blob: dff42a210b1d071198df804db416b05b835e66e0 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <thread>
#include "cmd_stat_impl.h"
#include "command.h"
#include "environment.h"
#include "event_selection_set.h"
#include "get_test_data.h"
#include "test_util.h"
using namespace simpleperf;
static std::unique_ptr<Command> StatCmd() {
return CreateCommandInstance("stat");
}
TEST(stat_cmd, no_options) {
ASSERT_TRUE(StatCmd()->Run({"sleep", "1"}));
}
TEST(stat_cmd, event_option) {
ASSERT_TRUE(StatCmd()->Run({"-e", "cpu-clock,task-clock", "sleep", "1"}));
}
TEST(stat_cmd, system_wide_option) {
TEST_IN_ROOT(ASSERT_TRUE(StatCmd()->Run({"-a", "sleep", "1"})));
}
TEST(stat_cmd, verbose_option) {
ASSERT_TRUE(StatCmd()->Run({"--verbose", "sleep", "1"}));
}
TEST(stat_cmd, tracepoint_event) {
TEST_IN_ROOT(ASSERT_TRUE(StatCmd()->Run({"-a", "-e", "sched:sched_switch", "sleep", "1"})));
}
TEST(stat_cmd, rN_event) {
TEST_REQUIRE_HW_COUNTER();
OMIT_TEST_ON_NON_NATIVE_ABIS();
size_t event_number;
if (GetTargetArch() == ARCH_ARM64 || GetTargetArch() == ARCH_ARM) {
// As in D5.10.2 of the ARMv8 manual, ARM defines the event number space for PMU. part of the
// space is for common event numbers (which will stay the same for all ARM chips), part of the
// space is for implementation defined events. Here 0x08 is a common event for instructions.
event_number = 0x08;
} else if (GetTargetArch() == ARCH_X86_32 || GetTargetArch() == ARCH_X86_64) {
// As in volume 3 chapter 19 of the Intel manual, 0x00c0 is the event number for instruction.
event_number = 0x00c0;
} else if (GetTargetArch() == ARCH_RISCV64) {
// RISCV_PMU_INSTRET = 1
event_number = 0x1;
} else {
GTEST_LOG_(INFO) << "Omit arch " << GetTargetArch();
return;
}
std::string event_name = android::base::StringPrintf("r%zx", event_number);
ASSERT_TRUE(StatCmd()->Run({"-e", event_name, "sleep", "1"}));
}
TEST(stat_cmd, pmu_event) {
TEST_REQUIRE_PMU_COUNTER();
TEST_REQUIRE_HW_COUNTER();
std::string event_string;
if (GetTargetArch() == ARCH_X86_64) {
event_string = "cpu/instructions/";
} else if (GetTargetArch() == ARCH_ARM64) {
event_string = "armv8_pmuv3/inst_retired/";
} else if (GetTargetArch() == ARCH_RISCV64) {
event_string = "cpu/instructions/";
} else {
GTEST_LOG_(INFO) << "Omit arch " << GetTargetArch();
return;
}
TEST_IN_ROOT(ASSERT_TRUE(StatCmd()->Run({"-a", "-e", event_string, "sleep", "1"})));
}
TEST(stat_cmd, event_modifier) {
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(StatCmd()->Run({"-e", "cpu-cycles:u,cpu-cycles:k", "sleep", "1"}));
}
void RunWorkloadFunction() {
while (true) {
for (volatile int i = 0; i < 10000; ++i)
;
usleep(1);
}
}
void CreateProcesses(size_t count, std::vector<std::unique_ptr<Workload>>* workloads) {
workloads->clear();
// Create workloads run longer than profiling time.
for (size_t i = 0; i < count; ++i) {
std::unique_ptr<Workload> workload;
workload = Workload::CreateWorkload(RunWorkloadFunction);
ASSERT_TRUE(workload != nullptr);
ASSERT_TRUE(workload->Start());
workloads->push_back(std::move(workload));
}
}
TEST(stat_cmd, existing_processes) {
std::vector<std::unique_ptr<Workload>> workloads;
CreateProcesses(2, &workloads);
std::string pid_list =
android::base::StringPrintf("%d,%d", workloads[0]->GetPid(), workloads[1]->GetPid());
ASSERT_TRUE(StatCmd()->Run({"-p", pid_list, "sleep", "1"}));
}
TEST(stat_cmd, existing_threads) {
std::vector<std::unique_ptr<Workload>> workloads;
CreateProcesses(2, &workloads);
// Process id can be used as thread id in linux.
std::string tid_list =
android::base::StringPrintf("%d,%d", workloads[0]->GetPid(), workloads[1]->GetPid());
ASSERT_TRUE(StatCmd()->Run({"-t", tid_list, "sleep", "1"}));
}
TEST(stat_cmd, no_monitored_threads) {
ASSERT_FALSE(StatCmd()->Run({}));
ASSERT_FALSE(StatCmd()->Run({""}));
}
TEST(stat_cmd, group_option) {
TEST_REQUIRE_HW_COUNTER();
ASSERT_TRUE(StatCmd()->Run({"--group", "cpu-clock,page-faults", "sleep", "1"}));
ASSERT_TRUE(StatCmd()->Run({"--group", "cpu-cycles,instructions", "--group",
"cpu-cycles:u,instructions:u", "--group",
"cpu-cycles:k,instructions:k", "sleep", "1"}));
}
TEST(stat_cmd, auto_generated_summary) {
TEST_REQUIRE_HW_COUNTER();
TemporaryFile tmp_file;
ASSERT_TRUE(StatCmd()->Run(
{"--group", "instructions:u,instructions:k", "-o", tmp_file.path, "sleep", "1"}));
std::string s;
ASSERT_TRUE(android::base::ReadFileToString(tmp_file.path, &s));
size_t pos = s.find("instructions:u");
ASSERT_NE(s.npos, pos);
pos = s.find("instructions:k", pos);
ASSERT_NE(s.npos, pos);
pos += strlen("instructions:k");
// Check if the summary of instructions is generated.
ASSERT_NE(s.npos, s.find("instructions", pos));
}
TEST(stat_cmd, duration_option) {
ASSERT_TRUE(StatCmd()->Run({"--duration", "1.2", "-p", std::to_string(getpid()), "--in-app"}));
ASSERT_TRUE(StatCmd()->Run({"--duration", "1", "sleep", "2"}));
}
TEST(stat_cmd, interval_option) {
TemporaryFile tmp_file;
ASSERT_TRUE(StatCmd()->Run(
{"--interval", "500.0", "--duration", "1.2", "-o", tmp_file.path, "sleep", "2"}));
std::string s;
ASSERT_TRUE(android::base::ReadFileToString(tmp_file.path, &s));
size_t count = 0;
size_t pos = 0;
std::string subs = "statistics:";
while ((pos = s.find(subs, pos)) != s.npos) {
pos += subs.size();
++count;
}
ASSERT_EQ(count, 2UL);
}
TEST(stat_cmd, interval_option_in_system_wide) {
TEST_IN_ROOT(ASSERT_TRUE(StatCmd()->Run({"-a", "--interval", "100", "--duration", "0.3"})));
}
TEST(stat_cmd, interval_only_values_option) {
ASSERT_TRUE(StatCmd()->Run({"--interval", "500", "--interval-only-values", "sleep", "2"}));
TEST_IN_ROOT(ASSERT_TRUE(
StatCmd()->Run({"-a", "--interval", "100", "--interval-only-values", "--duration", "0.3"})));
}
TEST(stat_cmd, no_modifier_for_clock_events) {
for (const std::string& e : {"cpu-clock", "task-clock"}) {
for (const std::string& m : {"u", "k"}) {
ASSERT_FALSE(StatCmd()->Run({"-e", e + ":" + m, "sleep", "0.1"}))
<< "event " << e << ":" << m;
}
}
}
TEST(stat_cmd, handle_SIGHUP) {
std::thread thread([]() {
sleep(1);
kill(getpid(), SIGHUP);
});
thread.detach();
ASSERT_TRUE(StatCmd()->Run({"sleep", "1000000"}));
}
TEST(stat_cmd, stop_when_no_more_targets) {
std::atomic<int> tid(0);
std::thread thread([&]() {
tid = gettid();
sleep(1);
});
thread.detach();
while (tid == 0)
;
ASSERT_TRUE(StatCmd()->Run({"-t", std::to_string(tid), "--in-app"}));
}
TEST(stat_cmd, sample_speed_should_be_zero) {
TEST_REQUIRE_HW_COUNTER();
EventSelectionSet set(true);
ASSERT_TRUE(set.AddEventType("cpu-cycles"));
set.AddMonitoredProcesses({getpid()});
ASSERT_TRUE(set.OpenEventFiles({-1}));
std::vector<EventAttrWithId> attrs = set.GetEventAttrWithId();
ASSERT_GT(attrs.size(), 0u);
for (auto& attr : attrs) {
ASSERT_EQ(attr.attr->sample_period, 0u);
ASSERT_EQ(attr.attr->sample_freq, 0u);
ASSERT_EQ(attr.attr->freq, 0u);
}
}
TEST(stat_cmd, calculating_cpu_frequency) {
TEST_REQUIRE_HW_COUNTER();
CaptureStdout capture;
ASSERT_TRUE(capture.Start());
ASSERT_TRUE(StatCmd()->Run({"--csv", "--group", "task-clock,cpu-cycles", "sleep", "1"}));
std::string output = capture.Finish();
double task_clock_in_ms = 0;
uint64_t cpu_cycle_count = 0;
double cpu_frequency = 0;
for (auto& line : android::base::Split(output, "\n")) {
if (line.find("task-clock") != std::string::npos) {
ASSERT_EQ(sscanf(line.c_str(), "%lf(ms)", &task_clock_in_ms), 1);
} else if (line.find("cpu-cycles") != std::string::npos) {
ASSERT_EQ(
sscanf(line.c_str(), "%" SCNu64 ",cpu-cycles,%lf", &cpu_cycle_count, &cpu_frequency), 2);
}
}
ASSERT_NE(task_clock_in_ms, 0.0f);
ASSERT_NE(cpu_cycle_count, 0u);
ASSERT_NE(cpu_frequency, 0.0f);
double calculated_frequency = cpu_cycle_count / task_clock_in_ms / 1e6;
// Accept error up to 1e-3. Because the stat cmd print values with precision 1e-6.
ASSERT_NEAR(cpu_frequency, calculated_frequency, 1e-3);
}
TEST(stat_cmd, set_comm_in_another_thread) {
// Test a kernel bug which was fixed in 3.15. If kernel panic happens, please cherry pick kernel
// patch: e041e328c4b41e perf: Fix perf_event_comm() vs. exec() assumption
TEST_REQUIRE_HW_COUNTER();
for (size_t loop = 0; loop < 3; ++loop) {
std::atomic<int> child_tid(0);
std::atomic<bool> stop_child(false);
std::thread child([&]() {
child_tid = gettid();
// stay on a cpu to make the monitored events of the child thread on that cpu.
while (!stop_child) {
}
});
while (child_tid == 0) {
}
{
EventSelectionSet set(true);
ASSERT_TRUE(set.AddEventType("cpu-cycles"));
set.AddMonitoredThreads({child_tid});
ASSERT_TRUE(set.OpenEventFiles({-1}));
EventSelectionSet set2(true);
ASSERT_TRUE(set2.AddEventType("instructions"));
set2.AddMonitoredThreads({gettid()});
ASSERT_TRUE(set2.OpenEventFiles({-1}));
// For kernels with the bug, setting comm will make the monitored events of the child thread
// on the cpu of the current thread.
ASSERT_TRUE(android::base::WriteStringToFile("child",
"/proc/" + std::to_string(child_tid) + "/comm"));
// Release monitored events. For kernels with the bug, the events still exist on the cpu of
// the child thread.
}
stop_child = true;
child.join();
// Sleep 1s to enter and exit cpu idle, which may abort the kernel.
sleep(1);
}
}
static void TestStatingApps(const std::string& app_name) {
// Bring the app to foreground.
ASSERT_TRUE(Workload::RunCmd({"am", "start", app_name + "/.MainActivity"}));
ASSERT_TRUE(StatCmd()->Run({"--app", app_name, "--duration", "3"}));
}
TEST(stat_cmd, app_option_for_debuggable_app) {
TEST_REQUIRE_APPS();
SetRunInAppToolForTesting(true, false);
TestStatingApps("com.android.simpleperf.debuggable");
SetRunInAppToolForTesting(false, true);
TestStatingApps("com.android.simpleperf.debuggable");
}
TEST(stat_cmd, app_option_for_profileable_app) {
TEST_REQUIRE_APPS();
SetRunInAppToolForTesting(false, true);
TestStatingApps("com.android.simpleperf.profileable");
}
TEST(stat_cmd, use_devfreq_counters_option) {
#if defined(__ANDROID__)
TEST_IN_ROOT(StatCmd()->Run({"--use-devfreq-counters", "sleep", "0.1"}));
#else
GTEST_LOG_(INFO) << "This test tests an option only available on Android.";
#endif
}
TEST(stat_cmd, per_thread_option) {
ASSERT_TRUE(StatCmd()->Run({"--per-thread", "sleep", "0.1"}));
TEST_IN_ROOT(StatCmd()->Run({"--per-thread", "-a", "--duration", "0.1"}));
}
TEST(stat_cmd, per_core_option) {
ASSERT_TRUE(StatCmd()->Run({"--per-core", "sleep", "0.1"}));
TEST_IN_ROOT(StatCmd()->Run({"--per-core", "-a", "--duration", "0.1"}));
}
TEST(stat_cmd, sort_option) {
ASSERT_TRUE(
StatCmd()->Run({"--per-thread", "--per-core", "--sort", "cpu,count", "sleep", "0.1"}));
}
TEST(stat_cmd, counter_sum) {
PerfCounter counter;
counter.value = 1;
counter.time_enabled = 2;
counter.time_running = 3;
CounterSum a;
a.FromCounter(counter);
ASSERT_EQ(a.value, 1);
ASSERT_EQ(a.time_enabled, 2);
ASSERT_EQ(a.time_running, 3);
CounterSum b = a + a;
ASSERT_EQ(b.value, 2);
ASSERT_EQ(b.time_enabled, 4);
ASSERT_EQ(b.time_running, 6);
CounterSum c = a - a;
ASSERT_EQ(c.value, 0);
ASSERT_EQ(c.time_enabled, 0);
ASSERT_EQ(c.time_running, 0);
b.ToCounter(counter);
ASSERT_EQ(counter.value, 2);
ASSERT_EQ(counter.time_enabled, 4);
ASSERT_EQ(counter.time_running, 6);
}
TEST(stat_cmd, print_hw_counter_option) {
ASSERT_TRUE(StatCmd()->Run({"--print-hw-counter"}));
}
class StatCmdSummaryBuilderTest : public ::testing::Test {
protected:
struct CounterArg {
int event_id = 0;
int tid = 0;
int cpu = 0;
int value = 1;
int time_enabled = 1;
int time_running = 1;
};
void SetUp() override { sort_keys_ = {"count_per_thread", "tid", "cpu", "count"}; }
void AddCounter(const CounterArg& arg) {
if (thread_map_.count(arg.tid) == 0) {
ThreadInfo& thread = thread_map_[arg.tid];
thread.pid = thread.tid = arg.tid;
thread.name = "thread" + std::to_string(arg.tid);
}
if (arg.event_id >= counters_.size()) {
counters_.resize(arg.event_id + 1);
counters_[arg.event_id].group_id = 0;
counters_[arg.event_id].event_name = "event" + std::to_string(arg.event_id);
}
CountersInfo& info = counters_[arg.event_id];
info.counters.resize(info.counters.size() + 1);
CounterInfo& counter = info.counters.back();
counter.tid = arg.tid;
counter.cpu = arg.cpu;
counter.counter.id = 0;
counter.counter.value = arg.value;
counter.counter.time_enabled = arg.time_enabled;
counter.counter.time_running = arg.time_running;
}
std::vector<CounterSummary> BuildSummary(bool report_per_thread, bool report_per_core) {
std::optional<SummaryComparator> comparator =
BuildSummaryComparator(sort_keys_, report_per_thread, report_per_core);
CounterSummaryBuilder builder(report_per_thread, report_per_core, false, thread_map_,
comparator);
for (auto& info : counters_) {
builder.AddCountersForOneEventType(info);
}
return builder.Build();
}
std::unordered_map<pid_t, ThreadInfo> thread_map_;
std::vector<CountersInfo> counters_;
std::vector<std::string> sort_keys_;
};
TEST_F(StatCmdSummaryBuilderTest, multiple_events) {
AddCounter({.event_id = 0, .value = 1, .time_enabled = 1, .time_running = 1});
AddCounter({.event_id = 1, .value = 2, .time_enabled = 2, .time_running = 2});
std::vector<CounterSummary> summaries = BuildSummary(false, false);
ASSERT_EQ(summaries.size(), 2);
ASSERT_EQ(summaries[0].type_name, "event0");
ASSERT_EQ(summaries[0].count, 1);
ASSERT_NEAR(summaries[0].scale, 1.0, 1e-5);
ASSERT_EQ(summaries[1].type_name, "event1");
ASSERT_EQ(summaries[1].count, 2);
ASSERT_NEAR(summaries[1].scale, 1.0, 1e-5);
}
TEST_F(StatCmdSummaryBuilderTest, default_aggregate) {
AddCounter({.tid = 0, .cpu = 0, .value = 1, .time_enabled = 1, .time_running = 1});
AddCounter({.tid = 0, .cpu = 1, .value = 1, .time_enabled = 1, .time_running = 1});
AddCounter({.tid = 1, .cpu = 0, .value = 1, .time_enabled = 1, .time_running = 1});
AddCounter({.tid = 1, .cpu = 1, .value = 2, .time_enabled = 2, .time_running = 1});
std::vector<CounterSummary> summaries = BuildSummary(false, false);
ASSERT_EQ(summaries.size(), 1);
ASSERT_EQ(summaries[0].count, 5);
ASSERT_NEAR(summaries[0].scale, 1.25, 1e-5);
}
TEST_F(StatCmdSummaryBuilderTest, per_thread_aggregate) {
AddCounter({.tid = 0, .cpu = 0, .value = 1, .time_enabled = 1, .time_running = 1});
AddCounter({.tid = 0, .cpu = 1, .value = 1, .time_enabled = 1, .time_running = 1});
AddCounter({.tid = 1, .cpu = 0, .value = 1, .time_enabled = 1, .time_running = 1});
AddCounter({.tid = 1, .cpu = 1, .value = 2, .time_enabled = 2, .time_running = 1});
std::vector<CounterSummary> summaries = BuildSummary(true, false);
ASSERT_EQ(summaries.size(), 2);
ASSERT_EQ(summaries[0].thread->tid, 1);
ASSERT_EQ(summaries[0].cpu, -1);
ASSERT_EQ(summaries[0].count, 3);
ASSERT_NEAR(summaries[0].scale, 1.5, 1e-5);
ASSERT_EQ(summaries[1].thread->tid, 0);
ASSERT_EQ(summaries[0].cpu, -1);
ASSERT_EQ(summaries[1].count, 2);
ASSERT_NEAR(summaries[1].scale, 1.0, 1e-5);
}
TEST_F(StatCmdSummaryBuilderTest, per_core_aggregate) {
AddCounter({.tid = 0, .cpu = 0, .value = 1, .time_enabled = 1, .time_running = 1});
AddCounter({.tid = 0, .cpu = 1, .value = 1, .time_enabled = 1, .time_running = 1});
AddCounter({.tid = 1, .cpu = 0, .value = 1, .time_enabled = 1, .time_running = 1});
AddCounter({.tid = 1, .cpu = 1, .value = 2, .time_enabled = 2, .time_running = 1});
std::vector<CounterSummary> summaries = BuildSummary(false, true);
ASSERT_TRUE(summaries[0].thread == nullptr);
ASSERT_EQ(summaries[0].cpu, 0);
ASSERT_EQ(summaries[0].count, 2);
ASSERT_NEAR(summaries[0].scale, 1.0, 1e-5);
ASSERT_EQ(summaries.size(), 2);
ASSERT_TRUE(summaries[1].thread == nullptr);
ASSERT_EQ(summaries[1].cpu, 1);
ASSERT_EQ(summaries[1].count, 3);
ASSERT_NEAR(summaries[1].scale, 1.5, 1e-5);
}
TEST_F(StatCmdSummaryBuilderTest, per_thread_core_aggregate) {
AddCounter({.tid = 0, .cpu = 0, .value = 1, .time_enabled = 1, .time_running = 1});
AddCounter({.tid = 0, .cpu = 1, .value = 2, .time_enabled = 1, .time_running = 1});
AddCounter({.tid = 1, .cpu = 0, .value = 3, .time_enabled = 1, .time_running = 1});
AddCounter({.tid = 1, .cpu = 1, .value = 4, .time_enabled = 2, .time_running = 1});
std::vector<CounterSummary> summaries = BuildSummary(true, true);
ASSERT_EQ(summaries.size(), 4);
ASSERT_EQ(summaries[0].thread->tid, 1);
ASSERT_EQ(summaries[0].cpu, 0);
ASSERT_EQ(summaries[0].count, 3);
ASSERT_NEAR(summaries[0].scale, 1.0, 1e-5);
ASSERT_EQ(summaries[1].thread->tid, 1);
ASSERT_EQ(summaries[1].cpu, 1);
ASSERT_EQ(summaries[1].count, 4);
ASSERT_NEAR(summaries[1].scale, 2.0, 1e-5);
ASSERT_EQ(summaries[2].thread->tid, 0);
ASSERT_EQ(summaries[2].cpu, 0);
ASSERT_EQ(summaries[2].count, 1);
ASSERT_NEAR(summaries[2].scale, 1.0, 1e-5);
ASSERT_EQ(summaries[3].thread->tid, 0);
ASSERT_EQ(summaries[3].cpu, 1);
ASSERT_EQ(summaries[3].count, 2);
ASSERT_NEAR(summaries[3].scale, 1.0, 1e-5);
}
TEST_F(StatCmdSummaryBuilderTest, sort_key_count) {
sort_keys_ = {"count"};
AddCounter({.tid = 0, .cpu = 0, .value = 1});
AddCounter({.tid = 1, .cpu = 1, .value = 2});
std::vector<CounterSummary> summaries = BuildSummary(true, true);
ASSERT_EQ(summaries[0].count, 2);
ASSERT_EQ(summaries[1].count, 1);
}
TEST_F(StatCmdSummaryBuilderTest, sort_key_count_per_thread) {
sort_keys_ = {"count_per_thread", "count"};
AddCounter({.tid = 0, .cpu = 0, .value = 1});
AddCounter({.tid = 0, .cpu = 1, .value = 5});
AddCounter({.tid = 1, .cpu = 0, .value = 3});
std::vector<CounterSummary> summaries = BuildSummary(true, true);
ASSERT_EQ(summaries[0].count, 5);
ASSERT_EQ(summaries[1].count, 1);
ASSERT_EQ(summaries[2].count, 3);
}
TEST_F(StatCmdSummaryBuilderTest, sort_key_cpu) {
sort_keys_ = {"cpu"};
AddCounter({.tid = 0, .cpu = 1, .value = 2});
AddCounter({.tid = 1, .cpu = 0, .value = 1});
std::vector<CounterSummary> summaries = BuildSummary(false, true);
ASSERT_EQ(summaries[0].cpu, 0);
ASSERT_EQ(summaries[1].cpu, 1);
}
TEST_F(StatCmdSummaryBuilderTest, sort_key_pid_tid_name) {
AddCounter({.tid = 0, .cpu = 0, .value = 1});
AddCounter({.tid = 1, .cpu = 0, .value = 2});
for (auto& key : std::vector<std::string>({"tid", "pid", "comm"})) {
sort_keys_ = {key};
std::vector<CounterSummary> summaries = BuildSummary(true, false);
ASSERT_EQ(summaries[0].count, 1) << "key = " << key;
ASSERT_EQ(summaries[1].count, 2) << "key = " << key;
}
}
class StatCmdSummariesTest : public ::testing::Test {
protected:
void AddSummary(const std::string event_name, pid_t tid, int cpu, uint64_t count,
uint64_t runtime_in_ns) {
ThreadInfo* thread = nullptr;
if (tid != -1) {
thread = &thread_map_[tid];
}
summary_v_.emplace_back(event_name, "", 0, thread, cpu, count, runtime_in_ns, 1.0, false,
false);
}
const std::string* GetComment(size_t index) {
if (!summaries_) {
summaries_.reset(new CounterSummaries(std::move(summary_v_), false));
summaries_->GenerateComments(1.0);
}
if (index < summaries_->Summaries().size()) {
return &(summaries_->Summaries()[index].comment);
}
return nullptr;
}
std::unordered_map<pid_t, ThreadInfo> thread_map_;
std::vector<CounterSummary> summary_v_;
std::unique_ptr<CounterSummaries> summaries_;
};
TEST_F(StatCmdSummariesTest, task_clock_comment) {
AddSummary("task-clock", -1, -1, 1e9, 0);
AddSummary("task-clock", 0, -1, 2e9, 0);
AddSummary("task-clock", -1, 0, 0.5e9, 0);
AddSummary("task-clock", 1, 1, 3e9, 0);
ASSERT_EQ(*GetComment(0), "1.000000 cpus used");
ASSERT_EQ(*GetComment(1), "2.000000 cpus used");
ASSERT_EQ(*GetComment(2), "0.500000 cpus used");
ASSERT_EQ(*GetComment(3), "3.000000 cpus used");
}
TEST_F(StatCmdSummariesTest, cpu_cycles_comment) {
AddSummary("cpu-cycles", -1, -1, 100, 100);
AddSummary("cpu-cycles", 0, -1, 200, 100);
AddSummary("cpu-cycles", -1, 0, 50, 100);
AddSummary("cpu-cycles", 1, 1, 300, 100);
ASSERT_EQ(*GetComment(0), "1.000000 GHz");
ASSERT_EQ(*GetComment(1), "2.000000 GHz");
ASSERT_EQ(*GetComment(2), "0.500000 GHz");
ASSERT_EQ(*GetComment(3), "3.000000 GHz");
}
TEST_F(StatCmdSummariesTest, rate_comment) {
AddSummary("branch-misses", -1, -1, 1e9, 1e9);
AddSummary("branch-misses", 0, -1, 1e6, 1e9);
AddSummary("branch-misses", -1, 0, 1e3, 1e9);
AddSummary("branch-misses", 1, 1, 1, 1e9);
ASSERT_EQ(*GetComment(0), "1.000 G/sec");
ASSERT_EQ(*GetComment(1), "1.000 M/sec");
ASSERT_EQ(*GetComment(2), "1.000 K/sec");
ASSERT_EQ(*GetComment(3), "1.000 /sec");
}