blob: 972a3f3a975d42f3d5d1293892487616776b7e95 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "SerializedLogBuffer.h"
#include <sys/prctl.h>
#include <limits>
#include <android-base/logging.h>
#include <android-base/scopeguard.h>
#include "LogStatistics.h"
#include "SerializedFlushToState.h"
SerializedLogBuffer::SerializedLogBuffer(LogReaderList* reader_list, LogTags* tags,
LogStatistics* stats)
: reader_list_(reader_list), tags_(tags), stats_(stats) {
Init();
}
void SerializedLogBuffer::Init() {
log_id_for_each(i) {
if (SetSize(i, __android_logger_get_buffer_size(i))) {
SetSize(i, LOG_BUFFER_MIN_SIZE);
}
}
// Release any sleeping reader threads to dump their current content.
auto reader_threads_lock = std::lock_guard{reader_list_->reader_threads_lock()};
for (const auto& reader_thread : reader_list_->reader_threads()) {
reader_thread->triggerReader_Locked();
}
}
bool SerializedLogBuffer::ShouldLog(log_id_t log_id, const char* msg, uint16_t len) {
if (log_id == LOG_ID_SECURITY) {
return true;
}
int prio = ANDROID_LOG_INFO;
const char* tag = nullptr;
size_t tag_len = 0;
if (IsBinary(log_id)) {
int32_t tag_int = MsgToTag(msg, len);
tag = tags_->tagToName(tag_int);
if (tag) {
tag_len = strlen(tag);
}
} else {
prio = *msg;
tag = msg + 1;
tag_len = strnlen(tag, len - 1);
}
return __android_log_is_loggable_len(prio, tag, tag_len, ANDROID_LOG_VERBOSE);
}
int SerializedLogBuffer::Log(log_id_t log_id, log_time realtime, uid_t uid, pid_t pid, pid_t tid,
const char* msg, uint16_t len) {
if (log_id >= LOG_ID_MAX || len == 0) {
return -EINVAL;
}
if (!ShouldLog(log_id, msg, len)) {
stats_->AddTotal(log_id, len);
return -EACCES;
}
auto sequence = sequence_.fetch_add(1, std::memory_order_relaxed);
auto lock = std::lock_guard{lock_};
if (logs_[log_id].empty()) {
logs_[log_id].push_back(SerializedLogChunk(max_size_[log_id] / 4));
}
auto total_len = sizeof(SerializedLogEntry) + len;
if (!logs_[log_id].back().CanLog(total_len)) {
logs_[log_id].back().FinishWriting();
logs_[log_id].push_back(SerializedLogChunk(max_size_[log_id] / 4));
}
auto entry = logs_[log_id].back().Log(sequence, realtime, uid, pid, tid, msg, len);
stats_->Add(entry->ToLogStatisticsElement(log_id));
MaybePrune(log_id);
reader_list_->NotifyNewLog(1 << log_id);
return len;
}
void SerializedLogBuffer::MaybePrune(log_id_t log_id) {
size_t total_size = GetSizeUsed(log_id);
size_t after_size = total_size;
if (total_size > max_size_[log_id]) {
Prune(log_id, total_size - max_size_[log_id], 0);
after_size = GetSizeUsed(log_id);
LOG(INFO) << "Pruned Logs from log_id: " << log_id << ", previous size: " << total_size
<< " after size: " << after_size;
}
stats_->set_overhead(log_id, after_size);
}
void SerializedLogBuffer::RemoveChunkFromStats(log_id_t log_id, SerializedLogChunk& chunk) {
chunk.IncReaderRefCount();
int read_offset = 0;
while (read_offset < chunk.write_offset()) {
auto* entry = chunk.log_entry(read_offset);
stats_->Subtract(entry->ToLogStatisticsElement(log_id));
read_offset += entry->total_len();
}
chunk.DecReaderRefCount();
}
void SerializedLogBuffer::NotifyReadersOfPrune(
log_id_t log_id, const std::list<SerializedLogChunk>::iterator& chunk) {
for (const auto& reader_thread : reader_list_->reader_threads()) {
auto& state = reinterpret_cast<SerializedFlushToState&>(reader_thread->flush_to_state());
state.Prune(log_id, chunk);
}
}
bool SerializedLogBuffer::Prune(log_id_t log_id, size_t bytes_to_free, uid_t uid) {
// Don't prune logs that are newer than the point at which any reader threads are reading from.
LogReaderThread* oldest = nullptr;
auto reader_threads_lock = std::lock_guard{reader_list_->reader_threads_lock()};
for (const auto& reader_thread : reader_list_->reader_threads()) {
if (!reader_thread->IsWatching(log_id)) {
continue;
}
if (!oldest || oldest->start() > reader_thread->start() ||
(oldest->start() == reader_thread->start() &&
reader_thread->deadline().time_since_epoch().count() != 0)) {
oldest = reader_thread.get();
}
}
auto& log_buffer = logs_[log_id];
auto it = log_buffer.begin();
while (it != log_buffer.end()) {
if (oldest != nullptr && it->highest_sequence_number() >= oldest->start()) {
break;
}
// Increment ahead of time since we're going to erase this iterator from the list.
auto it_to_prune = it++;
// The sequence number check ensures that all readers have read all logs in this chunk, but
// they may still hold a reference to the chunk to track their last read log_position.
// Notify them to delete the reference.
NotifyReadersOfPrune(log_id, it_to_prune);
if (uid != 0) {
// Reorder the log buffer to remove logs from the given UID. If there are no logs left
// in the buffer after the removal, delete it.
if (it_to_prune->ClearUidLogs(uid, log_id, stats_)) {
log_buffer.erase(it_to_prune);
}
} else {
size_t buffer_size = it_to_prune->PruneSize();
RemoveChunkFromStats(log_id, *it_to_prune);
log_buffer.erase(it_to_prune);
if (buffer_size >= bytes_to_free) {
return true;
}
bytes_to_free -= buffer_size;
}
}
// If we've deleted all buffers without bytes_to_free hitting 0, then we're called by Clear()
// and should return true.
if (it == log_buffer.end()) {
return true;
}
// Otherwise we are stuck due to a reader, so mitigate it.
CHECK(oldest != nullptr);
KickReader(oldest, log_id, bytes_to_free);
return false;
}
// If the selected reader is blocking our pruning progress, decide on
// what kind of mitigation is necessary to unblock the situation.
void SerializedLogBuffer::KickReader(LogReaderThread* reader, log_id_t id, size_t bytes_to_free) {
if (bytes_to_free >= max_size_[id]) { // +100%
// A misbehaving or slow reader is dropped if we hit too much memory pressure.
LOG(WARNING) << "Kicking blocked reader, " << reader->name()
<< ", from LogBuffer::kickMe()";
reader->release_Locked();
} else if (reader->deadline().time_since_epoch().count() != 0) {
// Allow a blocked WRAP deadline reader to trigger and start reporting the log data.
reader->triggerReader_Locked();
} else {
// Tell slow reader to skip entries to catch up.
unsigned long prune_rows = bytes_to_free / 300;
LOG(WARNING) << "Skipping " << prune_rows << " entries from slow reader, " << reader->name()
<< ", from LogBuffer::kickMe()";
reader->triggerSkip_Locked(id, prune_rows);
}
}
std::unique_ptr<FlushToState> SerializedLogBuffer::CreateFlushToState(uint64_t start,
LogMask log_mask) {
return std::make_unique<SerializedFlushToState>(start, log_mask);
}
bool SerializedLogBuffer::FlushTo(
LogWriter* writer, FlushToState& abstract_state,
const std::function<FilterResult(log_id_t log_id, pid_t pid, uint64_t sequence,
log_time realtime)>& filter) {
auto lock = std::unique_lock{lock_};
auto& state = reinterpret_cast<SerializedFlushToState&>(abstract_state);
state.InitializeLogs(logs_);
while (state.HasUnreadLogs()) {
MinHeapElement top = state.PopNextUnreadLog();
auto* entry = top.entry;
auto log_id = top.log_id;
if (entry->sequence() < state.start()) {
continue;
}
state.set_start(entry->sequence());
if (!writer->privileged() && entry->uid() != writer->uid()) {
continue;
}
if (filter) {
auto ret = filter(log_id, entry->pid(), entry->sequence(), entry->realtime());
if (ret == FilterResult::kSkip) {
continue;
}
if (ret == FilterResult::kStop) {
break;
}
}
lock.unlock();
// We never prune logs equal to or newer than any LogReaderThreads' `start` value, so the
// `entry` pointer is safe here without the lock
if (!entry->Flush(writer, log_id)) {
return false;
}
lock.lock();
}
state.set_start(state.start() + 1);
return true;
}
bool SerializedLogBuffer::Clear(log_id_t id, uid_t uid) {
// Try three times to clear, then disconnect the readers and try one final time.
for (int retry = 0; retry < 3; ++retry) {
{
auto lock = std::lock_guard{lock_};
bool prune_success = Prune(id, ULONG_MAX, uid);
if (prune_success) {
return true;
}
}
sleep(1);
}
// Check if it is still busy after the sleep, we try to prune one entry, not another clear run,
// so we are looking for the quick side effect of the return value to tell us if we have a
// _blocked_ reader.
bool busy = false;
{
auto lock = std::lock_guard{lock_};
busy = !Prune(id, 1, uid);
}
// It is still busy, disconnect all readers.
if (busy) {
auto reader_threads_lock = std::lock_guard{reader_list_->reader_threads_lock()};
for (const auto& reader_thread : reader_list_->reader_threads()) {
if (reader_thread->IsWatching(id)) {
LOG(WARNING) << "Kicking blocked reader, " << reader_thread->name()
<< ", from LogBuffer::clear()";
reader_thread->release_Locked();
}
}
}
auto lock = std::lock_guard{lock_};
return Prune(id, ULONG_MAX, uid);
}
unsigned long SerializedLogBuffer::GetSizeUsed(log_id_t id) {
size_t total_size = 0;
for (const auto& chunk : logs_[id]) {
total_size += chunk.PruneSize();
}
return total_size;
}
unsigned long SerializedLogBuffer::GetSize(log_id_t id) {
auto lock = std::lock_guard{lock_};
return max_size_[id];
}
// New SerializedLogChunk objects will be allocated according to the new size, but older one are
// unchanged. MaybePrune() is called on the log buffer to reduce it to an appropriate size if the
// new size is lower.
int SerializedLogBuffer::SetSize(log_id_t id, unsigned long size) {
// Reasonable limits ...
if (!__android_logger_valid_buffer_size(size)) {
return -1;
}
auto lock = std::lock_guard{lock_};
max_size_[id] = size;
MaybePrune(id);
return 0;
}