blob: 2dfd900d5ece24c7dbfc1d6e43d11ecd71500925 [file] [log] [blame]
#include <iostream>
#include <chrono>
#include <vector>
#include <algorithm>
#include <numeric>
#include <stdlib.h>
#include <memory>
#include <cmath>
#include <string>
#include <thread>
#define CACHE_HIT_SIZE 1 << 17
using namespace std;
size_t size_start = 64;
size_t size_end = 16 * (1ull << 20);
size_t samples = 2048;
size_t size_per_test = 64 * (1ull << 20);
size_t tot_sum = 0;
size_t delay = 0;
float speed = 0;
bool dummy = false;
void __attribute__((noinline)) memcpy_noinline(void *dst, void *src, size_t size);
void __attribute__((noinline)) memset_noinline(void *dst, int value, size_t size);
uint64_t __attribute__((noinline)) sum(volatile void *src, size_t size);
enum BenchType {
MemcpyBench,
MemsetBench,
SumBench,
};
static void usage(char* p) {
printf("Usage: %s <test> <options>\n"
"<test> is one of the following:\n"
" --memcpy\n"
" --memset\n"
" --sum\n"
"<options> are optional and apply to all tests:\n"
" --dummy\n"
" Simulates cpu-only load of a test. Guaranteed to use L2\n"
" instead. Not supported on --sum test.\n"
" --delay DELAY_DIVISOR\n"
" --start START_SIZE_MB\n"
" --end END_SIZE_MB (requires start, optional)\n"
" --samples NUM_SAMPLES\n"
, p);
}
int main(int argc, char *argv[])
{
BenchType type = MemcpyBench;
if (argc <= 1) {
usage(argv[0]);
return 0;
}
for (int i = 1; i < argc; i++) {
if (string(argv[i]) == string("--memcpy")) {
type = MemcpyBench;
} else if (string(argv[i]) == string("--memset")) {
type = MemsetBench;
} else if (string(argv[i]) == string("--sum")) {
type = SumBench;
} else if (string(argv[i]) == string("--dummy")) {
dummy = true;
} else if (i + 1 < argc) {
if (string(argv[i]) == string("--delay")) {
delay = atoi(argv[++i]);
} else if (string(argv[i]) == string("--start")) {
size_start = atoi(argv[++i]) * (1ull << 20);
size_end = size_start;
} else if (string(argv[i]) == string("--end")) {
size_t end = atoi(argv[++i]) * (1ull << 20);
if (end > size_start && i > 3
&& string(argv[i-3]) == string("--start")) {
size_end = end;
} else {
printf("Cannot specify --end without --start.\n");
return 0;
}
} else if (string(argv[i]) == string("--samples")) {
samples = atoi(argv[++i]);
} else {
printf("Unknown argument %s\n", argv[i]);
return 0;
}
} else {
printf("The %s option requires a single argument.\n", argv[i]);
return 0;
}
}
unique_ptr<uint8_t[]> src(new uint8_t[size_end]);
unique_ptr<uint8_t[]> dst(new uint8_t[size_end]);
memset(src.get(), 1, size_end);
double start_pow = log10(size_start);
double end_pow = log10(size_end);
double pow_inc = (end_pow - start_pow) / samples;
//cout << "src: " << (uintptr_t)src.get() << endl;
//cout << "dst: " << (uintptr_t)dst.get() << endl;
for (double cur_pow = start_pow; cur_pow <= end_pow && samples > 0;
cur_pow += pow_inc) {
chrono::time_point<chrono::high_resolution_clock>
copy_start, copy_end, pre_wait;
size_t cur_size = (size_t)pow(10.0, cur_pow);
size_t iter_per_size = size_per_test / cur_size;
// run benchmark
switch (type) {
case MemsetBench: {
memcpy_noinline(src.get(), dst.get(), cur_size);
memset_noinline(dst.get(), 0xdeadbeef, cur_size);
size_t hit_size = CACHE_HIT_SIZE;
copy_start = chrono::high_resolution_clock::now();
for (int i = 0; i < iter_per_size; i++) {
if (!dummy) {
memset_noinline(dst.get(), 0xdeadbeef, cur_size);
} else {
while (hit_size < cur_size) {
memset_noinline
(dst.get(), 0xdeadbeef, CACHE_HIT_SIZE);
hit_size += 1 << 17;
}
}
if (delay != 0)
this_thread::sleep_for(chrono
::nanoseconds(size_per_test / delay));
}
copy_end = chrono::high_resolution_clock::now();
break;
}
case MemcpyBench: {
memcpy_noinline(dst.get(), src.get(), cur_size);
memcpy_noinline(src.get(), dst.get(), cur_size);
size_t hit_size = CACHE_HIT_SIZE;
copy_start = chrono::high_resolution_clock::now();
for (int i = 0; i < iter_per_size; i++) {
if (!dummy) {
memcpy_noinline(dst.get(), src.get(), cur_size);
} else {
while (hit_size < cur_size) {
memcpy_noinline
(dst.get(), src.get(), CACHE_HIT_SIZE);
hit_size += CACHE_HIT_SIZE;
}
}
if (delay != 0)
this_thread::sleep_for(chrono
::nanoseconds(size_per_test / delay));
}
copy_end = chrono::high_resolution_clock::now();
break;
}
case SumBench: {
uint64_t s = 0;
s += sum(src.get(), cur_size);
copy_start = chrono::high_resolution_clock::now();
for (int i = 0; i < iter_per_size; i++) {
s += sum(src.get(), cur_size);
if (delay != 0)
this_thread::sleep_for(chrono
::nanoseconds(size_per_test / delay));
}
copy_end = chrono::high_resolution_clock::now();
tot_sum += s;
break;
}
}
samples--;
double ns_per_copy = chrono::duration_cast<chrono::nanoseconds>(copy_end - copy_start).count() / double(iter_per_size);
double gb_per_sec = ((double)cur_size / (1ull<<30)) / (ns_per_copy / 1.0E9);
if (type == MemcpyBench)
gb_per_sec *= 2.0;
double percent_waiting = 0;
if (delay != 0) {
percent_waiting = (size_per_test / delay) / ns_per_copy * 100;
}
cout << "size: " << cur_size << ", perf: " << gb_per_sec
<< "GB/s, iter: " << iter_per_size << ", \% time spent waiting: "
<< percent_waiting << endl;
}
return 0;
}