blob: 06f45187c26a9b5114fdca1247111a1cb428275a [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <inttypes.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/prctl.h>
#include <algorithm>
#include <chrono>
#include <set>
#include <string>
#include <string_view>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include "command.h"
#include "environment.h"
#include "event_attr.h"
#include "event_fd.h"
#include "event_selection_set.h"
#include "event_type.h"
#include "IOEventLoop.h"
#include "utils.h"
#include "workload.h"
namespace {
static std::vector<std::string> default_measured_event_types{
"cpu-cycles", "stalled-cycles-frontend", "stalled-cycles-backend",
"instructions", "branch-instructions", "branch-misses",
"task-clock", "context-switches", "page-faults",
};
struct CounterSum {
uint64_t value = 0;
uint64_t time_enabled = 0;
uint64_t time_running = 0;
};
struct CounterSummary {
std::string type_name;
std::string modifier;
uint32_t group_id;
uint64_t count;
double scale;
std::string readable_count;
std::string comment;
bool auto_generated;
CounterSummary(const std::string& type_name, const std::string& modifier,
uint32_t group_id, uint64_t count, double scale,
bool auto_generated, bool csv)
: type_name(type_name),
modifier(modifier),
group_id(group_id),
count(count),
scale(scale),
auto_generated(auto_generated) {
readable_count = ReadableCountValue(csv);
}
bool IsMonitoredAtTheSameTime(const CounterSummary& other) const {
// Two summaries are monitored at the same time if they are in the same
// group or are monitored all the time.
if (group_id == other.group_id) {
return true;
}
return IsMonitoredAllTheTime() && other.IsMonitoredAllTheTime();
}
std::string Name() const {
if (modifier.empty()) {
return type_name;
}
return type_name + ":" + modifier;
}
bool IsMonitoredAllTheTime() const {
// If an event runs all the time it is enabled (by not sharing hardware
// counters with other events), the scale of its summary is usually within
// [1, 1 + 1e-5]. By setting SCALE_ERROR_LIMIT to 1e-5, We can identify
// events monitored all the time in most cases while keeping the report
// error rate <= 1e-5.
constexpr double SCALE_ERROR_LIMIT = 1e-5;
return (fabs(scale - 1.0) < SCALE_ERROR_LIMIT);
}
private:
std::string ReadableCountValue(bool csv) {
if (type_name == "cpu-clock" || type_name == "task-clock") {
// Convert nanoseconds to milliseconds.
double value = count / 1e6;
return android::base::StringPrintf("%lf(ms)", value);
} else {
// Convert big numbers to human friendly mode. For example,
// 1000000 will be converted to 1,000,000.
std::string s = android::base::StringPrintf("%" PRIu64, count);
if (csv) {
return s;
} else {
for (size_t i = s.size() - 1, j = 1; i > 0; --i, ++j) {
if (j == 3) {
s.insert(s.begin() + i, ',');
j = 0;
}
}
return s;
}
}
}
};
static const std::unordered_map<std::string_view, std::pair<std::string_view, std::string_view>>
COMMON_EVENT_RATE_MAP = {
{"cache-misses", {"cache-references", "miss rate"}},
{"branch-misses", {"branch-instructions", "miss rate"}},
};
static const std::unordered_map<std::string_view, std::pair<std::string_view, std::string_view>>
ARM_EVENT_RATE_MAP = {
// Refer to "D6.10.5 Meaningful ratios between common microarchitectural events" in ARMv8
// specification.
{"raw-l1i-cache-refill", {"raw-l1i-cache", "level 1 instruction cache refill rate"}},
{"raw-l1i-tlb-refill", {"raw-l1i-tlb", "level 1 instruction TLB refill rate"}},
{"raw-l1d-cache-refill", {"raw-l1d-cache", "level 1 data or unified cache refill rate"}},
{"raw-l1d-tlb-refill", {"raw-l1d-tlb", "level 1 data or unified TLB refill rate"}},
{"raw-l2d-cache-refill", {"raw-l2d-cache", "level 2 data or unified cache refill rate"}},
{"raw-l2i-cache-refill", {"raw-l2i-cache", "level 2 instruction cache refill rate"}},
{"raw-l3d-cache-refill", {"raw-l3d-cache", "level 3 data or unified cache refill rate"}},
{"raw-l2d-tlb-refill", {"raw-l2d-tlb", "level 2 data or unified TLB refill rate"}},
{"raw-l2i-tlb-refill", {"raw-l2i-tlb", "level 2 instruction TLB refill rate"}},
{"raw-bus-access", {"raw-bus-cycles", "bus accesses per cycle"}},
{"raw-ll-cache-miss", {"raw-ll-cache", "last level data or unified cache refill rate"}},
{"raw-dtlb-walk", {"raw-l1d-tlb", "data TLB miss rate"}},
{"raw-itlb-walk", {"raw-l1i-tlb", "instruction TLB miss rate"}},
{"raw-ll-cache-miss-rd", {"raw-ll-cache-rd", "memory read operation miss rate"}},
{"raw-remote-access-rd",
{"raw-remote-access", "read accesses to another socket in a multi-socket system"}},
// Refer to "Table K3-2 Relationship between REFILL events and associated access events" in
// ARMv8 specification.
{"raw-l1d-cache-refill-rd", {"raw-l1d-cache-rd", "level 1 cache refill rate, read"}},
{"raw-l1d-cache-refill-wr", {"raw-l1d-cache-wr", "level 1 cache refill rate, write"}},
{"raw-l1d-tlb-refill-rd", {"raw-l1d-tlb-rd", "level 1 TLB refill rate, read"}},
{"raw-l1d-tlb-refill-wr", {"raw-l1d-tlb-wr", "level 1 TLB refill rate, write"}},
{"raw-l2d-cache-refill-rd", {"raw-l2d-cache-rd", "level 2 data cache refill rate, read"}},
{"raw-l2d-cache-refill-wr", {"raw-l2d-cache-wr", "level 2 data cache refill rate, write"}},
{"raw-l2d-tlb-refill-rd", {"raw-l2d-tlb-rd", "level 2 data TLB refill rate, read"}},
};
class CounterSummaries {
public:
explicit CounterSummaries(bool csv) : csv_(csv) {}
std::vector<CounterSummary>& Summaries() { return summaries_; }
const CounterSummary* FindSummary(const std::string& type_name,
const std::string& modifier) {
for (const auto& s : summaries_) {
if (s.type_name == type_name && s.modifier == modifier) {
return &s;
}
}
return nullptr;
}
// If we have two summaries monitoring the same event type at the same time,
// that one is for user space only, and the other is for kernel space only;
// then we can automatically generate a summary combining the two results.
// For example, a summary of branch-misses:u and a summary for branch-misses:k
// can generate a summary of branch-misses.
void AutoGenerateSummaries() {
for (size_t i = 0; i < summaries_.size(); ++i) {
const CounterSummary& s = summaries_[i];
if (s.modifier == "u") {
const CounterSummary* other = FindSummary(s.type_name, "k");
if (other != nullptr && other->IsMonitoredAtTheSameTime(s)) {
if (FindSummary(s.type_name, "") == nullptr) {
Summaries().emplace_back(s.type_name, "", s.group_id, s.count + other->count, s.scale,
true, csv_);
}
}
}
}
}
void GenerateComments(double duration_in_sec) {
for (auto& s : summaries_) {
s.comment = GetCommentForSummary(s, duration_in_sec);
}
}
void Show(FILE* fp) {
size_t count_column_width = 0;
size_t name_column_width = 0;
size_t comment_column_width = 0;
for (auto& s : summaries_) {
count_column_width =
std::max(count_column_width, s.readable_count.size());
name_column_width = std::max(name_column_width, s.Name().size());
comment_column_width = std::max(comment_column_width, s.comment.size());
}
for (auto& s : summaries_) {
if (csv_) {
fprintf(fp, "%s,%s,%s,(%.0lf%%)%s\n", s.readable_count.c_str(),
s.Name().c_str(), s.comment.c_str(), 1.0 / s.scale * 100,
(s.auto_generated ? " (generated)," : ","));
} else {
fprintf(fp, " %*s %-*s # %-*s (%.0lf%%)%s\n",
static_cast<int>(count_column_width), s.readable_count.c_str(),
static_cast<int>(name_column_width), s.Name().c_str(),
static_cast<int>(comment_column_width), s.comment.c_str(),
1.0 / s.scale * 100, (s.auto_generated ? " (generated)" : ""));
}
}
}
private:
std::string GetCommentForSummary(const CounterSummary& s,
double duration_in_sec) {
char sap_mid;
if (csv_) {
sap_mid = ',';
} else {
sap_mid = ' ';
}
if (s.type_name == "task-clock") {
double run_sec = s.count / 1e9;
double used_cpus = run_sec / (duration_in_sec / s.scale);
return android::base::StringPrintf("%lf%ccpus used", used_cpus, sap_mid);
}
if (s.type_name == "cpu-clock") {
return "";
}
if (s.type_name == "cpu-cycles") {
double running_time_in_sec;
if (!FindRunningTimeForSummary(s, &running_time_in_sec)) {
return "";
}
double hz = s.count / (running_time_in_sec / s.scale);
return android::base::StringPrintf("%lf%cGHz", hz / 1e9, sap_mid);
}
if (s.type_name == "instructions" && s.count != 0) {
const CounterSummary* other = FindSummary("cpu-cycles", s.modifier);
if (other != nullptr && other->IsMonitoredAtTheSameTime(s)) {
double cpi = static_cast<double>(other->count) / s.count;
return android::base::StringPrintf("%lf%ccycles per instruction", cpi,
sap_mid);
}
}
std::string rate_comment = GetRateComment(s, sap_mid);
if (!rate_comment.empty()) {
return rate_comment;
}
double running_time_in_sec;
if (!FindRunningTimeForSummary(s, &running_time_in_sec)) {
return "";
}
double rate = s.count / (running_time_in_sec / s.scale);
if (rate > 1e9) {
return android::base::StringPrintf("%.3lf%cG/sec", rate / 1e9, sap_mid);
}
if (rate > 1e6) {
return android::base::StringPrintf("%.3lf%cM/sec", rate / 1e6, sap_mid);
}
if (rate > 1e3) {
return android::base::StringPrintf("%.3lf%cK/sec", rate / 1e3, sap_mid);
}
return android::base::StringPrintf("%.3lf%c/sec", rate, sap_mid);
}
std::string GetRateComment(const CounterSummary& s, char sep) {
std::string_view miss_event_name = s.type_name;
std::string event_name;
std::string rate_desc;
if (auto it = COMMON_EVENT_RATE_MAP.find(miss_event_name); it != COMMON_EVENT_RATE_MAP.end()) {
event_name = it->second.first;
rate_desc = it->second.second;
}
if (event_name.empty() && (GetBuildArch() == ARCH_ARM || GetBuildArch() == ARCH_ARM64)) {
if (auto it = ARM_EVENT_RATE_MAP.find(miss_event_name); it != ARM_EVENT_RATE_MAP.end()) {
event_name = it->second.first;
rate_desc = it->second.second;
}
}
if (event_name.empty() && android::base::ConsumeSuffix(&miss_event_name, "-misses")) {
event_name = std::string(miss_event_name) + "s";
rate_desc = "miss rate";
}
if (!event_name.empty()) {
const CounterSummary* other = FindSummary(event_name, s.modifier);
if (other != nullptr && other->IsMonitoredAtTheSameTime(s) && other->count != 0) {
double miss_rate = static_cast<double>(s.count) / other->count;
return android::base::StringPrintf("%f%%%c%s", miss_rate * 100, sep, rate_desc.c_str());
}
}
return "";
}
bool FindRunningTimeForSummary(const CounterSummary& summary, double* running_time_in_sec) {
for (auto& s : summaries_) {
if ((s.type_name == "task-clock" || s.type_name == "cpu-clock") &&
s.IsMonitoredAtTheSameTime(summary) && s.count != 0u) {
*running_time_in_sec = s.count / 1e9;
return true;
}
}
return false;
}
private:
std::vector<CounterSummary> summaries_;
bool csv_;
};
// devfreq may use performance counters to calculate memory latency (as in
// drivers/devfreq/arm-memlat-mon.c). Hopefully we can get more available counters by asking devfreq
// to not use the memory latency governor temporarily.
class DevfreqCounters {
public:
bool Use() {
if (!IsRoot()) {
LOG(ERROR) << "--use-devfreq-counters needs root permission to set devfreq governors";
return false;
}
std::string devfreq_dir = "/sys/class/devfreq/";
for (auto& name : GetSubDirs(devfreq_dir)) {
std::string governor_path = devfreq_dir + name + "/governor";
if (IsRegularFile(governor_path)) {
std::string governor;
if (!android::base::ReadFileToString(governor_path, &governor)) {
LOG(ERROR) << "failed to read " << governor_path;
return false;
}
governor = android::base::Trim(governor);
if (governor == "mem_latency") {
if (!android::base::WriteStringToFile("performance", governor_path)) {
PLOG(ERROR) << "failed to write " << governor_path;
return false;
}
mem_latency_governor_paths_.emplace_back(std::move(governor_path));
}
}
}
return true;
}
~DevfreqCounters() {
for (auto& path : mem_latency_governor_paths_) {
android::base::WriteStringToFile("mem_latency", path);
}
}
private:
std::vector<std::string> mem_latency_governor_paths_;
};
class StatCommand : public Command {
public:
StatCommand()
: Command("stat", "gather performance counter information",
// clang-format off
"Usage: simpleperf stat [options] [command [command-args]]\n"
" Gather performance counter information of running [command].\n"
" And -a/-p/-t option can be used to change target of counter information.\n"
"-a Collect system-wide information.\n"
#if defined(__ANDROID__)
"--app package_name Profile the process of an Android application.\n"
" On non-rooted devices, the app must be debuggable,\n"
" because we use run-as to switch to the app's context.\n"
#endif
"--cpu cpu_item1,cpu_item2,...\n"
" Collect information only on the selected cpus. cpu_item can\n"
" be a cpu number like 1, or a cpu range like 0-3.\n"
"--csv Write report in comma separate form.\n"
"--duration time_in_sec Monitor for time_in_sec seconds instead of running\n"
" [command]. Here time_in_sec may be any positive\n"
" floating point number.\n"
"--interval time_in_ms Print stat for every time_in_ms milliseconds.\n"
" Here time_in_ms may be any positive floating point\n"
" number. Simpleperf prints total values from the\n"
" starting point. But this can be changed by\n"
" --interval-only-values.\n"
"--interval-only-values Print numbers of events happened in each interval.\n"
"-e event1[:modifier1],event2[:modifier2],...\n"
" Select a list of events to count. An event can be:\n"
" 1) an event name listed in `simpleperf list`;\n"
" 2) a raw PMU event in rN format. N is a hex number.\n"
" For example, r1b selects event number 0x1b.\n"
" Modifiers can be added to define how the event should be\n"
" monitored. Possible modifiers are:\n"
" u - monitor user space events only\n"
" k - monitor kernel space events only\n"
"--group event1[:modifier],event2[:modifier2],...\n"
" Similar to -e option. But events specified in the same --group\n"
" option are monitored as a group, and scheduled in and out at the\n"
" same time.\n"
"--no-inherit Don't stat created child threads/processes.\n"
"-o output_filename Write report to output_filename instead of standard output.\n"
"-p pid1,pid2,... Stat events on existing processes. Mutually exclusive with -a.\n"
"-t tid1,tid2,... Stat events on existing threads. Mutually exclusive with -a.\n"
#if defined(__ANDROID__)
"--use-devfreq-counters On devices with Qualcomm SOCs, some hardware counters may be used\n"
" to monitor memory latency (in drivers/devfreq/arm-memlat-mon.c),\n"
" making fewer counters available to users. This option asks devfreq\n"
" to temporarily release counters by replacing memory-latency governor\n"
" with performance governor. It affects memory latency during profiling,\n"
" and may cause wedged power if simpleperf is killed in between.\n"
#endif
"--verbose Show result in verbose mode.\n"
#if 0
// Below options are only used internally and shouldn't be visible to the public.
"--in-app We are already running in the app's context.\n"
"--tracepoint-events file_name Read tracepoint events from [file_name] instead of tracefs.\n"
"--out-fd <fd> Write output to a file descriptor.\n"
"--stop-signal-fd <fd> Stop stating when fd is readable.\n"
#endif
// clang-format on
),
verbose_mode_(false),
system_wide_collection_(false),
child_inherit_(true),
duration_in_sec_(0),
interval_in_ms_(0),
interval_only_values_(false),
event_selection_set_(true),
csv_(false),
in_app_context_(false) {
// Die if parent exits.
prctl(PR_SET_PDEATHSIG, SIGHUP, 0, 0, 0);
}
bool Run(const std::vector<std::string>& args);
private:
bool ParseOptions(const std::vector<std::string>& args,
std::vector<std::string>* non_option_args);
bool AddDefaultMeasuredEventTypes();
void SetEventSelectionFlags();
bool ShowCounters(const std::vector<CountersInfo>& counters,
double duration_in_sec, FILE* fp);
bool verbose_mode_;
bool system_wide_collection_;
bool child_inherit_;
double duration_in_sec_;
double interval_in_ms_;
bool interval_only_values_;
std::vector<CounterSum> last_sum_values_;
std::vector<int> cpus_;
EventSelectionSet event_selection_set_;
std::string output_filename_;
android::base::unique_fd out_fd_;
bool csv_;
std::string app_package_name_;
bool in_app_context_;
android::base::unique_fd stop_signal_fd_;
bool use_devfreq_counters_ = false;
};
bool StatCommand::Run(const std::vector<std::string>& args) {
if (!CheckPerfEventLimit()) {
return false;
}
// 1. Parse options, and use default measured event types if not given.
std::vector<std::string> workload_args;
if (!ParseOptions(args, &workload_args)) {
return false;
}
if (!app_package_name_.empty() && !in_app_context_) {
if (!IsRoot()) {
return RunInAppContext(app_package_name_, "stat", args, workload_args.size(),
output_filename_, !event_selection_set_.GetTracepointEvents().empty());
}
}
DevfreqCounters devfreq_counters;
if (use_devfreq_counters_) {
if (!devfreq_counters.Use()) {
return false;
}
}
if (event_selection_set_.empty()) {
if (!AddDefaultMeasuredEventTypes()) {
return false;
}
}
SetEventSelectionFlags();
// 2. Create workload.
std::unique_ptr<Workload> workload;
if (!workload_args.empty()) {
workload = Workload::CreateWorkload(workload_args);
if (workload == nullptr) {
return false;
}
}
bool need_to_check_targets = false;
if (system_wide_collection_) {
event_selection_set_.AddMonitoredThreads({-1});
} else if (!event_selection_set_.HasMonitoredTarget()) {
if (workload != nullptr) {
event_selection_set_.AddMonitoredProcesses({workload->GetPid()});
event_selection_set_.SetEnableOnExec(true);
} else if (!app_package_name_.empty()) {
std::set<pid_t> pids = WaitForAppProcesses(app_package_name_);
event_selection_set_.AddMonitoredProcesses(pids);
} else {
LOG(ERROR)
<< "No threads to monitor. Try `simpleperf help stat` for help\n";
return false;
}
} else {
need_to_check_targets = true;
}
// 3. Open perf_event_files and output file if defined.
if (!system_wide_collection_ && cpus_.empty()) {
cpus_.push_back(-1); // Monitor on all cpus.
}
if (!event_selection_set_.OpenEventFiles(cpus_)) {
return false;
}
std::unique_ptr<FILE, decltype(&fclose)> fp_holder(nullptr, fclose);
if (!output_filename_.empty()) {
fp_holder.reset(fopen(output_filename_.c_str(), "we"));
if (fp_holder == nullptr) {
PLOG(ERROR) << "failed to open " << output_filename_;
return false;
}
} else if (out_fd_ != -1) {
fp_holder.reset(fdopen(out_fd_.release(), "we"));
if (fp_holder == nullptr) {
PLOG(ERROR) << "failed to write output.";
return false;
}
}
FILE* fp = fp_holder ? fp_holder.get() : stdout;
// 4. Add signal/periodic Events.
IOEventLoop* loop = event_selection_set_.GetIOEventLoop();
if (interval_in_ms_ != 0) {
if (!loop->UsePreciseTimer()) {
return false;
}
}
std::chrono::time_point<std::chrono::steady_clock> start_time;
std::vector<CountersInfo> counters;
if (system_wide_collection_ || (!cpus_.empty() && cpus_[0] != -1)) {
if (!event_selection_set_.HandleCpuHotplugEvents(cpus_)) {
return false;
}
}
if (need_to_check_targets && !event_selection_set_.StopWhenNoMoreTargets()) {
return false;
}
auto exit_loop_callback = [loop]() {
return loop->ExitLoop();
};
if (!loop->AddSignalEvents({SIGCHLD, SIGINT, SIGTERM, SIGHUP}, exit_loop_callback)) {
return false;
}
if (stop_signal_fd_ != -1) {
if (!loop->AddReadEvent(stop_signal_fd_, exit_loop_callback)) {
return false;
}
}
if (duration_in_sec_ != 0) {
if (!loop->AddPeriodicEvent(SecondToTimeval(duration_in_sec_), exit_loop_callback)) {
return false;
}
}
auto print_counters = [&]() {
auto end_time = std::chrono::steady_clock::now();
if (!event_selection_set_.ReadCounters(&counters)) {
return false;
}
double duration_in_sec =
std::chrono::duration_cast<std::chrono::duration<double>>(end_time -
start_time)
.count();
if (!ShowCounters(counters, duration_in_sec, fp)) {
return false;
}
return true;
};
if (interval_in_ms_ != 0) {
if (!loop->AddPeriodicEvent(SecondToTimeval(interval_in_ms_ / 1000.0),
print_counters)) {
return false;
}
}
// 5. Count events while workload running.
start_time = std::chrono::steady_clock::now();
if (workload != nullptr && !workload->Start()) {
return false;
}
if (!loop->RunLoop()) {
return false;
}
// 6. Read and print counters.
if (interval_in_ms_ == 0) {
return print_counters();
}
return true;
}
bool StatCommand::ParseOptions(const std::vector<std::string>& args,
std::vector<std::string>* non_option_args) {
std::set<pid_t> tid_set;
size_t i;
for (i = 0; i < args.size() && args[i].size() > 0 && args[i][0] == '-'; ++i) {
if (args[i] == "-a") {
system_wide_collection_ = true;
} else if (args[i] == "--app") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
app_package_name_ = args[i];
} else if (args[i] == "--cpu") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
cpus_ = GetCpusFromString(args[i]);
} else if (args[i] == "--csv") {
csv_ = true;
} else if (args[i] == "--duration") {
if (!GetDoubleOption(args, &i, &duration_in_sec_, 1e-9)) {
return false;
}
} else if (args[i] == "--interval") {
if (!GetDoubleOption(args, &i, &interval_in_ms_, 1e-9)) {
return false;
}
} else if (args[i] == "--interval-only-values") {
interval_only_values_ = true;
} else if (args[i] == "-e") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
std::vector<std::string> event_types = android::base::Split(args[i], ",");
for (auto& event_type : event_types) {
if (!event_selection_set_.AddEventType(event_type)) {
return false;
}
}
} else if (args[i] == "--group") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
std::vector<std::string> event_types = android::base::Split(args[i], ",");
if (!event_selection_set_.AddEventGroup(event_types)) {
return false;
}
} else if (args[i] == "--in-app") {
in_app_context_ = true;
} else if (args[i] == "--no-inherit") {
child_inherit_ = false;
} else if (args[i] == "-o") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
output_filename_ = args[i];
} else if (args[i] == "--out-fd") {
int fd;
if (!GetUintOption(args, &i, &fd)) {
return false;
}
out_fd_.reset(fd);
} else if (args[i] == "-p") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
std::set<pid_t> pids;
if (!GetValidThreadsFromThreadString(args[i], &pids)) {
return false;
}
event_selection_set_.AddMonitoredProcesses(pids);
} else if (args[i] == "--stop-signal-fd") {
int fd;
if (!GetUintOption(args, &i, &fd)) {
return false;
}
stop_signal_fd_.reset(fd);
} else if (args[i] == "-t") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
std::set<pid_t> tids;
if (!GetValidThreadsFromThreadString(args[i], &tids)) {
return false;
}
event_selection_set_.AddMonitoredThreads(tids);
} else if (args[i] == "--tracepoint-events") {
if (!NextArgumentOrError(args, &i)) {
return false;
}
if (!SetTracepointEventsFilePath(args[i])) {
return false;
}
#if defined(__ANDROID__)
} else if (args[i] == "--use-devfreq-counters") {
use_devfreq_counters_ = true;
#endif
} else if (args[i] == "--verbose") {
verbose_mode_ = true;
} else {
ReportUnknownOption(args, i);
return false;
}
}
if (system_wide_collection_ && event_selection_set_.HasMonitoredTarget()) {
LOG(ERROR) << "Stat system wide and existing processes/threads can't be "
"used at the same time.";
return false;
}
if (system_wide_collection_ && !IsRoot()) {
LOG(ERROR) << "System wide profiling needs root privilege.";
return false;
}
non_option_args->clear();
for (; i < args.size(); ++i) {
non_option_args->push_back(args[i]);
}
return true;
}
bool StatCommand::AddDefaultMeasuredEventTypes() {
for (auto& name : default_measured_event_types) {
// It is not an error when some event types in the default list are not
// supported by the kernel.
const EventType* type = FindEventTypeByName(name);
if (type != nullptr &&
IsEventAttrSupported(CreateDefaultPerfEventAttr(*type))) {
if (!event_selection_set_.AddEventType(name)) {
return false;
}
}
}
if (event_selection_set_.empty()) {
LOG(ERROR) << "Failed to add any supported default measured types";
return false;
}
return true;
}
void StatCommand::SetEventSelectionFlags() {
event_selection_set_.SetInherit(child_inherit_);
}
bool StatCommand::ShowCounters(const std::vector<CountersInfo>& counters,
double duration_in_sec, FILE* fp) {
if (csv_) {
fprintf(fp, "Performance counter statistics,\n");
} else {
fprintf(fp, "Performance counter statistics:\n\n");
}
if (verbose_mode_) {
for (auto& counters_info : counters) {
for (auto& counter_info : counters_info.counters) {
if (csv_) {
fprintf(fp, "%s,tid,%d,cpu,%d,count,%" PRIu64 ",time_enabled,%" PRIu64
",time running,%" PRIu64 ",id,%" PRIu64 ",\n",
counters_info.event_name.c_str(), counter_info.tid,
counter_info.cpu, counter_info.counter.value,
counter_info.counter.time_enabled,
counter_info.counter.time_running, counter_info.counter.id);
} else {
fprintf(fp,
"%s(tid %d, cpu %d): count %" PRIu64 ", time_enabled %" PRIu64
", time running %" PRIu64 ", id %" PRIu64 "\n",
counters_info.event_name.c_str(), counter_info.tid,
counter_info.cpu, counter_info.counter.value,
counter_info.counter.time_enabled,
counter_info.counter.time_running, counter_info.counter.id);
}
}
}
}
bool counters_always_available = true;
CounterSummaries summaries(csv_);
for (size_t i = 0; i < counters.size(); ++i) {
const CountersInfo& counters_info = counters[i];
CounterSum sum;
for (auto& counter_info : counters_info.counters) {
sum.value += counter_info.counter.value;
sum.time_enabled += counter_info.counter.time_enabled;
sum.time_running += counter_info.counter.time_running;
}
if (interval_only_values_) {
if (last_sum_values_.size() < counters.size()) {
last_sum_values_.resize(counters.size());
}
CounterSum tmp = sum;
sum.value -= last_sum_values_[i].value;
sum.time_enabled -= last_sum_values_[i].time_enabled;
sum.time_running -= last_sum_values_[i].time_running;
last_sum_values_[i] = tmp;
}
double scale = 1.0;
if (sum.time_running < sum.time_enabled && sum.time_running != 0) {
scale = static_cast<double>(sum.time_enabled) / sum.time_running;
}
summaries.Summaries().emplace_back(counters_info.event_name, counters_info.event_modifier,
counters_info.group_id, sum.value, scale, false, csv_);
counters_always_available &= summaries.Summaries().back().IsMonitoredAllTheTime();
}
summaries.AutoGenerateSummaries();
summaries.GenerateComments(duration_in_sec);
summaries.Show(fp);
if (csv_)
fprintf(fp, "Total test time,%lf,seconds,\n", duration_in_sec);
else
fprintf(fp, "\nTotal test time: %lf seconds.\n", duration_in_sec);
if (!counters_always_available) {
LOG(WARNING) << "Some hardware counters are not always available (scale < 100%). "
<< "Try --use-devfreq-counters if on a rooted device.";
}
return true;
}
} // namespace
void RegisterStatCommand() {
RegisterCommand("stat",
[] { return std::unique_ptr<Command>(new StatCommand); });
}