blob: 8a5b1264a454370e4690b7f72debc16ba3826327 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/prctl.h>
#include <algorithm>
#include <chrono>
#include <optional>
#include <set>
#include <string>
#include <string_view>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include "IOEventLoop.h"
#include "cmd_stat_impl.h"
#include "command.h"
#include "environment.h"
#include "event_attr.h"
#include "event_fd.h"
#include "event_selection_set.h"
#include "event_type.h"
#include "utils.h"
#include "workload.h"
namespace simpleperf {
using android::base::Split;
static std::vector<std::string> default_measured_event_types{
"cpu-cycles", "stalled-cycles-frontend", "stalled-cycles-backend",
"instructions", "branch-instructions", "branch-misses",
"task-clock", "context-switches", "page-faults",
};
static const std::unordered_map<std::string_view, std::pair<std::string_view, std::string_view>>
COMMON_EVENT_RATE_MAP = {
{"cache-misses", {"cache-references", "miss rate"}},
{"branch-misses", {"branch-instructions", "miss rate"}},
};
static const std::unordered_map<std::string_view, std::pair<std::string_view, std::string_view>>
ARM_EVENT_RATE_MAP = {
// Refer to "D6.10.5 Meaningful ratios between common microarchitectural events" in ARMv8
// specification.
{"raw-l1i-cache-refill", {"raw-l1i-cache", "level 1 instruction cache refill rate"}},
{"raw-l1i-tlb-refill", {"raw-l1i-tlb", "level 1 instruction TLB refill rate"}},
{"raw-l1d-cache-refill", {"raw-l1d-cache", "level 1 data or unified cache refill rate"}},
{"raw-l1d-tlb-refill", {"raw-l1d-tlb", "level 1 data or unified TLB refill rate"}},
{"raw-l2d-cache-refill", {"raw-l2d-cache", "level 2 data or unified cache refill rate"}},
{"raw-l2i-cache-refill", {"raw-l2i-cache", "level 2 instruction cache refill rate"}},
{"raw-l3d-cache-refill", {"raw-l3d-cache", "level 3 data or unified cache refill rate"}},
{"raw-l2d-tlb-refill", {"raw-l2d-tlb", "level 2 data or unified TLB refill rate"}},
{"raw-l2i-tlb-refill", {"raw-l2i-tlb", "level 2 instruction TLB refill rate"}},
{"raw-bus-access", {"raw-bus-cycles", "bus accesses per cycle"}},
{"raw-ll-cache-miss", {"raw-ll-cache", "last level data or unified cache refill rate"}},
{"raw-dtlb-walk", {"raw-l1d-tlb", "data TLB miss rate"}},
{"raw-itlb-walk", {"raw-l1i-tlb", "instruction TLB miss rate"}},
{"raw-ll-cache-miss-rd", {"raw-ll-cache-rd", "memory read operation miss rate"}},
{"raw-remote-access-rd",
{"raw-remote-access", "read accesses to another socket in a multi-socket system"}},
// Refer to "Table K3-2 Relationship between REFILL events and associated access events" in
// ARMv8 specification.
{"raw-l1d-cache-refill-rd", {"raw-l1d-cache-rd", "level 1 cache refill rate, read"}},
{"raw-l1d-cache-refill-wr", {"raw-l1d-cache-wr", "level 1 cache refill rate, write"}},
{"raw-l1d-tlb-refill-rd", {"raw-l1d-tlb-rd", "level 1 TLB refill rate, read"}},
{"raw-l1d-tlb-refill-wr", {"raw-l1d-tlb-wr", "level 1 TLB refill rate, write"}},
{"raw-l2d-cache-refill-rd", {"raw-l2d-cache-rd", "level 2 data cache refill rate, read"}},
{"raw-l2d-cache-refill-wr", {"raw-l2d-cache-wr", "level 2 data cache refill rate, write"}},
{"raw-l2d-tlb-refill-rd", {"raw-l2d-tlb-rd", "level 2 data TLB refill rate, read"}},
};
const CounterSummary* CounterSummaries::FindSummary(const std::string& type_name,
const std::string& modifier,
const ThreadInfo* thread, int cpu) {
for (const auto& s : summaries_) {
if (s.type_name == type_name && s.modifier == modifier && s.thread == thread && s.cpu == cpu) {
return &s;
}
}
return nullptr;
}
void CounterSummaries::AutoGenerateSummaries() {
for (size_t i = 0; i < summaries_.size(); ++i) {
const CounterSummary& s = summaries_[i];
if (s.modifier == "u") {
const CounterSummary* other = FindSummary(s.type_name, "k", s.thread, s.cpu);
if (other != nullptr && other->IsMonitoredAtTheSameTime(s)) {
if (FindSummary(s.type_name, "", s.thread, s.cpu) == nullptr) {
summaries_.emplace_back(s.type_name, "", s.group_id, s.thread, s.cpu,
s.count + other->count, s.runtime_in_ns, s.scale, true, csv_);
}
}
}
}
}
void CounterSummaries::GenerateComments(double duration_in_sec) {
for (auto& s : summaries_) {
s.comment = GetCommentForSummary(s, duration_in_sec);
}
}
void CounterSummaries::Show(FILE* fp) {
bool show_thread = !summaries_.empty() && summaries_[0].thread != nullptr;
bool show_cpu = !summaries_.empty() && summaries_[0].cpu != -1;
if (csv_) {
ShowCSV(fp, show_thread, show_cpu);
} else {
ShowText(fp, show_thread, show_cpu);
}
}
void CounterSummaries::ShowCSV(FILE* fp, bool show_thread, bool show_cpu) {
for (auto& s : summaries_) {
if (show_thread) {
fprintf(fp, "%s,%d,%d,", s.thread->name.c_str(), s.thread->pid, s.thread->tid);
}
if (show_cpu) {
fprintf(fp, "%d,", s.cpu);
}
fprintf(fp, "%s,%s,%s,%s\n", s.readable_count.c_str(), s.Name().c_str(), s.comment.c_str(),
(s.auto_generated ? "(generated)," : ""));
}
}
void CounterSummaries::ShowText(FILE* fp, bool show_thread, bool show_cpu) {
std::vector<std::string> titles;
if (show_thread) {
titles = {"thread_name", "pid", "tid"};
}
if (show_cpu) {
titles.emplace_back("cpu");
}
titles.emplace_back("count");
titles.emplace_back("event_name");
titles.emplace_back(" # count / runtime");
std::vector<size_t> width(titles.size(), 0);
auto adjust_width = [](size_t& w, size_t size) { w = std::max(w, size); };
// The last title is too long. Don't include it for width adjustment.
for (size_t i = 0; i + 1 < titles.size(); i++) {
adjust_width(width[i], titles[i].size());
}
for (auto& s : summaries_) {
size_t i = 0;
if (show_thread) {
adjust_width(width[i++], s.thread->name.size());
adjust_width(width[i++], std::to_string(s.thread->pid).size());
adjust_width(width[i++], std::to_string(s.thread->tid).size());
}
if (show_cpu) {
adjust_width(width[i++], std::to_string(s.cpu).size());
}
adjust_width(width[i++], s.readable_count.size());
adjust_width(width[i++], s.Name().size());
adjust_width(width[i++], s.comment.size());
}
fprintf(fp, "# ");
for (size_t i = 0; i < titles.size(); i++) {
if (titles[i] == "count") {
fprintf(fp, "%*s", static_cast<int>(width[i]), titles[i].c_str());
} else {
fprintf(fp, "%-*s", static_cast<int>(width[i]), titles[i].c_str());
}
if (i + 1 < titles.size()) {
fprintf(fp, " ");
}
}
fprintf(fp, "\n");
for (auto& s : summaries_) {
size_t i = 0;
if (show_thread) {
fprintf(fp, " %-*s", static_cast<int>(width[i++]), s.thread->name.c_str());
fprintf(fp, " %-*d", static_cast<int>(width[i++]), s.thread->pid);
fprintf(fp, " %-*d", static_cast<int>(width[i++]), s.thread->tid);
}
if (show_cpu) {
fprintf(fp, " %-*d", static_cast<int>(width[i++]), s.cpu);
}
fprintf(fp, " %*s %-*s # %-*s%s\n", static_cast<int>(width[i]), s.readable_count.c_str(),
static_cast<int>(width[i + 1]), s.Name().c_str(), static_cast<int>(width[i + 2]),
s.comment.c_str(), (s.auto_generated ? " (generated)" : ""));
}
}
std::string CounterSummaries::GetCommentForSummary(const CounterSummary& s,
double duration_in_sec) {
char sap_mid;
if (csv_) {
sap_mid = ',';
} else {
sap_mid = ' ';
}
if (s.type_name == "task-clock") {
double run_sec = s.count / 1e9;
double used_cpus = run_sec / duration_in_sec;
return android::base::StringPrintf("%f%ccpus used", used_cpus, sap_mid);
}
if (s.type_name == "cpu-clock") {
return "";
}
if (s.type_name == "cpu-cycles") {
if (s.runtime_in_ns == 0) {
return "";
}
double ghz = static_cast<double>(s.count) / s.runtime_in_ns;
return android::base::StringPrintf("%f%cGHz", ghz, sap_mid);
}
if (s.type_name == "instructions" && s.count != 0) {
const CounterSummary* other = FindSummary("cpu-cycles", s.modifier, s.thread, s.cpu);
if (other != nullptr && other->IsMonitoredAtTheSameTime(s)) {
double cpi = static_cast<double>(other->count) / s.count;
return android::base::StringPrintf("%f%ccycles per instruction", cpi, sap_mid);
}
}
std::string rate_comment = GetRateComment(s, sap_mid);
if (!rate_comment.empty()) {
return rate_comment;
}
if (s.runtime_in_ns == 0) {
return "";
}
double runtime_in_sec = static_cast<double>(s.runtime_in_ns) / 1e9;
double rate = s.count / runtime_in_sec;
if (rate >= 1e9 - 1e5) {
return android::base::StringPrintf("%.3f%cG/sec", rate / 1e9, sap_mid);
}
if (rate >= 1e6 - 1e2) {
return android::base::StringPrintf("%.3f%cM/sec", rate / 1e6, sap_mid);
}
if (rate >= 1e3) {
return android::base::StringPrintf("%.3f%cK/sec", rate / 1e3, sap_mid);
}
return android::base::StringPrintf("%.3f%c/sec", rate, sap_mid);
}
std::string CounterSummaries::GetRateComment(const CounterSummary& s, char sep) {
std::string_view miss_event_name = s.type_name;
std::string event_name;
std::string rate_desc;
if (auto it = COMMON_EVENT_RATE_MAP.find(miss_event_name); it != COMMON_EVENT_RATE_MAP.end()) {
event_name = it->second.first;
rate_desc = it->second.second;
}
if (event_name.empty() && (GetTargetArch() == ARCH_ARM || GetTargetArch() == ARCH_ARM64)) {
if (auto it = ARM_EVENT_RATE_MAP.find(miss_event_name); it != ARM_EVENT_RATE_MAP.end()) {
event_name = it->second.first;
rate_desc = it->second.second;
}
}
if (event_name.empty() && android::base::ConsumeSuffix(&miss_event_name, "-misses")) {
event_name = std::string(miss_event_name) + "s";
rate_desc = "miss rate";
}
if (!event_name.empty()) {
const CounterSummary* other = FindSummary(event_name, s.modifier, s.thread, s.cpu);
if (other != nullptr && other->IsMonitoredAtTheSameTime(s) && other->count != 0) {
double miss_rate = static_cast<double>(s.count) / other->count;
return android::base::StringPrintf("%f%%%c%s", miss_rate * 100, sep, rate_desc.c_str());
}
}
return "";
}
namespace {
// devfreq may use performance counters to calculate memory latency (as in
// drivers/devfreq/arm-memlat-mon.c). Hopefully we can get more available counters by asking devfreq
// to not use the memory latency governor temporarily.
class DevfreqCounters {
public:
bool Use() {
if (!IsRoot()) {
LOG(ERROR) << "--use-devfreq-counters needs root permission to set devfreq governors";
return false;
}
std::string devfreq_dir = "/sys/class/devfreq/";
for (auto& name : GetSubDirs(devfreq_dir)) {
std::string governor_path = devfreq_dir + name + "/governor";
if (IsRegularFile(governor_path)) {
std::string governor;
if (!android::base::ReadFileToString(governor_path, &governor)) {
LOG(ERROR) << "failed to read " << governor_path;
return false;
}
governor = android::base::Trim(governor);
if (governor == "mem_latency") {
if (!android::base::WriteStringToFile("performance", governor_path)) {
PLOG(ERROR) << "failed to write " << governor_path;
return false;
}
mem_latency_governor_paths_.emplace_back(std::move(governor_path));
}
}
}
return true;
}
~DevfreqCounters() {
for (auto& path : mem_latency_governor_paths_) {
android::base::WriteStringToFile("mem_latency", path);
}
}
private:
std::vector<std::string> mem_latency_governor_paths_;
};
class StatCommand : public Command {
public:
StatCommand()
: Command(
"stat", "gather performance counter information",
// clang-format off
"Usage: simpleperf stat [options] [command [command-args]]\n"
" Gather performance counter information of running [command].\n"
" And -a/-p/-t option can be used to change target of counter information.\n"
"-a Collect system-wide information.\n"
#if defined(__ANDROID__)
"--app package_name Profile the process of an Android application.\n"
" On non-rooted devices, the app must be debuggable,\n"
" because we use run-as to switch to the app's context.\n"
#endif
"--cpu cpu_item1,cpu_item2,...\n"
" Collect information only on the selected cpus. cpu_item can\n"
" be a cpu number like 1, or a cpu range like 0-3.\n"
"--csv Write report in comma separate form.\n"
"--duration time_in_sec Monitor for time_in_sec seconds instead of running\n"
" [command]. Here time_in_sec may be any positive\n"
" floating point number.\n"
"--interval time_in_ms Print stat for every time_in_ms milliseconds.\n"
" Here time_in_ms may be any positive floating point\n"
" number. Simpleperf prints total values from the\n"
" starting point. But this can be changed by\n"
" --interval-only-values.\n"
"--interval-only-values Print numbers of events happened in each interval.\n"
"-e event1[:modifier1],event2[:modifier2],...\n"
" Select a list of events to count. An event can be:\n"
" 1) an event name listed in `simpleperf list`;\n"
" 2) a raw PMU event in rN format. N is a hex number.\n"
" For example, r1b selects event number 0x1b.\n"
" Modifiers can be added to define how the event should be\n"
" monitored. Possible modifiers are:\n"
" u - monitor user space events only\n"
" k - monitor kernel space events only\n"
"--group event1[:modifier],event2[:modifier2],...\n"
" Similar to -e option. But events specified in the same --group\n"
" option are monitored as a group, and scheduled in and out at the\n"
" same time.\n"
"--no-inherit Don't stat created child threads/processes.\n"
"-o output_filename Write report to output_filename instead of standard output.\n"
"--per-core Print counters for each cpu core.\n"
"--per-thread Print counters for each thread.\n"
"-p pid1,pid2,... Stat events on existing processes. Mutually exclusive with -a.\n"
"-t tid1,tid2,... Stat events on existing threads. Mutually exclusive with -a.\n"
"--print-hw-counter Test and print CPU PMU hardware counters available on the device.\n"
"--sort key1,key2,... Select keys used to sort the report, used when --per-thread\n"
" or --per-core appears. The appearance order of keys decides\n"
" the order of keys used to sort the report.\n"
" Possible keys include:\n"
" count -- event count for each entry\n"
" count_per_thread -- event count for a thread on all cpus\n"
" cpu -- cpu id\n"
" pid -- process id\n"
" tid -- thread id\n"
" comm -- thread name\n"
" The default sort keys are:\n"
" count_per_thread,tid,cpu,count\n"
#if defined(__ANDROID__)
"--use-devfreq-counters On devices with Qualcomm SOCs, some hardware counters may be used\n"
" to monitor memory latency (in drivers/devfreq/arm-memlat-mon.c),\n"
" making fewer counters available to users. This option asks devfreq\n"
" to temporarily release counters by replacing memory-latency governor\n"
" with performance governor. It affects memory latency during profiling,\n"
" and may cause wedged power if simpleperf is killed in between.\n"
#endif
"--verbose Show result in verbose mode.\n"
#if 0
// Below options are only used internally and shouldn't be visible to the public.
"--in-app We are already running in the app's context.\n"
"--tracepoint-events file_name Read tracepoint events from [file_name] instead of tracefs.\n"
"--out-fd <fd> Write output to a file descriptor.\n"
"--stop-signal-fd <fd> Stop stating when fd is readable.\n"
#endif
// clang-format on
),
verbose_mode_(false),
system_wide_collection_(false),
child_inherit_(true),
duration_in_sec_(0),
interval_in_ms_(0),
interval_only_values_(false),
event_selection_set_(true),
csv_(false),
in_app_context_(false) {
// Die if parent exits.
prctl(PR_SET_PDEATHSIG, SIGHUP, 0, 0, 0);
// Set default sort keys. Full key list is in BuildSummaryComparator().
sort_keys_ = {"count_per_thread", "tid", "cpu", "count"};
}
bool Run(const std::vector<std::string>& args);
private:
bool ParseOptions(const std::vector<std::string>& args,
std::vector<std::string>* non_option_args);
void PrintHardwareCounters();
bool AddDefaultMeasuredEventTypes();
void SetEventSelectionFlags();
void MonitorEachThread();
void AdjustToIntervalOnlyValues(std::vector<CountersInfo>& counters);
bool ShowCounters(const std::vector<CountersInfo>& counters, double duration_in_sec, FILE* fp);
void CheckHardwareCounterMultiplexing();
void PrintWarningForInaccurateEvents();
bool verbose_mode_;
bool system_wide_collection_;
bool child_inherit_;
double duration_in_sec_;
double interval_in_ms_;
bool interval_only_values_;
std::vector<std::vector<CounterSum>> last_sum_values_;
std::vector<int> cpus_;
EventSelectionSet event_selection_set_;
std::string output_filename_;
android::base::unique_fd out_fd_;
bool csv_;
std::string app_package_name_;
bool in_app_context_;
android::base::unique_fd stop_signal_fd_;
bool use_devfreq_counters_ = false;
bool report_per_core_ = false;
bool report_per_thread_ = false;
// used to report event count for each thread
std::unordered_map<pid_t, ThreadInfo> thread_info_;
// used to sort report
std::vector<std::string> sort_keys_;
std::optional<SummaryComparator> summary_comparator_;
bool print_hw_counter_ = false;
};
bool StatCommand::Run(const std::vector<std::string>& args) {
if (!CheckPerfEventLimit()) {
return false;
}
AllowMoreOpenedFiles();
// 1. Parse options, and use default measured event types if not given.
std::vector<std::string> workload_args;
if (!ParseOptions(args, &workload_args)) {
return false;
}
if (print_hw_counter_) {
PrintHardwareCounters();
return true;
}
if (!app_package_name_.empty() && !in_app_context_) {
if (!IsRoot()) {
return RunInAppContext(app_package_name_, "stat", args, workload_args.size(),
output_filename_, !event_selection_set_.GetTracepointEvents().empty());
}
}
DevfreqCounters devfreq_counters;
if (use_devfreq_counters_) {
if (!devfreq_counters.Use()) {
return false;
}
}
if (event_selection_set_.empty()) {
if (!AddDefaultMeasuredEventTypes()) {
return false;
}
}
SetEventSelectionFlags();
// 2. Create workload.
std::unique_ptr<Workload> workload;
if (!workload_args.empty()) {
workload = Workload::CreateWorkload(workload_args);
if (workload == nullptr) {
return false;
}
}
bool need_to_check_targets = false;
if (system_wide_collection_) {
if (report_per_thread_) {
event_selection_set_.AddMonitoredProcesses(GetAllProcesses());
} else {
event_selection_set_.AddMonitoredThreads({-1});
}
} else if (!event_selection_set_.HasMonitoredTarget()) {
if (workload != nullptr) {
event_selection_set_.AddMonitoredProcesses({workload->GetPid()});
event_selection_set_.SetEnableOnExec(true);
} else if (!app_package_name_.empty()) {
std::set<pid_t> pids = WaitForAppProcesses(app_package_name_);
event_selection_set_.AddMonitoredProcesses(pids);
} else {
LOG(ERROR) << "No threads to monitor. Try `simpleperf help stat` for help\n";
return false;
}
} else {
need_to_check_targets = true;
}
if (report_per_thread_) {
MonitorEachThread();
}
// 3. Open perf_event_files and output file if defined.
if (!event_selection_set_.OpenEventFiles(cpus_)) {
return false;
}
std::unique_ptr<FILE, decltype(&fclose)> fp_holder(nullptr, fclose);
if (!output_filename_.empty()) {
fp_holder.reset(fopen(output_filename_.c_str(), "we"));
if (fp_holder == nullptr) {
PLOG(ERROR) << "failed to open " << output_filename_;
return false;
}
} else if (out_fd_ != -1) {
fp_holder.reset(fdopen(out_fd_.release(), "we"));
if (fp_holder == nullptr) {
PLOG(ERROR) << "failed to write output.";
return false;
}
}
FILE* fp = fp_holder ? fp_holder.get() : stdout;
// 4. Add signal/periodic Events.
IOEventLoop* loop = event_selection_set_.GetIOEventLoop();
if (interval_in_ms_ != 0) {
if (!loop->UsePreciseTimer()) {
return false;
}
}
std::chrono::time_point<std::chrono::steady_clock> start_time;
std::vector<CountersInfo> counters;
if (need_to_check_targets && !event_selection_set_.StopWhenNoMoreTargets()) {
return false;
}
auto exit_loop_callback = [loop]() { return loop->ExitLoop(); };
if (!loop->AddSignalEvents({SIGCHLD, SIGINT, SIGTERM, SIGHUP}, exit_loop_callback)) {
return false;
}
if (stop_signal_fd_ != -1) {
if (!loop->AddReadEvent(stop_signal_fd_, exit_loop_callback)) {
return false;
}
}
if (duration_in_sec_ != 0) {
if (!loop->AddPeriodicEvent(SecondToTimeval(duration_in_sec_), exit_loop_callback)) {
return false;
}
}
auto print_counters = [&]() {
auto end_time = std::chrono::steady_clock::now();
if (!event_selection_set_.ReadCounters(&counters)) {
return false;
}
double duration_in_sec =
std::chrono::duration_cast<std::chrono::duration<double>>(end_time - start_time).count();
if (interval_only_values_) {
AdjustToIntervalOnlyValues(counters);
}
if (!ShowCounters(counters, duration_in_sec, fp)) {
return false;
}
return true;
};
if (interval_in_ms_ != 0) {
if (!loop->AddPeriodicEvent(SecondToTimeval(interval_in_ms_ / 1000.0), print_counters)) {
return false;
}
}
// 5. Count events while workload running.
start_time = std::chrono::steady_clock::now();
if (workload != nullptr && !workload->Start()) {
return false;
}
if (!loop->RunLoop()) {
return false;
}
// 6. Read and print counters.
if (interval_in_ms_ == 0) {
if (!print_counters()) {
return false;
}
}
// 7. Print warnings when needed.
event_selection_set_.CloseEventFiles();
CheckHardwareCounterMultiplexing();
PrintWarningForInaccurateEvents();
return true;
}
bool StatCommand::ParseOptions(const std::vector<std::string>& args,
std::vector<std::string>* non_option_args) {
OptionValueMap options;
std::vector<std::pair<OptionName, OptionValue>> ordered_options;
if (!PreprocessOptions(args, GetStatCmdOptionFormats(), &options, &ordered_options,
non_option_args)) {
return false;
}
// Process options.
system_wide_collection_ = options.PullBoolValue("-a");
if (auto value = options.PullValue("--app"); value) {
app_package_name_ = *value->str_value;
}
if (auto value = options.PullValue("--cpu"); value) {
if (auto cpus = GetCpusFromString(*value->str_value); cpus) {
cpus_.assign(cpus->begin(), cpus->end());
} else {
return false;
}
}
csv_ = options.PullBoolValue("--csv");
if (!options.PullDoubleValue("--duration", &duration_in_sec_, 1e-9)) {
return false;
}
if (!options.PullDoubleValue("--interval", &interval_in_ms_, 1e-9)) {
return false;
}
interval_only_values_ = options.PullBoolValue("--interval-only-values");
for (const OptionValue& value : options.PullValues("-e")) {
for (const auto& event_type : Split(*value.str_value, ",")) {
if (!event_selection_set_.AddEventType(event_type)) {
return false;
}
}
}
for (const OptionValue& value : options.PullValues("--group")) {
if (!event_selection_set_.AddEventGroup(Split(*value.str_value, ","))) {
return false;
}
}
in_app_context_ = options.PullBoolValue("--in-app");
child_inherit_ = !options.PullBoolValue("--no-inherit");
if (auto value = options.PullValue("-o"); value) {
output_filename_ = *value->str_value;
}
if (auto value = options.PullValue("--out-fd"); value) {
out_fd_.reset(static_cast<int>(value->uint_value));
}
report_per_core_ = options.PullBoolValue("--per-core");
report_per_thread_ = options.PullBoolValue("--per-thread");
for (const OptionValue& value : options.PullValues("-p")) {
if (auto pids = GetTidsFromString(*value.str_value, true); pids) {
event_selection_set_.AddMonitoredProcesses(pids.value());
} else {
return false;
}
}
print_hw_counter_ = options.PullBoolValue("--print-hw-counter");
if (auto value = options.PullValue("--sort"); value) {
sort_keys_ = Split(*value->str_value, ",");
}
if (auto value = options.PullValue("--stop-signal-fd"); value) {
stop_signal_fd_.reset(static_cast<int>(value->uint_value));
}
for (const OptionValue& value : options.PullValues("-t")) {
if (auto tids = GetTidsFromString(*value.str_value, true); tids) {
event_selection_set_.AddMonitoredThreads(tids.value());
} else {
return false;
}
}
if (auto value = options.PullValue("--tracepoint-events"); value) {
if (!EventTypeManager::Instance().ReadTracepointsFromFile(*value->str_value)) {
return false;
}
}
use_devfreq_counters_ = options.PullBoolValue("--use-devfreq-counters");
verbose_mode_ = options.PullBoolValue("--verbose");
CHECK(options.values.empty());
CHECK(ordered_options.empty());
if (system_wide_collection_ && event_selection_set_.HasMonitoredTarget()) {
LOG(ERROR) << "Stat system wide and existing processes/threads can't be "
"used at the same time.";
return false;
}
if (system_wide_collection_ && !IsRoot()) {
LOG(ERROR) << "System wide profiling needs root privilege.";
return false;
}
if (report_per_core_ || report_per_thread_) {
summary_comparator_ = BuildSummaryComparator(sort_keys_, report_per_thread_, report_per_core_);
if (!summary_comparator_) {
return false;
}
}
return true;
}
std::optional<bool> CheckHardwareCountersOnCpu(int cpu, size_t counters) {
const EventType* event = FindEventTypeByName("cpu-cycles", true);
if (event == nullptr) {
return std::nullopt;
}
perf_event_attr attr = CreateDefaultPerfEventAttr(*event);
auto workload = Workload::CreateWorkload({"sleep", "0.1"});
if (!workload || !workload->SetCpuAffinity(cpu)) {
return std::nullopt;
}
std::vector<std::unique_ptr<EventFd>> event_fds;
for (size_t i = 0; i < counters; i++) {
EventFd* group_event_fd = event_fds.empty() ? nullptr : event_fds[0].get();
auto event_fd =
EventFd::OpenEventFile(attr, workload->GetPid(), cpu, group_event_fd, "cpu-cycles", false);
if (!event_fd) {
return false;
}
event_fds.emplace_back(std::move(event_fd));
}
if (!workload->Start() || !workload->WaitChildProcess(true, nullptr)) {
return std::nullopt;
}
for (auto& event_fd : event_fds) {
PerfCounter counter;
if (!event_fd->ReadCounter(&counter)) {
return std::nullopt;
}
if (counter.time_enabled == 0 || counter.time_enabled > counter.time_running) {
return false;
}
}
return true;
}
std::optional<size_t> GetHardwareCountersOnCpu(int cpu) {
size_t available_counters = 0;
while (true) {
std::optional<bool> result = CheckHardwareCountersOnCpu(cpu, available_counters + 1);
if (!result.has_value()) {
return std::nullopt;
}
if (!result.value()) {
break;
}
available_counters++;
}
return available_counters;
}
void StatCommand::PrintHardwareCounters() {
for (int cpu : GetOnlineCpus()) {
std::optional<size_t> counters = GetHardwareCountersOnCpu(cpu);
if (!counters) {
// When built as a 32-bit program, we can't set sched_affinity to a 64-bit only CPU. So we
// may not be able to get hardware counters on that CPU.
LOG(WARNING) << "Failed to get CPU PMU hardware counters on cpu " << cpu;
continue;
}
printf("There are %zu CPU PMU hardware counters available on cpu %d.\n", counters.value(), cpu);
}
}
bool StatCommand::AddDefaultMeasuredEventTypes() {
for (auto& name : default_measured_event_types) {
// It is not an error when some event types in the default list are not
// supported by the kernel.
const EventType* type = FindEventTypeByName(name);
if (type != nullptr && IsEventAttrSupported(CreateDefaultPerfEventAttr(*type), name)) {
if (!event_selection_set_.AddEventType(name)) {
return false;
}
}
}
if (event_selection_set_.empty()) {
LOG(ERROR) << "Failed to add any supported default measured types";
return false;
}
return true;
}
void StatCommand::SetEventSelectionFlags() {
event_selection_set_.SetInherit(child_inherit_);
}
void StatCommand::MonitorEachThread() {
std::vector<pid_t> threads;
for (auto pid : event_selection_set_.GetMonitoredProcesses()) {
for (auto tid : GetThreadsInProcess(pid)) {
ThreadInfo info;
if (GetThreadName(tid, &info.name)) {
info.tid = tid;
info.pid = pid;
thread_info_[tid] = std::move(info);
threads.push_back(tid);
}
}
}
for (auto tid : event_selection_set_.GetMonitoredThreads()) {
ThreadInfo info;
if (ReadThreadNameAndPid(tid, &info.name, &info.pid)) {
info.tid = tid;
thread_info_[tid] = std::move(info);
threads.push_back(tid);
}
}
event_selection_set_.ClearMonitoredTargets();
event_selection_set_.AddMonitoredThreads(threads);
}
void StatCommand::AdjustToIntervalOnlyValues(std::vector<CountersInfo>& counters) {
if (last_sum_values_.size() < counters.size()) {
last_sum_values_.resize(counters.size());
}
for (size_t i = 0; i < counters.size(); i++) {
std::vector<CounterInfo>& counters_per_event = counters[i].counters;
std::vector<CounterSum>& last_sum = last_sum_values_[i];
if (last_sum.size() < counters_per_event.size()) {
last_sum.resize(counters_per_event.size());
}
for (size_t j = 0; j < counters_per_event.size(); j++) {
PerfCounter& counter = counters_per_event[j].counter;
CounterSum new_sum;
new_sum.FromCounter(counter);
CounterSum delta = new_sum - last_sum[j];
delta.ToCounter(counter);
last_sum[j] = new_sum;
}
}
}
bool StatCommand::ShowCounters(const std::vector<CountersInfo>& counters, double duration_in_sec,
FILE* fp) {
if (csv_) {
fprintf(fp, "Performance counter statistics,\n");
} else {
fprintf(fp, "Performance counter statistics:\n\n");
}
if (verbose_mode_) {
for (auto& counters_info : counters) {
for (auto& counter_info : counters_info.counters) {
if (csv_) {
fprintf(fp,
"%s,tid,%d,cpu,%d,count,%" PRIu64 ",time_enabled,%" PRIu64
",time running,%" PRIu64 ",id,%" PRIu64 ",\n",
counters_info.event_name.c_str(), counter_info.tid, counter_info.cpu,
counter_info.counter.value, counter_info.counter.time_enabled,
counter_info.counter.time_running, counter_info.counter.id);
} else {
fprintf(fp,
"%s(tid %d, cpu %d): count %" PRIu64 ", time_enabled %" PRIu64
", time running %" PRIu64 ", id %" PRIu64 "\n",
counters_info.event_name.c_str(), counter_info.tid, counter_info.cpu,
counter_info.counter.value, counter_info.counter.time_enabled,
counter_info.counter.time_running, counter_info.counter.id);
}
}
}
}
CounterSummaryBuilder builder(report_per_thread_, report_per_core_, csv_, thread_info_,
summary_comparator_);
for (const auto& info : counters) {
builder.AddCountersForOneEventType(info);
}
CounterSummaries summaries(builder.Build(), csv_);
summaries.AutoGenerateSummaries();
summaries.GenerateComments(duration_in_sec);
summaries.Show(fp);
if (csv_) {
fprintf(fp, "Total test time,%lf,seconds,\n", duration_in_sec);
} else {
fprintf(fp, "\nTotal test time: %lf seconds.\n", duration_in_sec);
}
return true;
}
void StatCommand::CheckHardwareCounterMultiplexing() {
size_t hardware_events = 0;
for (const EventType* event : event_selection_set_.GetEvents()) {
if (event->IsHardwareEvent()) {
hardware_events++;
}
}
if (hardware_events == 0) {
return;
}
std::vector<int> cpus = cpus_;
if (cpus.empty()) {
cpus = GetOnlineCpus();
}
for (int cpu : cpus) {
std::optional<bool> result = CheckHardwareCountersOnCpu(cpu, hardware_events);
if (result.has_value() && !result.value()) {
LOG(WARNING) << "It seems the number of hardware events are more than the number of\n"
<< "available CPU PMU hardware counters. That will trigger hardware counter\n"
<< "multiplexing. As a result, events are not counted all the time processes\n"
<< "running, and event counts are smaller than what really happen.\n"
<< "Use --print-hw-counter to show available hardware counters.\n"
#if defined(__ANDROID__)
<< "If on a rooted device, try --use-devfreq-counters to get more counters.\n"
#endif
;
break;
}
}
}
void StatCommand::PrintWarningForInaccurateEvents() {
for (const EventType* event : event_selection_set_.GetEvents()) {
if (event->name == "raw-l3d-cache-lmiss-rd") {
LOG(WARNING) << "PMU event L3D_CACHE_LMISS_RD might undercount on A510. Please use "
"L3D_CACHE_REFILL_RD instead.";
break;
}
}
}
} // namespace
void RegisterStatCommand() {
RegisterCommand("stat", [] { return std::unique_ptr<Command>(new StatCommand); });
}
} // namespace simpleperf