
#include <inttypes.h>
#include <string>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/properties.h>
#include "environment.h"
#include "read_elf.h"
#include "utils.h"
namespace simpleperf {
#if defined(__linux__)
namespace {
const char kKallsymsPath[] = "/proc/kallsyms";
const char kProcModulesPath[] = "/proc/modules";
const char kPtrRestrictPath[] = "/proc/sys/kernel/kptr_restrict";
const char kLowerPtrRestrictAndroidProp[] = "security.lower_kptr_restrict";
const unsigned int kMinLineTestNonNullSymbols = 10;
// Tries to read the kernel symbol file and ensure that at least some symbol
// addresses are non-null.
bool CanReadKernelSymbolAddresses() {
LineReader reader(kKallsymsPath);
if (!reader.Ok()) {
LOG(DEBUG) << "Failed to read " << kKallsymsPath;
return false;
}
auto symbol_callback = [&](const KernelSymbol& symbol) { return (symbol.addr != 0u); };
for (unsigned int i = 0; i < kMinLineTestNonNullSymbols; i++) {
std::string* line = reader.ReadLine();
if (line == nullptr) {
return false;
}
if (ProcessKernelSymbols(*line, symbol_callback)) {
return true;
}
}
return false;
}
// Define a scope in which access to kallsyms is possible.
// This is based on the Perfetto implementation.
class ScopedKptrUnrestrict {
public:
ScopedKptrUnrestrict(); // Lowers kptr_restrict if necessary.
~ScopedKptrUnrestrict(); // Restores the initial kptr_restrict.
// Indicates if access to kallsyms should be successful.
bool KallsymsAvailable() { return kallsyms_available_; }
static void ResetWarning() { kernel_address_warning_printed_ = false; }
private:
bool WriteKptrRestrict(const std::string& value);
void PrintWarning();
bool restore_property_ = false;
bool restore_restrict_value_ = false;
std::string saved_restrict_value_;
bool kallsyms_available_ = false;
static bool kernel_address_warning_printed_;
};
bool ScopedKptrUnrestrict::kernel_address_warning_printed_ = false;
ScopedKptrUnrestrict::ScopedKptrUnrestrict() {
if (CanReadKernelSymbolAddresses()) {
// Everything seems to work (e.g., we are running as root and kptr_restrict
// is < 2). Don't touching anything.
kallsyms_available_ = true;
return;
}
if (GetAndroidVersion() >= 12 && IsRoot()) {
// Enable kernel addresses by setting property.
if (!android::base::SetProperty(kLowerPtrRestrictAndroidProp, "1")) {
LOG(DEBUG) << "Unable to set " << kLowerPtrRestrictAndroidProp << " to 1.";
PrintWarning();
return;
}
restore_property_ = true;
// Init takes some time to react to the property change.
// Unfortunately, we cannot read kptr_restrict because of SELinux. Instead,
// we detect this by reading the initial lines of kallsyms and checking
// that they are non-zero. This loop waits for at most 250ms (50 * 5ms).
for (int attempt = 1; attempt <= 50; ++attempt) {
usleep(5000);
if (CanReadKernelSymbolAddresses()) {
kallsyms_available_ = true;
return;
}
}
LOG(DEBUG) << "kallsyms addresses are still masked after setting "
<< kLowerPtrRestrictAndroidProp;
PrintWarning();
return;
}
// Otherwise, read the kptr_restrict value and lower it if needed.
if (!android::base::ReadFileToString(kPtrRestrictPath, &saved_restrict_value_)) {
LOG(DEBUG) << "Failed to read " << kPtrRestrictPath;
PrintWarning();
return;
}
// Progressively lower kptr_restrict until we can read kallsyms.
for (int value = atoi(saved_restrict_value_.c_str()); value > 0; --value) {
if (!WriteKptrRestrict(std::to_string(value))) {
break;
}
restore_restrict_value_ = true;
if (CanReadKernelSymbolAddresses()) {
kallsyms_available_ = true;
return;
}
}
PrintWarning();
}
ScopedKptrUnrestrict::~ScopedKptrUnrestrict() {
if (restore_property_) {
android::base::SetProperty(kLowerPtrRestrictAndroidProp, "0");
}
if (restore_restrict_value_) {
WriteKptrRestrict(saved_restrict_value_);
}
}
bool ScopedKptrUnrestrict::WriteKptrRestrict(const std::string& value) {
if (!android::base::WriteStringToFile(value, kPtrRestrictPath)) {
LOG(DEBUG) << "Failed to set " << kPtrRestrictPath << " to " << value;
return false;
}
return true;
}
void ScopedKptrUnrestrict::PrintWarning() {
if (!kernel_address_warning_printed_) {
kernel_address_warning_printed_ = true;
LOG(WARNING) << "Access to kernel symbol addresses is restricted. If "
<< "possible, please do `echo 0 >/proc/sys/kernel/kptr_restrict` "
<< "to fix this.";
}
}
} // namespace
std::vector<KernelMmap> GetLoadedModules() {
ScopedKptrUnrestrict kptr_unrestrict;
if (!kptr_unrestrict.KallsymsAvailable()) return {};
std::vector<KernelMmap> result;
LineReader reader(kProcModulesPath);
if (!reader.Ok()) {
// There is no /proc/modules on Android devices, so we don't print error if failed to open it.
PLOG(DEBUG) << "failed to open file /proc/modules";
return result;
}
std::string* line;
std::string name_buf;
while ((line = reader.ReadLine()) != nullptr) {
// Parse line like: nf_defrag_ipv6 34768 1 nf_conntrack_ipv6, Live 0xffffffffa0fe5000
name_buf.resize(line->size());
char* name = name_buf.data();
uint64_t addr;
uint64_t len;
if (sscanf(line->data(), "%s%" PRIu64 "%*u%*s%*s 0x%" PRIx64, name, &len, &addr) == 3) {
KernelMmap map;
map.name = name;
map.start_addr = addr;
map.len = len;
result.push_back(map);
}
}
bool all_zero = true;
for (const auto& map : result) {
if (map.start_addr != 0) {
all_zero = false;
}
}
if (all_zero) {
LOG(DEBUG) << "addresses in /proc/modules are all zero, so ignore kernel modules";
return std::vector<KernelMmap>();
}
return result;
}
uint64_t GetKernelStartAddress() {
ScopedKptrUnrestrict kptr_unrestrict;
if (!kptr_unrestrict.KallsymsAvailable()) return 0;
LineReader reader(kKallsymsPath);
if (!reader.Ok()) {
return 0;
}
std::string* line;
while ((line = reader.ReadLine()) != nullptr) {
if (strstr(line->data(), "_stext") != nullptr) {
uint64_t addr;
if (sscanf(line->data(), "%" PRIx64, &addr) == 1) {
return addr;
}
}
}
return 0;
}
bool LoadKernelSymbols(std::string* kallsyms) {
ScopedKptrUnrestrict kptr_unrestrict;
if (kptr_unrestrict.KallsymsAvailable()) {
return android::base::ReadFileToString(kKallsymsPath, kallsyms);
}
return false;
}
void ResetKernelAddressWarning() {
ScopedKptrUnrestrict::ResetWarning();
}
#endif // defined(__linux__)
bool ProcessKernelSymbols(std::string& symbol_data,
const std::function<bool(const KernelSymbol&)>& callback) {
char* p = &symbol_data[0];
char* data_end = p + symbol_data.size();
while (p < data_end) {
char* line_end = strchr(p, '\n');
if (line_end != nullptr) {
*line_end = '\0';
}
size_t line_size = (line_end != nullptr) ? (line_end - p) : (data_end - p);
// Parse line like: ffffffffa005c4e4 d __warned.41698 [libsas]
char name[line_size];
char module[line_size];
strcpy(module, "");
KernelSymbol symbol;
int ret = sscanf(p, "%" PRIx64 " %c %s%s", &symbol.addr, &symbol.type, name, module);
if (line_end != nullptr) {
*line_end = '\n';
p = line_end + 1;
} else {
p = data_end;
}
if (ret >= 3) {
if (IsArmMappingSymbol(name)) {
continue;
}
symbol.name = name;
size_t module_len = strlen(module);
if (module_len > 2 && module[0] == '[' && module[module_len - 1] == ']') {
module[module_len - 1] = '\0';
symbol.module = &module[1];
} else {
symbol.module = nullptr;
}
if (callback(symbol)) {
return true;
}
}
}
return false;
}
} // namespace simpleperf