blob: 1a3b5e690ad1c0c4eebfc801109811a6fde00cdc [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SIMPLE_PERF_JIT_DEBUG_READER_H_
#define SIMPLE_PERF_JIT_DEBUG_READER_H_
#include <unistd.h>
#include <functional>
#include <memory>
#include <queue>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <android-base/file.h>
#include <android-base/logging.h>
#include "environment.h"
#include "IOEventLoop.h"
#include "record.h"
namespace simpleperf {
// JITDebugInfo represents the debug info of a JITed Java method or a dex file.
struct JITDebugInfo {
enum {
JIT_DEBUG_JIT_CODE,
JIT_DEBUG_DEX_FILE,
} type;
pid_t pid; // Process of the debug info
uint64_t timestamp; // Monotonic timestamp for the creation of the debug info
union {
struct {
uint64_t jit_code_addr; // The start addr of the JITed code
uint64_t jit_code_len; // The end addr of the JITed code
};
uint64_t dex_file_offset; // The offset of the dex file in the file containing it
};
// For JITed code, it is the path of a temporary ELF file storing its debug info.
// For dex file, it is the path of the file containing the dex file.
std::string file_path;
// The map for dex file extracted in memory. On Android Q, ART extracts dex files in apk files
// directly into memory, and names it using prctl(). The kernel doesn't generate a new mmap
// record for it. So we need to dump it manually.
std::shared_ptr<ThreadMmap> extracted_dex_file_map;
JITDebugInfo(pid_t pid, uint64_t timestamp, uint64_t jit_code_addr, uint64_t jit_code_len,
const std::string& file_path)
: type(JIT_DEBUG_JIT_CODE), pid(pid), timestamp(timestamp), jit_code_addr(jit_code_addr),
jit_code_len(jit_code_len), file_path(file_path) {}
JITDebugInfo(pid_t pid, uint64_t timestamp, uint64_t dex_file_offset,
const std::string& file_path,
const std::shared_ptr<ThreadMmap>& extracted_dex_file_map)
: type(JIT_DEBUG_DEX_FILE), pid(pid), timestamp(timestamp), dex_file_offset(dex_file_offset),
file_path(file_path), extracted_dex_file_map(extracted_dex_file_map) {}
bool operator>(const JITDebugInfo& other) const {
return timestamp > other.timestamp;
}
};
// JITDebugReader reads debug info of JIT code and dex files of processes using ART. The
// corresponding debug interface in ART is at art/runtime/jit/debugger_interface.cc.
class JITDebugReader {
public:
// keep_symfiles: whether to keep dumped JIT debug info files after recording. Usually they
// are only kept for debug unwinding.
// sync_with_records: If true, sync debug info with records based on monotonic timestamp.
// Otherwise, save debug info whenever they are added.
JITDebugReader(bool keep_symfiles, bool sync_with_records)
: keep_symfiles_(keep_symfiles), sync_with_records_(sync_with_records) {}
bool SyncWithRecords() const {
return sync_with_records_;
}
typedef std::function<bool(const std::vector<JITDebugInfo>&, bool)> debug_info_callback_t;
bool RegisterDebugInfoCallback(IOEventLoop* loop, const debug_info_callback_t& callback);
// There are two ways to select which processes to monitor. One is using MonitorProcess(), the
// other is finding all processes having libart.so using records.
bool MonitorProcess(pid_t pid);
bool UpdateRecord(const Record* record);
// Read new debug info from all monitored processes.
bool ReadAllProcesses();
// Read new debug info from one process.
bool ReadProcess(pid_t pid);
// Flush all debug info registered before timestamp.
bool FlushDebugInfo(uint64_t timestamp);
private:
// An arch-independent representation of JIT/dex debug descriptor.
struct Descriptor {
int version = 0;
uint32_t action_seqlock = 0; // incremented before and after any modification
uint64_t action_timestamp = 0; // CLOCK_MONOTONIC time of last action
uint64_t first_entry_addr = 0;
};
// An arch-independent representation of JIT/dex code entry.
struct CodeEntry {
uint64_t addr;
uint64_t symfile_addr;
uint64_t symfile_size;
uint64_t timestamp; // CLOCK_MONOTONIC time of last action
};
struct Process {
pid_t pid = -1;
bool initialized = false;
bool died = false;
bool is_64bit = false;
// The jit descriptor and dex descriptor can be read in one process_vm_readv() call.
uint64_t descriptors_addr = 0;
uint64_t descriptors_size = 0;
// offset relative to descriptors_addr
uint64_t jit_descriptor_offset = 0;
// offset relative to descriptors_addr
uint64_t dex_descriptor_offset = 0;
// The state we know about the remote jit debug descriptor.
Descriptor last_jit_descriptor;
// The state we know about the remote dex debug descriptor.
Descriptor last_dex_descriptor;
};
// The location of descriptors in libart.so.
struct DescriptorsLocation {
uint64_t relative_addr = 0;
uint64_t size = 0;
uint64_t jit_descriptor_offset = 0;
uint64_t dex_descriptor_offset = 0;
};
void ReadProcess(Process& process, std::vector<JITDebugInfo>* debug_info);
bool InitializeProcess(Process& process);
const DescriptorsLocation* GetDescriptorsLocation(const std::string& art_lib_path,
bool is_64bit);
bool ReadRemoteMem(Process& process, uint64_t remote_addr, uint64_t size, void* data);
bool ReadDescriptors(Process& process, Descriptor* jit_descriptor, Descriptor* dex_descriptor);
bool LoadDescriptor(bool is_64bit, const char* data, Descriptor* descriptor);
template <typename DescriptorT>
bool LoadDescriptorImpl(const char* data, Descriptor* descriptor);
bool ReadNewCodeEntries(Process& process, const Descriptor& descriptor,
uint64_t last_action_timestamp, uint32_t read_entry_limit,
std::vector<CodeEntry>* new_code_entries);
template <typename CodeEntryT>
bool ReadNewCodeEntriesImpl(Process& process, const Descriptor& descriptor,
uint64_t last_action_timestamp, uint32_t read_entry_limit,
std::vector<CodeEntry>* new_code_entries);
template <typename CodeEntryT>
bool ReadNewCodeEntriesImplV2(Process& process, const Descriptor& descriptor,
uint64_t last_action_timestamp, uint32_t read_entry_limit,
std::vector<CodeEntry>* new_code_entries);
void ReadJITCodeDebugInfo(Process& process, const std::vector<CodeEntry>& jit_entries,
std::vector<JITDebugInfo>* debug_info);
void ReadDexFileDebugInfo(Process& process, const std::vector<CodeEntry>& dex_entries,
std::vector<JITDebugInfo>* debug_info);
bool AddDebugInfo(const std::vector<JITDebugInfo>& debug_info, bool sync_kernel_records);
bool keep_symfiles_ = false;
bool sync_with_records_ = false;
IOEventRef read_event_ = nullptr;
debug_info_callback_t debug_info_callback_;
// Keys are pids of processes having libart.so, values show whether a process has been monitored.
std::unordered_map<pid_t, bool> pids_with_art_lib_;
// All monitored processes
std::unordered_map<pid_t, Process> processes_;
std::unordered_map<std::string, DescriptorsLocation> descriptors_location_cache_;
std::vector<char> descriptors_buf_;
std::priority_queue<JITDebugInfo, std::vector<JITDebugInfo>, std::greater<JITDebugInfo>>
debug_info_q_;
};
} //namespace simpleperf
#endif // SIMPLE_PERF_JIT_DEBUG_READER_H_