blob: 047b5ee02fdda77d5585ec77f81326c4a29b95fb [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <getopt.h>
#include <inttypes.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/types.h>
#include <sysexits.h>
#include <unistd.h>
#include <algorithm>
#include <iostream>
#include <optional>
#include <regex>
#include <string>
#include <vector>
#include <android-base/parseint.h>
#include <android-base/properties.h>
#include <android-base/strings.h>
#ifdef __ANDROID__
#include <cutils/android_get_control_file.h>
#include <fs_mgr.h>
#endif
#include <jsonpb/jsonpb.h>
#include <liblp/builder.h>
#include <liblp/liblp.h>
#include "dynamic_partitions_device_info.pb.h"
using namespace android;
using namespace android::fs_mgr;
static int usage(int /* argc */, char* argv[], std::ostream& cerr) {
cerr << argv[0]
<< " - command-line tool for dumping Android Logical Partition images.\n"
"\n"
"Usage:\n"
" "
<< argv[0]
<< " [-s <SLOT#>|--slot=<SLOT#>] [-j|--json] [FILE|DEVICE]\n"
"\n"
"Options:\n"
" -s, --slot=N Slot number or suffix.\n"
" -j, --json Print in JSON format.\n"
" -d, --dump-metadata-size\n"
" Print the space reserved for metadata to stdout\n"
" in bytes.\n"
" -a, --all Dump all slots (not available in JSON mode).\n";
return EX_USAGE;
}
static std::string BuildFlagString(const std::vector<std::string>& strings) {
return strings.empty() ? "none" : android::base::Join(strings, ",");
}
static std::string BuildHeaderFlagString(uint32_t flags) {
std::vector<std::string> strings;
if (flags & LP_HEADER_FLAG_VIRTUAL_AB_DEVICE) {
strings.emplace_back("virtual_ab_device");
flags &= ~LP_HEADER_FLAG_VIRTUAL_AB_DEVICE;
}
for (uint32_t i = 0; i < sizeof(flags) * 8; i++) {
if (!(flags & (1U << i))) {
continue;
}
strings.emplace_back("unknown_flag_bit_" + std::to_string(i));
}
return BuildFlagString(strings);
}
static std::string BuildAttributeString(uint32_t attrs) {
std::vector<std::string> strings;
if (attrs & LP_PARTITION_ATTR_READONLY) strings.emplace_back("readonly");
if (attrs & LP_PARTITION_ATTR_SLOT_SUFFIXED) strings.emplace_back("slot-suffixed");
if (attrs & LP_PARTITION_ATTR_UPDATED) strings.emplace_back("updated");
if (attrs & LP_PARTITION_ATTR_DISABLED) strings.emplace_back("disabled");
return BuildFlagString(strings);
}
static std::string BuildGroupFlagString(uint32_t flags) {
std::vector<std::string> strings;
if (flags & LP_GROUP_SLOT_SUFFIXED) strings.emplace_back("slot-suffixed");
return BuildFlagString(strings);
}
static std::string BuildBlockDeviceFlagString(uint32_t flags) {
std::vector<std::string> strings;
if (flags & LP_BLOCK_DEVICE_SLOT_SUFFIXED) strings.emplace_back("slot-suffixed");
return BuildFlagString(strings);
}
// Reimplementation of fs_mgr_get_slot_suffix() without reading
// kernel commandline.
static std::string GetSlotSuffix() {
return base::GetProperty("ro.boot.slot_suffix", "");
}
// Reimplementation of fs_mgr_get_super_partition_name() without reading
// kernel commandline. Always return the super partition at current slot.
static std::string GetSuperPartitionName(const std::optional<uint32_t>& slot = {}) {
std::string super_partition = base::GetProperty("ro.boot.super_partition", "");
if (super_partition.empty()) {
return LP_METADATA_DEFAULT_PARTITION_NAME;
}
if (slot.has_value()) {
return super_partition + SlotSuffixForSlotNumber(slot.value());
}
return super_partition + GetSlotSuffix();
}
static std::string RemoveSuffix(const std::string& s, const std::string& suffix) {
if (base::EndsWith(s, suffix)) {
return s.substr(0, s.length() - suffix.length());
}
return s;
}
// Merge proto with information from metadata.
static bool MergeMetadata(const LpMetadata* metadata,
DynamicPartitionsDeviceInfoProto* proto) {
if (!metadata) return false;
auto builder = MetadataBuilder::New(*metadata);
if (!builder) return false;
std::string slot_suffix = GetSlotSuffix();
for (const auto& group_name : builder->ListGroups()) {
auto group = builder->FindGroup(group_name);
if (!group) continue;
if (!base::EndsWith(group_name, slot_suffix)) continue;
auto group_proto = proto->add_groups();
group_proto->set_name(RemoveSuffix(group_name, slot_suffix));
group_proto->set_maximum_size(group->maximum_size());
for (auto partition : builder->ListPartitionsInGroup(group_name)) {
auto partition_name = partition->name();
if (!base::EndsWith(partition_name, slot_suffix)) continue;
auto partition_proto = proto->add_partitions();
partition_proto->set_name(RemoveSuffix(partition_name, slot_suffix));
partition_proto->set_group_name(RemoveSuffix(group_name, slot_suffix));
partition_proto->set_size(partition->size());
partition_proto->set_is_dynamic(true);
}
}
for (const auto& block_device : metadata->block_devices) {
std::string name = GetBlockDevicePartitionName(block_device);
BlockDeviceInfo info;
if (!builder->GetBlockDeviceInfo(name, &info)) {
continue;
}
auto block_device_proto = proto->add_block_devices();
block_device_proto->set_name(RemoveSuffix(name, slot_suffix));
block_device_proto->set_size(info.size);
block_device_proto->set_block_size(info.logical_block_size);
block_device_proto->set_alignment(info.alignment);
block_device_proto->set_alignment_offset(info.alignment_offset);
}
return true;
}
#ifdef __ANDROID__
static DynamicPartitionsDeviceInfoProto::Partition* FindPartition(
DynamicPartitionsDeviceInfoProto* proto, const std::string& partition) {
for (DynamicPartitionsDeviceInfoProto::Partition& p : *proto->mutable_partitions()) {
if (p.name() == partition) {
return &p;
}
}
return nullptr;
}
static std::optional<std::string> GetReadonlyPartitionName(const android::fs_mgr::FstabEntry& entry) {
// Only report readonly partitions.
if ((entry.flags & MS_RDONLY) == 0) return std::nullopt;
std::regex regex("/([a-zA-Z_]*)$");
std::smatch match;
if (!std::regex_match(entry.mount_point, match, regex)) return std::nullopt;
// On system-as-root devices, fstab lists / for system partition.
std::string partition = match[1];
return partition.empty() ? "system" : partition;
}
static bool MergeFsUsage(DynamicPartitionsDeviceInfoProto* proto,
std::ostream& cerr) {
using namespace std::string_literals;
Fstab fstab;
if (!ReadDefaultFstab(&fstab)) {
cerr << "Cannot read fstab\n";
return false;
}
for (const auto& entry : fstab) {
auto partition = GetReadonlyPartitionName(entry);
if (!partition) {
continue;
}
// system is mounted to "/";
const char* mount_point = (entry.mount_point == "/system")
? "/" : entry.mount_point.c_str();
struct statvfs vst;
if (statvfs(mount_point, &vst) == -1) {
continue;
}
auto partition_proto = FindPartition(proto, *partition);
if (partition_proto == nullptr) {
partition_proto = proto->add_partitions();
partition_proto->set_name(*partition);
partition_proto->set_is_dynamic(false);
}
partition_proto->set_fs_size((uint64_t)vst.f_blocks * vst.f_frsize);
if (vst.f_bavail <= vst.f_blocks) {
partition_proto->set_fs_used((uint64_t)(vst.f_blocks - vst.f_bavail) * vst.f_frsize);
}
}
return true;
}
#endif
// Print output in JSON format.
// If successful, this function must write a valid JSON string to "cout" and return 0.
static int PrintJson(const LpMetadata* metadata, std::ostream& cout,
std::ostream& cerr) {
DynamicPartitionsDeviceInfoProto proto;
if (base::GetBoolProperty("ro.boot.dynamic_partitions", false)) {
proto.set_enabled(true);
}
if (base::GetBoolProperty("ro.boot.dynamic_partitions_retrofit", false)) {
proto.set_retrofit(true);
}
if (!MergeMetadata(metadata, &proto)) {
cerr << "Warning: Failed to read metadata.\n";
}
#ifdef __ANDROID__
if (!MergeFsUsage(&proto, cerr)) {
cerr << "Warning: Failed to read filesystem size and usage.\n";
}
#endif
auto error_or_json = jsonpb::MessageToJsonString(proto);
if (!error_or_json.ok()) {
cerr << error_or_json.error() << "\n";
return EX_SOFTWARE;
}
cout << *error_or_json;
return EX_OK;
}
static int DumpMetadataSize(const LpMetadata& metadata, std::ostream& cout) {
auto super_device = GetMetadataSuperBlockDevice(metadata);
uint64_t metadata_size = super_device->first_logical_sector * LP_SECTOR_SIZE;
cout << metadata_size << std::endl;
return EX_OK;
}
class FileOrBlockDeviceOpener final : public PartitionOpener {
public:
android::base::unique_fd Open(const std::string& path, int flags) const override {
// Try a local file first.
android::base::unique_fd fd;
#ifdef __ANDROID__
fd.reset(android_get_control_file(path.c_str()));
if (fd >= 0) return fd;
#endif
fd.reset(open(path.c_str(), flags));
if (fd >= 0) return fd;
return PartitionOpener::Open(path, flags);
}
};
std::optional<std::tuple<std::string, uint64_t>>
ParseLinearExtentData(const LpMetadata& pt, const LpMetadataExtent& extent) {
if (extent.target_type != LP_TARGET_TYPE_LINEAR) {
return std::nullopt;
}
const auto& block_device = pt.block_devices[extent.target_source];
std::string device_name = GetBlockDevicePartitionName(block_device);
return std::make_tuple(std::move(device_name), extent.target_data);
}
static void PrintMetadata(const LpMetadata& pt, std::ostream& cout) {
cout << "Metadata version: " << pt.header.major_version << "." << pt.header.minor_version
<< "\n";
cout << "Metadata size: " << (pt.header.header_size + pt.header.tables_size) << " bytes\n";
cout << "Metadata max size: " << pt.geometry.metadata_max_size << " bytes\n";
cout << "Metadata slot count: " << pt.geometry.metadata_slot_count << "\n";
cout << "Header flags: " << BuildHeaderFlagString(pt.header.flags) << "\n";
cout << "Partition table:\n";
cout << "------------------------\n";
std::vector<std::tuple<std::string, const LpMetadataExtent*>> extents;
for (const auto& partition : pt.partitions) {
std::string name = GetPartitionName(partition);
std::string group_name = GetPartitionGroupName(pt.groups[partition.group_index]);
cout << " Name: " << name << "\n";
cout << " Group: " << group_name << "\n";
cout << " Attributes: " << BuildAttributeString(partition.attributes) << "\n";
cout << " Extents:\n";
uint64_t first_sector = 0;
for (size_t i = 0; i < partition.num_extents; i++) {
const LpMetadataExtent& extent = pt.extents[partition.first_extent_index + i];
cout << " " << first_sector << " .. " << (first_sector + extent.num_sectors - 1)
<< " ";
first_sector += extent.num_sectors;
if (extent.target_type == LP_TARGET_TYPE_LINEAR) {
const auto& block_device = pt.block_devices[extent.target_source];
std::string device_name = GetBlockDevicePartitionName(block_device);
cout << "linear " << device_name.c_str() << " " << extent.target_data;
} else if (extent.target_type == LP_TARGET_TYPE_ZERO) {
cout << "zero";
}
extents.push_back(std::make_tuple(name, &extent));
cout << "\n";
}
cout << "------------------------\n";
}
std::sort(extents.begin(), extents.end(), [&](const auto& x, const auto& y) {
auto x_data = ParseLinearExtentData(pt, *std::get<1>(x));
auto y_data = ParseLinearExtentData(pt, *std::get<1>(y));
return x_data < y_data;
});
cout << "Super partition layout:\n";
cout << "------------------------\n";
for (auto&& [name, extent] : extents) {
auto data = ParseLinearExtentData(pt, *extent);
if (!data) continue;
auto&& [block_device, offset] = *data;
cout << block_device << ": " << offset << " .. " << (offset + extent->num_sectors)
<< ": " << name << " (" << extent->num_sectors << " sectors)\n";
}
cout << "------------------------\n";
cout << "Block device table:\n";
cout << "------------------------\n";
for (const auto& block_device : pt.block_devices) {
std::string partition_name = GetBlockDevicePartitionName(block_device);
cout << " Partition name: " << partition_name << "\n";
cout << " First sector: " << block_device.first_logical_sector << "\n";
cout << " Size: " << block_device.size << " bytes\n";
cout << " Flags: " << BuildBlockDeviceFlagString(block_device.flags) << "\n";
cout << "------------------------\n";
}
cout << "Group table:\n";
cout << "------------------------\n";
for (const auto& group : pt.groups) {
std::string group_name = GetPartitionGroupName(group);
cout << " Name: " << group_name << "\n";
cout << " Maximum size: " << group.maximum_size << " bytes\n";
cout << " Flags: " << BuildGroupFlagString(group.flags) << "\n";
cout << "------------------------\n";
}
}
static std::unique_ptr<LpMetadata> ReadDeviceOrFile(const std::string& path, uint32_t slot) {
if (IsEmptySuperImage(path)) {
return ReadFromImageFile(path);
}
return ReadMetadata(path, slot);
}
int LpdumpMain(int argc, char* argv[], std::ostream& cout, std::ostream& cerr) {
// clang-format off
struct option options[] = {
{ "all", no_argument, nullptr, 'a' },
{ "slot", required_argument, nullptr, 's' },
{ "help", no_argument, nullptr, 'h' },
{ "json", no_argument, nullptr, 'j' },
{ "dump-metadata-size", no_argument, nullptr, 'd' },
{ "is-super-empty", no_argument, nullptr, 'e' },
{ nullptr, 0, nullptr, 0 },
};
// clang-format on
// Allow this function to be invoked by lpdumpd multiple times.
optind = 1;
int rv;
int index;
bool json = false;
bool dump_metadata_size = false;
bool dump_all = false;
std::optional<uint32_t> slot;
while ((rv = getopt_long_only(argc, argv, "s:jhde", options, &index)) != -1) {
switch (rv) {
case 'a':
dump_all = true;
break;
case 'h':
usage(argc, argv, cout);
return EX_OK;
case 's': {
uint32_t slot_arg;
if (android::base::ParseUint(optarg, &slot_arg)) {
slot = slot_arg;
} else {
slot = SlotNumberForSlotSuffix(optarg);
}
break;
}
case 'e':
// This is ignored, we now derive whether it's empty automatically.
break;
case 'd':
dump_metadata_size = true;
break;
case 'j':
json = true;
break;
case '?':
case ':':
return usage(argc, argv, cerr);
}
}
if (dump_all) {
if (slot.has_value()) {
cerr << "Cannot specify both --all and --slot.\n";
return usage(argc, argv, cerr);
}
if (json) {
cerr << "Cannot specify both --all and --json.\n";
return usage(argc, argv, cerr);
}
// When dumping everything always start from the first slot.
slot = 0;
}
#ifdef __ANDROID__
// Use the current slot as a default for A/B devices.
auto current_slot_suffix = GetSlotSuffix();
if (!slot.has_value() && !current_slot_suffix.empty()) {
slot = SlotNumberForSlotSuffix(current_slot_suffix);
}
#endif
// If we still haven't determined a slot yet, use the first one.
if (!slot.has_value()) {
slot = 0;
}
// Determine the path to the super partition (or image). If an explicit
// path is given, we use it for everything. Otherwise, we will infer it
// at the time we need to read metadata.
std::string super_path;
bool override_super_name = (optind < argc);
if (override_super_name) {
super_path = argv[optind++];
} else {
#ifdef __ANDROID__
super_path = GetSuperPartitionName(slot);
#else
cerr << "Must specify a super partition image.\n";
return usage(argc, argv, cerr);
#endif
}
auto pt = ReadDeviceOrFile(super_path, slot.value());
// --json option doesn't require metadata to be present.
if (json) {
return PrintJson(pt.get(), cout, cerr);
}
if (!pt) {
cerr << "Failed to read metadata.\n";
return EX_NOINPUT;
}
if (dump_metadata_size) {
return DumpMetadataSize(*pt.get(), cout);
}
// When running on the device, we can check the slot count. Otherwise we
// use the # of metadata slots. (There is an extra slot we don't want to
// dump because it is currently unused.)
#ifdef __ANDROID__
uint32_t num_slots = current_slot_suffix.empty() ? 1 : 2;
if (dump_all && num_slots > 1) {
cout << "Current slot: " << current_slot_suffix << "\n";
}
#else
uint32_t num_slots = pt->geometry.metadata_slot_count;
#endif
// Empty images only have one slot.
if (IsEmptySuperImage(super_path)) {
num_slots = 1;
}
if (num_slots > 1) {
cout << "Slot " << slot.value() << ":\n";
}
PrintMetadata(*pt.get(), cout);
if (dump_all) {
for (uint32_t i = 1; i < num_slots; i++) {
if (!override_super_name) {
super_path = GetSuperPartitionName(i);
}
pt = ReadDeviceOrFile(super_path, i);
if (!pt) {
continue;
}
cout << "\nSlot " << i << ":\n";
PrintMetadata(*pt.get(), cout);
}
}
return EX_OK;
}
int LpdumpMain(int argc, char* argv[]) {
return LpdumpMain(argc, argv, std::cout, std::cerr);
}