blob: 5f8cf5cbf6a9f086c9825c2415c7537265b47364 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "event_selection_set.h"
#include <atomic>
#include <thread>
#include <android-base/logging.h>
#include "environment.h"
#include "event_attr.h"
#include "event_type.h"
#include "IOEventLoop.h"
#include "perf_regs.h"
#include "utils.h"
constexpr uint64_t DEFAULT_SAMPLE_FREQ_FOR_NONTRACEPOINT_EVENT = 4000;
constexpr uint64_t DEFAULT_SAMPLE_PERIOD_FOR_TRACEPOINT_EVENT = 1;
bool IsBranchSamplingSupported() {
const EventType* type = FindEventTypeByName("cpu-cycles");
if (type == nullptr) {
return false;
}
perf_event_attr attr = CreateDefaultPerfEventAttr(*type);
attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
attr.branch_sample_type = PERF_SAMPLE_BRANCH_ANY;
return IsEventAttrSupported(attr);
}
bool IsDwarfCallChainSamplingSupported() {
const EventType* type = FindEventTypeByName("cpu-cycles");
if (type == nullptr) {
return false;
}
perf_event_attr attr = CreateDefaultPerfEventAttr(*type);
attr.sample_type |=
PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER;
attr.exclude_callchain_user = 1;
attr.sample_regs_user = GetSupportedRegMask(GetBuildArch());
attr.sample_stack_user = 8192;
return IsEventAttrSupported(attr);
}
bool IsDumpingRegsForTracepointEventsSupported() {
const EventType* event_type = FindEventTypeByName("sched:sched_switch");
if (event_type == nullptr) {
return false;
}
std::atomic<bool> done(false);
std::atomic<pid_t> thread_id(0);
std::thread thread([&]() {
thread_id = gettid();
while (!done) {
usleep(1);
}
usleep(1); // Make a sched out to generate one sample.
});
while (thread_id == 0) {
usleep(1);
}
perf_event_attr attr = CreateDefaultPerfEventAttr(*event_type);
attr.freq = 0;
attr.sample_period = 1;
std::unique_ptr<EventFd> event_fd =
EventFd::OpenEventFile(attr, thread_id, -1, nullptr);
if (event_fd == nullptr) {
return false;
}
if (!event_fd->CreateMappedBuffer(4, true)) {
return false;
}
done = true;
thread.join();
std::vector<char> buffer;
size_t buffer_pos = 0;
size_t size = event_fd->GetAvailableMmapData(buffer, buffer_pos);
std::vector<std::unique_ptr<Record>> records =
ReadRecordsFromBuffer(attr, buffer.data(), size);
for (auto& r : records) {
if (r->type() == PERF_RECORD_SAMPLE) {
auto& record = *static_cast<SampleRecord*>(r.get());
if (record.ip_data.ip != 0) {
return true;
}
}
}
return false;
}
bool EventSelectionSet::BuildAndCheckEventSelection(
const std::string& event_name, EventSelection* selection) {
std::unique_ptr<EventTypeAndModifier> event_type = ParseEventType(event_name);
if (event_type == nullptr) {
return false;
}
if (for_stat_cmd_) {
if (event_type->event_type.name == "cpu-clock" ||
event_type->event_type.name == "task-clock") {
if (event_type->exclude_user || event_type->exclude_kernel) {
LOG(ERROR) << "Modifier u and modifier k used in event type "
<< event_type->event_type.name
<< " are not supported by the kernel.";
return false;
}
}
}
selection->event_type_modifier = *event_type;
selection->event_attr = CreateDefaultPerfEventAttr(event_type->event_type);
selection->event_attr.exclude_user = event_type->exclude_user;
selection->event_attr.exclude_kernel = event_type->exclude_kernel;
selection->event_attr.exclude_hv = event_type->exclude_hv;
selection->event_attr.exclude_host = event_type->exclude_host;
selection->event_attr.exclude_guest = event_type->exclude_guest;
selection->event_attr.precise_ip = event_type->precise_ip;
if (!IsEventAttrSupported(selection->event_attr)) {
LOG(ERROR) << "Event type '" << event_type->name
<< "' is not supported on the device";
return false;
}
selection->event_fds.clear();
for (const auto& group : groups_) {
for (const auto& sel : group) {
if (sel.event_type_modifier.name == selection->event_type_modifier.name) {
LOG(ERROR) << "Event type '" << sel.event_type_modifier.name
<< "' appears more than once";
return false;
}
}
}
return true;
}
bool EventSelectionSet::AddEventType(const std::string& event_name) {
return AddEventGroup(std::vector<std::string>(1, event_name));
}
bool EventSelectionSet::AddEventGroup(
const std::vector<std::string>& event_names) {
EventSelectionGroup group;
for (const auto& event_name : event_names) {
EventSelection selection;
if (!BuildAndCheckEventSelection(event_name, &selection)) {
return false;
}
group.push_back(std::move(selection));
}
groups_.push_back(std::move(group));
UnionSampleType();
return true;
}
std::vector<const EventType*> EventSelectionSet::GetEvents() const {
std::vector<const EventType*> result;
for (const auto& group : groups_) {
for (const auto& selection : group) {
result.push_back(&selection.event_type_modifier.event_type);
}
}
return result;
}
std::vector<const EventType*> EventSelectionSet::GetTracepointEvents() const {
std::vector<const EventType*> result;
for (const auto& group : groups_) {
for (const auto& selection : group) {
if (selection.event_type_modifier.event_type.type ==
PERF_TYPE_TRACEPOINT) {
result.push_back(&selection.event_type_modifier.event_type);
}
}
}
return result;
}
bool EventSelectionSet::HasInplaceSampler() const {
for (const auto& group : groups_) {
for (const auto& sel : group) {
if (sel.event_attr.type == SIMPLEPERF_TYPE_USER_SPACE_SAMPLERS &&
sel.event_attr.config == SIMPLEPERF_CONFIG_INPLACE_SAMPLER) {
return true;
}
}
}
return false;
}
std::vector<EventAttrWithId> EventSelectionSet::GetEventAttrWithId() const {
std::vector<EventAttrWithId> result;
for (const auto& group : groups_) {
for (const auto& selection : group) {
EventAttrWithId attr_id;
attr_id.attr = &selection.event_attr;
for (const auto& fd : selection.event_fds) {
attr_id.ids.push_back(fd->Id());
}
if (!selection.inplace_samplers.empty()) {
attr_id.ids.push_back(selection.inplace_samplers[0]->Id());
}
result.push_back(attr_id);
}
}
return result;
}
// Union the sample type of different event attrs can make reading sample
// records in perf.data easier.
void EventSelectionSet::UnionSampleType() {
uint64_t sample_type = 0;
for (const auto& group : groups_) {
for (const auto& selection : group) {
sample_type |= selection.event_attr.sample_type;
}
}
for (auto& group : groups_) {
for (auto& selection : group) {
selection.event_attr.sample_type = sample_type;
}
}
}
void EventSelectionSet::SetEnableOnExec(bool enable) {
for (auto& group : groups_) {
for (auto& selection : group) {
// If sampling is enabled on exec, then it is disabled at startup,
// otherwise it should be enabled at startup. Don't use
// ioctl(PERF_EVENT_IOC_ENABLE) to enable it after perf_event_open().
// Because some android kernels can't handle ioctl() well when cpu-hotplug
// happens. See http://b/25193162.
if (enable) {
selection.event_attr.enable_on_exec = 1;
selection.event_attr.disabled = 1;
} else {
selection.event_attr.enable_on_exec = 0;
selection.event_attr.disabled = 0;
}
}
}
}
bool EventSelectionSet::GetEnableOnExec() {
for (const auto& group : groups_) {
for (const auto& selection : group) {
if (selection.event_attr.enable_on_exec == 0) {
return false;
}
}
}
return true;
}
void EventSelectionSet::SampleIdAll() {
for (auto& group : groups_) {
for (auto& selection : group) {
selection.event_attr.sample_id_all = 1;
}
}
}
void EventSelectionSet::SetSampleFreq(uint64_t sample_freq) {
for (auto& group : groups_) {
for (auto& selection : group) {
selection.event_attr.freq = 1;
selection.event_attr.sample_freq = sample_freq;
}
}
}
void EventSelectionSet::SetSamplePeriod(uint64_t sample_period) {
for (auto& group : groups_) {
for (auto& selection : group) {
selection.event_attr.freq = 0;
selection.event_attr.sample_period = sample_period;
}
}
}
void EventSelectionSet::UseDefaultSampleFreq() {
for (auto& group : groups_) {
for (auto& selection : group) {
if (selection.event_type_modifier.event_type.type ==
PERF_TYPE_TRACEPOINT) {
selection.event_attr.freq = 0;
selection.event_attr.sample_period =
DEFAULT_SAMPLE_PERIOD_FOR_TRACEPOINT_EVENT;
} else {
selection.event_attr.freq = 1;
selection.event_attr.sample_freq =
DEFAULT_SAMPLE_FREQ_FOR_NONTRACEPOINT_EVENT;
}
}
}
}
bool EventSelectionSet::SetBranchSampling(uint64_t branch_sample_type) {
if (branch_sample_type != 0 &&
(branch_sample_type &
(PERF_SAMPLE_BRANCH_ANY | PERF_SAMPLE_BRANCH_ANY_CALL |
PERF_SAMPLE_BRANCH_ANY_RETURN | PERF_SAMPLE_BRANCH_IND_CALL)) == 0) {
LOG(ERROR) << "Invalid branch_sample_type: 0x" << std::hex
<< branch_sample_type;
return false;
}
if (branch_sample_type != 0 && !IsBranchSamplingSupported()) {
LOG(ERROR) << "branch stack sampling is not supported on this device.";
return false;
}
for (auto& group : groups_) {
for (auto& selection : group) {
perf_event_attr& attr = selection.event_attr;
if (branch_sample_type != 0) {
attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
} else {
attr.sample_type &= ~PERF_SAMPLE_BRANCH_STACK;
}
attr.branch_sample_type = branch_sample_type;
}
}
return true;
}
void EventSelectionSet::EnableFpCallChainSampling() {
for (auto& group : groups_) {
for (auto& selection : group) {
selection.event_attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
}
}
}
bool EventSelectionSet::EnableDwarfCallChainSampling(uint32_t dump_stack_size) {
if (!IsDwarfCallChainSamplingSupported()) {
LOG(ERROR) << "dwarf callchain sampling is not supported on this device.";
return false;
}
for (auto& group : groups_) {
for (auto& selection : group) {
selection.event_attr.sample_type |= PERF_SAMPLE_CALLCHAIN |
PERF_SAMPLE_REGS_USER |
PERF_SAMPLE_STACK_USER;
selection.event_attr.exclude_callchain_user = 1;
selection.event_attr.sample_regs_user =
GetSupportedRegMask(GetMachineArch());
selection.event_attr.sample_stack_user = dump_stack_size;
}
}
return true;
}
void EventSelectionSet::SetInherit(bool enable) {
for (auto& group : groups_) {
for (auto& selection : group) {
selection.event_attr.inherit = (enable ? 1 : 0);
}
}
}
bool EventSelectionSet::NeedKernelSymbol() const {
for (const auto& group : groups_) {
for (const auto& selection : group) {
if (!selection.event_type_modifier.exclude_kernel) {
return true;
}
}
}
return false;
}
static bool CheckIfCpusOnline(const std::vector<int>& cpus) {
std::vector<int> online_cpus = GetOnlineCpus();
for (const auto& cpu : cpus) {
if (std::find(online_cpus.begin(), online_cpus.end(), cpu) ==
online_cpus.end()) {
LOG(ERROR) << "cpu " << cpu << " is not online.";
return false;
}
}
return true;
}
bool EventSelectionSet::OpenEventFilesOnGroup(EventSelectionGroup& group,
pid_t tid, int cpu,
std::string* failed_event_type) {
std::vector<std::unique_ptr<EventFd>> event_fds;
// Given a tid and cpu, events on the same group should be all opened
// successfully or all failed to open.
EventFd* group_fd = nullptr;
for (auto& selection : group) {
std::unique_ptr<EventFd> event_fd =
EventFd::OpenEventFile(selection.event_attr, tid, cpu, group_fd);
if (event_fd != nullptr) {
LOG(VERBOSE) << "OpenEventFile for " << event_fd->Name();
event_fds.push_back(std::move(event_fd));
} else {
if (failed_event_type != nullptr) {
*failed_event_type = selection.event_type_modifier.name;
return false;
}
}
if (group_fd == nullptr) {
group_fd = event_fd.get();
}
}
for (size_t i = 0; i < group.size(); ++i) {
group[i].event_fds.push_back(std::move(event_fds[i]));
}
return true;
}
static std::map<pid_t, std::set<pid_t>> PrepareThreads(const std::set<pid_t>& processes,
const std::set<pid_t>& threads) {
std::map<pid_t, std::set<pid_t>> result;
for (auto& pid : processes) {
std::vector<pid_t> tids = GetThreadsInProcess(pid);
std::set<pid_t>& threads_in_process = result[pid];
threads_in_process.insert(tids.begin(), tids.end());
}
for (auto& tid : threads) {
// tid = -1 means monitoring all threads.
if (tid == -1) {
result[-1].insert(-1);
} else {
pid_t pid;
if (GetProcessForThread(tid, &pid)) {
result[pid].insert(tid);
}
}
}
return result;
}
bool EventSelectionSet::OpenEventFiles(const std::vector<int>& on_cpus) {
std::vector<int> cpus = on_cpus;
if (!cpus.empty()) {
// cpus = {-1} means open an event file for all cpus.
if (!(cpus.size() == 1 && cpus[0] == -1) && !CheckIfCpusOnline(cpus)) {
return false;
}
} else {
cpus = GetOnlineCpus();
}
std::map<pid_t, std::set<pid_t>> process_map = PrepareThreads(processes_, threads_);
for (auto& group : groups_) {
if (IsUserSpaceSamplerGroup(group)) {
if (!OpenUserSpaceSamplersOnGroup(group, process_map)) {
return false;
}
} else {
for (const auto& pair : process_map) {
for (const auto& tid : pair.second) {
size_t success_cpu_count = 0;
std::string failed_event_type;
for (const auto& cpu : cpus) {
if (OpenEventFilesOnGroup(group, tid, cpu, &failed_event_type)) {
success_cpu_count++;
}
}
// As the online cpus can be enabled or disabled at runtime, we may not
// open event file for all cpus successfully. But we should open at
// least one cpu successfully.
if (success_cpu_count == 0) {
PLOG(ERROR) << "failed to open perf event file for event_type "
<< failed_event_type << " for "
<< (tid == -1 ? "all threads" : "thread " + std::to_string(tid))
<< " on all cpus";
return false;
}
}
}
}
}
return true;
}
bool EventSelectionSet::IsUserSpaceSamplerGroup(EventSelectionGroup& group) {
return group.size() == 1 && group[0].event_attr.type == SIMPLEPERF_TYPE_USER_SPACE_SAMPLERS;
}
bool EventSelectionSet::OpenUserSpaceSamplersOnGroup(EventSelectionGroup& group,
const std::map<pid_t, std::set<pid_t>>& process_map) {
CHECK_EQ(group.size(), 1u);
for (auto& selection : group) {
if (selection.event_attr.type == SIMPLEPERF_TYPE_USER_SPACE_SAMPLERS &&
selection.event_attr.config == SIMPLEPERF_CONFIG_INPLACE_SAMPLER) {
for (auto& pair : process_map) {
std::unique_ptr<InplaceSamplerClient> sampler = InplaceSamplerClient::Create(
selection.event_attr, pair.first, pair.second);
if (sampler == nullptr) {
return false;
}
selection.inplace_samplers.push_back(std::move(sampler));
}
}
}
return true;
}
static bool ReadCounter(EventFd* event_fd, CounterInfo* counter) {
if (!event_fd->ReadCounter(&counter->counter)) {
return false;
}
counter->tid = event_fd->ThreadId();
counter->cpu = event_fd->Cpu();
return true;
}
bool EventSelectionSet::ReadCounters(std::vector<CountersInfo>* counters) {
counters->clear();
for (size_t i = 0; i < groups_.size(); ++i) {
for (auto& selection : groups_[i]) {
CountersInfo counters_info;
counters_info.group_id = i;
counters_info.event_name = selection.event_type_modifier.event_type.name;
counters_info.event_modifier = selection.event_type_modifier.modifier;
counters_info.counters = selection.hotplugged_counters;
for (auto& event_fd : selection.event_fds) {
CounterInfo counter;
if (!ReadCounter(event_fd.get(), &counter)) {
return false;
}
counters_info.counters.push_back(counter);
}
counters->push_back(counters_info);
}
}
return true;
}
bool EventSelectionSet::MmapEventFiles(size_t min_mmap_pages,
size_t max_mmap_pages) {
for (size_t i = max_mmap_pages; i >= min_mmap_pages; i >>= 1) {
if (MmapEventFiles(i, i == min_mmap_pages)) {
LOG(VERBOSE) << "Mapped buffer size is " << i << " pages.";
mmap_pages_ = i;
return true;
}
for (auto& group : groups_) {
for (auto& selection : group) {
for (auto& event_fd : selection.event_fds) {
event_fd->DestroyMappedBuffer();
}
}
}
}
return false;
}
bool EventSelectionSet::MmapEventFiles(size_t mmap_pages, bool report_error) {
// Allocate a mapped buffer for each cpu.
std::map<int, EventFd*> cpu_map;
for (auto& group : groups_) {
for (auto& selection : group) {
for (auto& event_fd : selection.event_fds) {
auto it = cpu_map.find(event_fd->Cpu());
if (it != cpu_map.end()) {
if (!event_fd->ShareMappedBuffer(*(it->second), report_error)) {
return false;
}
} else {
if (!event_fd->CreateMappedBuffer(mmap_pages, report_error)) {
return false;
}
cpu_map[event_fd->Cpu()] = event_fd.get();
}
}
}
}
return true;
}
bool EventSelectionSet::PrepareToReadMmapEventData(const std::function<bool(Record*)>& callback) {
// Add read Events for perf event files having mapped buffer.
for (auto& group : groups_) {
for (auto& selection : group) {
for (auto& event_fd : selection.event_fds) {
if (event_fd->HasMappedBuffer()) {
if (!event_fd->StartPolling(*loop_, [this]() {
return ReadMmapEventData();
})) {
return false;
}
}
}
for (auto& sampler : selection.inplace_samplers) {
if (!sampler->StartPolling(*loop_, callback,
[&] { return CheckMonitoredTargets(); })) {
return false;
}
}
}
}
// Prepare record callback function.
record_callback_ = callback;
return true;
}
// When reading from mmap buffers, we prefer reading from all buffers at once
// rather than reading one buffer at a time. Because by reading all buffers
// at once, we can merge records from different buffers easily in memory.
// Otherwise, we have to sort records with greater effort.
bool EventSelectionSet::ReadMmapEventData() {
size_t head_size = 0;
std::vector<RecordBufferHead>& heads = record_buffer_heads_;
if (heads.empty()) {
heads.resize(1);
}
heads[0].current_pos = 0;
size_t buffer_pos = 0;
for (auto& group : groups_) {
for (auto& selection : group) {
for (auto& event_fd : selection.event_fds) {
if (event_fd->HasMappedBuffer()) {
if (event_fd->GetAvailableMmapData(record_buffer_, buffer_pos) != 0) {
heads[head_size].end_pos = buffer_pos;
heads[head_size].attr = &selection.event_attr;
head_size++;
if (heads.size() == head_size) {
heads.resize(head_size + 1);
}
heads[head_size].current_pos = buffer_pos;
}
}
}
}
}
if (head_size == 0) {
return true;
}
if (head_size == 1) {
// Only one buffer has data, process it directly.
std::vector<std::unique_ptr<Record>> records =
ReadRecordsFromBuffer(*heads[0].attr,
record_buffer_.data(), buffer_pos);
for (auto& r : records) {
if (!record_callback_(r.get())) {
return false;
}
}
} else {
// Use a priority queue to merge records from different buffers. As
// records from the same buffer are already ordered by time, we only
// need to merge the first record from all buffers. And each time a
// record is popped from the queue, we put the next record from its
// buffer into the queue.
auto comparator = [&](RecordBufferHead* h1, RecordBufferHead* h2) {
return h1->timestamp > h2->timestamp;
};
std::priority_queue<RecordBufferHead*, std::vector<RecordBufferHead*>, decltype(comparator)> q(comparator);
for (size_t i = 0; i < head_size; ++i) {
RecordBufferHead& h = heads[i];
h.r = ReadRecordFromBuffer(*h.attr, &record_buffer_[h.current_pos]);
h.timestamp = h.r->Timestamp();
h.current_pos += h.r->size();
q.push(&h);
}
while (!q.empty()) {
RecordBufferHead* h = q.top();
q.pop();
if (!record_callback_(h->r.get())) {
return false;
}
if (h->current_pos < h->end_pos) {
h->r = ReadRecordFromBuffer(*h->attr, &record_buffer_[h->current_pos]);
h->timestamp = h->r->Timestamp();
h->current_pos += h->r->size();
q.push(h);
}
}
}
return true;
}
bool EventSelectionSet::FinishReadMmapEventData() {
if (!ReadMmapEventData()) {
return false;
}
if (!HasInplaceSampler()) {
return true;
}
// Inplace sampler server uses a buffer to cache samples before sending them, so we need to
// explicitly ask it to send the cached samples.
loop_.reset(new IOEventLoop);
size_t inplace_sampler_count = 0;
auto close_callback = [&]() {
if (--inplace_sampler_count == 0) {
return loop_->ExitLoop();
}
return true;
};
for (auto& group : groups_) {
for (auto& sel : group) {
for (auto& sampler : sel.inplace_samplers) {
if (!sampler->IsClosed()) {
if (!sampler->StopProfiling(*loop_, close_callback)) {
return false;
}
inplace_sampler_count++;
}
}
}
}
if (inplace_sampler_count == 0) {
return true;
}
// Set a timeout to exit the loop.
timeval tv;
tv.tv_sec = 1;
tv.tv_usec = 0;
if (!loop_->AddPeriodicEvent(tv, [&]() { return loop_->ExitLoop(); })) {
return false;
}
return loop_->RunLoop();
}
bool EventSelectionSet::HandleCpuHotplugEvents(const std::vector<int>& monitored_cpus,
double check_interval_in_sec) {
monitored_cpus_.insert(monitored_cpus.begin(), monitored_cpus.end());
online_cpus_ = GetOnlineCpus();
if (!loop_->AddPeriodicEvent(SecondToTimeval(check_interval_in_sec),
[&]() { return DetectCpuHotplugEvents(); })) {
return false;
}
return true;
}
bool EventSelectionSet::DetectCpuHotplugEvents() {
std::vector<int> new_cpus = GetOnlineCpus();
for (const auto& cpu : online_cpus_) {
if (std::find(new_cpus.begin(), new_cpus.end(), cpu) == new_cpus.end()) {
if (monitored_cpus_.empty() ||
monitored_cpus_.find(cpu) != monitored_cpus_.end()) {
LOG(INFO) << "Cpu " << cpu << " is offlined";
if (!HandleCpuOfflineEvent(cpu)) {
return false;
}
}
}
}
for (const auto& cpu : new_cpus) {
if (std::find(online_cpus_.begin(), online_cpus_.end(), cpu) ==
online_cpus_.end()) {
if (monitored_cpus_.empty() ||
monitored_cpus_.find(cpu) != monitored_cpus_.end()) {
LOG(INFO) << "Cpu " << cpu << " is onlined";
if (!HandleCpuOnlineEvent(cpu)) {
return false;
}
}
}
}
online_cpus_ = new_cpus;
return true;
}
bool EventSelectionSet::HandleCpuOfflineEvent(int cpu) {
if (!for_stat_cmd_) {
// Read mmap data here, so we won't lose the existing records of the
// offlined cpu.
if (!ReadMmapEventData()) {
return false;
}
}
for (auto& group : groups_) {
for (auto& selection : group) {
for (auto it = selection.event_fds.begin();
it != selection.event_fds.end();) {
if ((*it)->Cpu() == cpu) {
if (for_stat_cmd_) {
CounterInfo counter;
if (!ReadCounter(it->get(), &counter)) {
return false;
}
selection.hotplugged_counters.push_back(counter);
} else {
if ((*it)->HasMappedBuffer()) {
if (!(*it)->StopPolling()) {
return false;
}
}
}
it = selection.event_fds.erase(it);
} else {
++it;
}
}
}
}
return true;
}
bool EventSelectionSet::HandleCpuOnlineEvent(int cpu) {
// We need to start profiling when opening new event files.
SetEnableOnExec(false);
std::map<pid_t, std::set<pid_t>> process_map = PrepareThreads(processes_, threads_);
for (auto& group : groups_) {
if (IsUserSpaceSamplerGroup(group)) {
continue;
}
for (const auto& pair : process_map) {
for (const auto& tid : pair.second) {
std::string failed_event_type;
if (!OpenEventFilesOnGroup(group, tid, cpu, &failed_event_type)) {
// If failed to open event files, maybe the cpu has been offlined.
PLOG(WARNING) << "failed to open perf event file for event_type "
<< failed_event_type << " for "
<< (tid == -1 ? "all threads" : "thread " + std::to_string(tid))
<< " on cpu " << cpu;
}
}
}
}
if (!for_stat_cmd_) {
// Prepare mapped buffer.
if (!CreateMappedBufferForCpu(cpu)) {
return false;
}
// Send a EventIdRecord.
std::vector<uint64_t> event_id_data;
uint64_t attr_id = 0;
for (const auto& group : groups_) {
for (const auto& selection : group) {
for (const auto& event_fd : selection.event_fds) {
if (event_fd->Cpu() == cpu) {
event_id_data.push_back(attr_id);
event_id_data.push_back(event_fd->Id());
}
}
++attr_id;
}
}
EventIdRecord r(event_id_data);
if (!record_callback_(&r)) {
return false;
}
}
return true;
}
bool EventSelectionSet::CreateMappedBufferForCpu(int cpu) {
EventFd* fd_with_buffer = nullptr;
for (auto& group : groups_) {
for (auto& selection : group) {
for (auto& event_fd : selection.event_fds) {
if (event_fd->Cpu() != cpu) {
continue;
}
if (fd_with_buffer == nullptr) {
if (!event_fd->CreateMappedBuffer(mmap_pages_, true)) {
return false;
}
fd_with_buffer = event_fd.get();
} else {
if (!event_fd->ShareMappedBuffer(*fd_with_buffer, true)) {
fd_with_buffer->DestroyMappedBuffer();
return false;
}
}
}
}
}
if (fd_with_buffer != nullptr &&
!fd_with_buffer->StartPolling(*loop_, [this]() {
return ReadMmapEventData();
})) {
return false;
}
return true;
}
bool EventSelectionSet::StopWhenNoMoreTargets(double check_interval_in_sec) {
return loop_->AddPeriodicEvent(SecondToTimeval(check_interval_in_sec),
[&]() { return CheckMonitoredTargets(); });
}
bool EventSelectionSet::CheckMonitoredTargets() {
if (!HasSampler()) {
return loop_->ExitLoop();
}
for (const auto& tid : threads_) {
if (IsThreadAlive(tid)) {
return true;
}
}
for (const auto& pid : processes_) {
if (IsThreadAlive(pid)) {
return true;
}
}
return loop_->ExitLoop();
}
bool EventSelectionSet::HasSampler() {
for (auto& group : groups_) {
for (auto& sel : group) {
if (!sel.event_fds.empty()) {
return true;
}
for (auto& sampler : sel.inplace_samplers) {
if (!sampler->IsClosed()) {
return true;
}
}
}
}
return false;
}