blob: f059935bfc7e3d4cd3e09cd32d162a60dbf80223 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <fcntl.h>
#include <scsi/scsi.h>
#include <scsi/scsi_proto.h>
#include <scsi/sg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#include <linux/major.h>
#include <linux/mmc/ioctl.h>
#include <hardware_legacy/power.h>
#include "ipc.h"
#include "log.h"
#include "rpmb.h"
#include "storage.h"
#define MMC_READ_MULTIPLE_BLOCK 18
#define MMC_WRITE_MULTIPLE_BLOCK 25
#define MMC_RELIABLE_WRITE_FLAG (1 << 31)
#define MMC_RSP_PRESENT (1 << 0)
#define MMC_RSP_CRC (1 << 2)
#define MMC_RSP_OPCODE (1 << 4)
#define MMC_CMD_ADTC (1 << 5)
#define MMC_RSP_SPI_S1 (1 << 7)
#define MMC_RSP_R1 (MMC_RSP_PRESENT | MMC_RSP_CRC | MMC_RSP_OPCODE)
#define MMC_RSP_SPI_R1 (MMC_RSP_SPI_S1)
#define MMC_WRITE_FLAG_R 0
#define MMC_WRITE_FLAG_W 1
#define MMC_WRITE_FLAG_RELW (MMC_WRITE_FLAG_W | MMC_RELIABLE_WRITE_FLAG)
#define MMC_BLOCK_SIZE 512
/*
* Number of retry attempts when an RPMB authenticated write triggers a UNIT
* ATTENTION
*/
#define UFS_RPMB_WRITE_RETRY_COUNT 1
/*
* Number of retry attempts when an RPMB read operation triggers a UNIT
* ATTENTION
*/
#define UFS_RPMB_READ_RETRY_COUNT 3
/*
* There should be no timeout for security protocol ioctl call, so we choose a
* large number for timeout.
* 20000 millisecs == 20 seconds
*/
#define TIMEOUT 20000
/*
* The sg device driver that supports new interface has a major version number of "3".
* SG_GET_VERSION_NUM ioctl() will yield a number greater than or 30000.
*/
#define RPMB_MIN_SG_VERSION_NUM 30000
/*
* CDB format of SECURITY PROTOCOL IN/OUT commands
* (JEDEC Standard No. 220D, Page 264)
*/
struct sec_proto_cdb {
/*
* OPERATION CODE = A2h for SECURITY PROTOCOL IN command,
* OPERATION CODE = B5h for SECURITY PROTOCOL OUT command.
*/
uint8_t opcode;
/* SECURITY PROTOCOL = ECh (JEDEC Universal Flash Storage) */
uint8_t sec_proto;
/*
* The SECURITY PROTOCOL SPECIFIC field specifies the RPMB Protocol ID.
* CDB Byte 2 = 00h and CDB Byte 3 = 01h for RPMB Region 0.
*/
uint8_t cdb_byte_2;
uint8_t cdb_byte_3;
/*
* Byte 4 and 5 are reserved.
*/
uint8_t cdb_byte_4;
uint8_t cdb_byte_5;
/* ALLOCATION/TRANSFER LENGTH in big-endian */
uint32_t length;
/* Byte 9 is reserved. */
uint8_t cdb_byte_10;
/* CONTROL = 00h. */
uint8_t ctrl;
} __packed;
static int rpmb_fd = -1;
static uint8_t read_buf[4096];
static enum dev_type dev_type = UNKNOWN_RPMB;
static const char* UFS_WAKE_LOCK_NAME = "ufs_seq_wakelock";
/**
* log_buf - Log a byte buffer to the android log.
* @priority: One of ANDROID_LOG_* priority levels from android_LogPriority in
* android/log.h
* @prefix: A null-terminated string that identifies this buffer. Must be less
* than 128 bytes.
* @buf: Buffer to dump.
* @size: Length of @buf in bytes.
*/
#define LOG_BUF_SIZE 256
static int log_buf(int priority, const char* prefix, const uint8_t* buf, size_t size) {
int rc;
size_t i;
char line[LOG_BUF_SIZE] = {0};
char* cur = line;
rc = snprintf(line, LOG_BUF_SIZE, "%s @%p [%zu]", prefix, buf, size);
if (rc < 0 || rc >= LOG_BUF_SIZE) {
goto err;
}
cur += rc;
for (i = 0; i < size; i++) {
if (i % 32 == 0) {
/*
* Flush the line out to the log after we have printed 32 bytes
* (also flushes the header line on the first iteration and sets up
* for printing the buffer itself)
*/
LOG_PRI(priority, LOG_TAG, "%s", line);
memset(line, 0, LOG_BUF_SIZE);
cur = line;
/* Shift output over by the length of the prefix */
rc = snprintf(line, LOG_BUF_SIZE, "%*s", (int)strlen(prefix), "");
if (rc < 0 || rc >= LOG_BUF_SIZE) {
goto err;
}
cur += rc;
}
rc = snprintf(cur, LOG_BUF_SIZE - (cur - line), "%02x ", buf[i]);
if (rc < 0 || rc >= LOG_BUF_SIZE - (cur - line)) {
goto err;
}
cur += rc;
}
LOG_PRI(priority, LOG_TAG, "%s", line);
return 0;
err:
if (rc < 0) {
return rc;
} else {
ALOGE("log_buf prefix was too long");
return -1;
}
}
static void set_sg_io_hdr(sg_io_hdr_t* io_hdrp, int dxfer_direction, unsigned char cmd_len,
unsigned char mx_sb_len, unsigned int dxfer_len, void* dxferp,
unsigned char* cmdp, void* sbp) {
memset(io_hdrp, 0, sizeof(sg_io_hdr_t));
io_hdrp->interface_id = 'S';
io_hdrp->dxfer_direction = dxfer_direction;
io_hdrp->cmd_len = cmd_len;
io_hdrp->mx_sb_len = mx_sb_len;
io_hdrp->dxfer_len = dxfer_len;
io_hdrp->dxferp = dxferp;
io_hdrp->cmdp = cmdp;
io_hdrp->sbp = sbp;
io_hdrp->timeout = TIMEOUT;
}
/**
* enum scsi_result - Results of checking the SCSI status and sense buffer
*
* @SCSI_RES_OK: SCSI status and sense are good
* @SCSI_RES_ERR: SCSI status or sense contain an unhandled error
* @SCSI_RES_RETRY: SCSI sense buffer contains a status that indicates that the
* command should be retried
*/
enum scsi_result {
SCSI_RES_OK = 0,
SCSI_RES_ERR,
SCSI_RES_RETRY,
};
static enum scsi_result check_scsi_sense(const uint8_t* sense_buf, size_t len) {
uint8_t response_code = 0;
uint8_t sense_key = 0;
uint8_t additional_sense_code = 0;
uint8_t additional_sense_code_qualifier = 0;
uint8_t additional_length = 0;
if (!sense_buf || len == 0) {
ALOGE("Invalid SCSI sense buffer, length: %zu\n", len);
return SCSI_RES_ERR;
}
response_code = 0x7f & sense_buf[0];
if (response_code < 0x70 || response_code > 0x73) {
ALOGE("Invalid SCSI sense response code: %hhu\n", response_code);
return SCSI_RES_ERR;
}
if (response_code >= 0x72) {
/* descriptor format, SPC-6 4.4.2 */
if (len > 1) {
sense_key = 0xf & sense_buf[1];
}
if (len > 2) {
additional_sense_code = sense_buf[2];
}
if (len > 3) {
additional_sense_code_qualifier = sense_buf[3];
}
if (len > 7) {
additional_length = sense_buf[7];
}
} else {
/* fixed format, SPC-6 4.4.3 */
if (len > 2) {
sense_key = 0xf & sense_buf[2];
}
if (len > 7) {
additional_length = sense_buf[7];
}
if (len > 12) {
additional_sense_code = sense_buf[12];
}
if (len > 13) {
additional_sense_code_qualifier = sense_buf[13];
}
}
switch (sense_key) {
case NO_SENSE:
case 0x0f: /* COMPLETED, not present in kernel headers */
ALOGD("SCSI success with sense data: key=%hhu, asc=%hhu, ascq=%hhu\n", sense_key,
additional_sense_code, additional_sense_code_qualifier);
return SCSI_RES_OK;
case UNIT_ATTENTION:
ALOGD("UNIT ATTENTION with sense data: key=%hhu, asc=%hhu, ascq=%hhu\n", sense_key,
additional_sense_code, additional_sense_code_qualifier);
if (additional_sense_code == 0x29) {
/* POWER ON or RESET condition */
return SCSI_RES_RETRY;
}
/* treat this UNIT ATTENTION as an error if we don't recognize it */
break;
}
ALOGE("Unexpected SCSI sense data: key=%hhu, asc=%hhu, ascq=%hhu\n", sense_key,
additional_sense_code, additional_sense_code_qualifier);
log_buf(ANDROID_LOG_ERROR, "sense buffer: ", sense_buf, len);
return SCSI_RES_ERR;
}
static enum scsi_result check_sg_io_hdr(const sg_io_hdr_t* io_hdrp) {
if (io_hdrp->status == 0 && io_hdrp->host_status == 0 && io_hdrp->driver_status == 0) {
return SCSI_RES_OK;
}
if (io_hdrp->status & 0x01) {
ALOGE("SG_IO received unknown status, LSB is set: %hhu", io_hdrp->status);
}
if (io_hdrp->masked_status != GOOD && io_hdrp->sb_len_wr > 0) {
enum scsi_result scsi_res = check_scsi_sense(io_hdrp->sbp, io_hdrp->sb_len_wr);
if (scsi_res == SCSI_RES_RETRY) {
return SCSI_RES_RETRY;
} else if (scsi_res != SCSI_RES_OK) {
ALOGE("Unexpected SCSI sense. masked_status: %hhu, host_status: %hu, driver_status: "
"%hu\n",
io_hdrp->masked_status, io_hdrp->host_status, io_hdrp->driver_status);
return scsi_res;
}
}
switch (io_hdrp->masked_status) {
case GOOD:
break;
case CHECK_CONDITION:
/* handled by check_sg_sense above */
break;
default:
ALOGE("SG_IO failed with masked_status: %hhu, host_status: %hu, driver_status: %hu\n",
io_hdrp->masked_status, io_hdrp->host_status, io_hdrp->driver_status);
return SCSI_RES_ERR;
}
if (io_hdrp->host_status != 0) {
ALOGE("SG_IO failed with host_status: %hu, driver_status: %hu\n", io_hdrp->host_status,
io_hdrp->driver_status);
}
if (io_hdrp->resid != 0) {
ALOGE("SG_IO resid was non-zero: %d\n", io_hdrp->resid);
}
return SCSI_RES_ERR;
}
static int send_mmc_rpmb_req(int mmc_fd, const struct storage_rpmb_send_req* req) {
struct {
struct mmc_ioc_multi_cmd multi;
struct mmc_ioc_cmd cmd_buf[3];
} mmc = {};
struct mmc_ioc_cmd* cmd = mmc.multi.cmds;
int rc;
const uint8_t* write_buf = req->payload;
if (req->reliable_write_size) {
cmd->write_flag = MMC_WRITE_FLAG_RELW;
cmd->opcode = MMC_WRITE_MULTIPLE_BLOCK;
cmd->flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
cmd->blksz = MMC_BLOCK_SIZE;
cmd->blocks = req->reliable_write_size / MMC_BLOCK_SIZE;
mmc_ioc_cmd_set_data((*cmd), write_buf);
#ifdef RPMB_DEBUG
ALOGI("opcode: 0x%x, write_flag: 0x%x\n", cmd->opcode, cmd->write_flag);
log_buf(ANDROID_LOG_INFO, "request: ", write_buf, req->reliable_write_size);
#endif
write_buf += req->reliable_write_size;
mmc.multi.num_of_cmds++;
cmd++;
}
if (req->write_size) {
cmd->write_flag = MMC_WRITE_FLAG_W;
cmd->opcode = MMC_WRITE_MULTIPLE_BLOCK;
cmd->flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
cmd->blksz = MMC_BLOCK_SIZE;
cmd->blocks = req->write_size / MMC_BLOCK_SIZE;
mmc_ioc_cmd_set_data((*cmd), write_buf);
#ifdef RPMB_DEBUG
ALOGI("opcode: 0x%x, write_flag: 0x%x\n", cmd->opcode, cmd->write_flag);
log_buf(ANDROID_LOG_INFO, "request: ", write_buf, req->write_size);
#endif
write_buf += req->write_size;
mmc.multi.num_of_cmds++;
cmd++;
}
if (req->read_size) {
cmd->write_flag = MMC_WRITE_FLAG_R;
cmd->opcode = MMC_READ_MULTIPLE_BLOCK;
cmd->flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC, cmd->blksz = MMC_BLOCK_SIZE;
cmd->blocks = req->read_size / MMC_BLOCK_SIZE;
mmc_ioc_cmd_set_data((*cmd), read_buf);
#ifdef RPMB_DEBUG
ALOGI("opcode: 0x%x, write_flag: 0x%x\n", cmd->opcode, cmd->write_flag);
#endif
mmc.multi.num_of_cmds++;
cmd++;
}
rc = ioctl(mmc_fd, MMC_IOC_MULTI_CMD, &mmc.multi);
if (rc < 0) {
ALOGE("%s: mmc ioctl failed: %d, %s\n", __func__, rc, strerror(errno));
}
return rc;
}
static int send_ufs_rpmb_req(int sg_fd, const struct storage_rpmb_send_req* req) {
int rc;
int wl_rc;
const uint8_t* write_buf = req->payload;
/*
* Meaning of member values are stated on the definition of struct sec_proto_cdb.
*/
struct sec_proto_cdb in_cdb = {0xA2, 0xEC, 0x00, 0x01, 0x00, 0x00, 0, 0x00, 0x00};
struct sec_proto_cdb out_cdb = {0xB5, 0xEC, 0x00, 0x01, 0x00, 0x00, 0, 0x00, 0x00};
unsigned char sense_buffer[32];
bool is_request_write = req->reliable_write_size > 0;
wl_rc = acquire_wake_lock(PARTIAL_WAKE_LOCK, UFS_WAKE_LOCK_NAME);
if (wl_rc < 0) {
ALOGE("%s: failed to acquire wakelock: %d, %s\n", __func__, wl_rc, strerror(errno));
return wl_rc;
}
if (req->reliable_write_size) {
/* Prepare SECURITY PROTOCOL OUT command. */
sg_io_hdr_t io_hdr;
int retry_count = UFS_RPMB_WRITE_RETRY_COUNT;
do {
out_cdb.length = __builtin_bswap32(req->reliable_write_size);
set_sg_io_hdr(&io_hdr, SG_DXFER_TO_DEV, sizeof(out_cdb), sizeof(sense_buffer),
req->reliable_write_size, (void*)write_buf, (unsigned char*)&out_cdb,
sense_buffer);
rc = ioctl(sg_fd, SG_IO, &io_hdr);
if (rc < 0) {
ALOGE("%s: ufs ioctl failed: %d, %s\n", __func__, rc, strerror(errno));
goto err_op;
}
} while (check_sg_io_hdr(&io_hdr) == SCSI_RES_RETRY && retry_count-- > 0);
write_buf += req->reliable_write_size;
}
if (req->write_size) {
/* Prepare SECURITY PROTOCOL OUT command. */
sg_io_hdr_t io_hdr;
/*
* We don't retry write response request messages (is_request_write ==
* true) because a unit attention condition between the write and
* requesting a response means that the device was reset and we can't
* get a response to our original write. We can only retry this SG_IO
* call when it is the first call in our sequence.
*/
int retry_count = is_request_write ? 0 : UFS_RPMB_READ_RETRY_COUNT;
do {
out_cdb.length = __builtin_bswap32(req->write_size);
set_sg_io_hdr(&io_hdr, SG_DXFER_TO_DEV, sizeof(out_cdb), sizeof(sense_buffer),
req->write_size, (void*)write_buf, (unsigned char*)&out_cdb,
sense_buffer);
rc = ioctl(sg_fd, SG_IO, &io_hdr);
if (rc < 0) {
ALOGE("%s: ufs ioctl failed: %d, %s\n", __func__, rc, strerror(errno));
goto err_op;
}
} while (check_sg_io_hdr(&io_hdr) == SCSI_RES_RETRY && retry_count-- > 0);
write_buf += req->write_size;
}
if (req->read_size) {
/* Prepare SECURITY PROTOCOL IN command. */
in_cdb.length = __builtin_bswap32(req->read_size);
sg_io_hdr_t io_hdr;
set_sg_io_hdr(&io_hdr, SG_DXFER_FROM_DEV, sizeof(in_cdb), sizeof(sense_buffer),
req->read_size, read_buf, (unsigned char*)&in_cdb, sense_buffer);
rc = ioctl(sg_fd, SG_IO, &io_hdr);
if (rc < 0) {
ALOGE("%s: ufs ioctl failed: %d, %s\n", __func__, rc, strerror(errno));
}
check_sg_io_hdr(&io_hdr);
}
err_op:
wl_rc = release_wake_lock(UFS_WAKE_LOCK_NAME);
if (wl_rc < 0) {
ALOGE("%s: failed to release wakelock: %d, %s\n", __func__, wl_rc, strerror(errno));
}
return rc;
}
static int send_virt_rpmb_req(int rpmb_fd, void* read_buf, size_t read_size, const void* payload,
size_t payload_size) {
int rc;
uint16_t res_count = read_size / MMC_BLOCK_SIZE;
uint16_t cmd_count = payload_size / MMC_BLOCK_SIZE;
rc = write(rpmb_fd, &res_count, sizeof(res_count));
if (rc < 0) {
return rc;
}
rc = write(rpmb_fd, &cmd_count, sizeof(cmd_count));
if (rc < 0) {
return rc;
}
rc = write(rpmb_fd, payload, payload_size);
if (rc < 0) {
return rc;
}
rc = read(rpmb_fd, read_buf, read_size);
return rc;
}
int rpmb_send(struct storage_msg* msg, const void* r, size_t req_len) {
int rc;
const struct storage_rpmb_send_req* req = r;
if (req_len < sizeof(*req)) {
ALOGW("malformed rpmb request: invalid length (%zu < %zu)\n", req_len, sizeof(*req));
msg->result = STORAGE_ERR_NOT_VALID;
goto err_response;
}
size_t expected_len = sizeof(*req) + req->reliable_write_size + req->write_size;
if (req_len != expected_len) {
ALOGW("malformed rpmb request: invalid length (%zu != %zu)\n", req_len, expected_len);
msg->result = STORAGE_ERR_NOT_VALID;
goto err_response;
}
if ((req->reliable_write_size % MMC_BLOCK_SIZE) != 0) {
ALOGW("invalid reliable write size %u\n", req->reliable_write_size);
msg->result = STORAGE_ERR_NOT_VALID;
goto err_response;
}
if ((req->write_size % MMC_BLOCK_SIZE) != 0) {
ALOGW("invalid write size %u\n", req->write_size);
msg->result = STORAGE_ERR_NOT_VALID;
goto err_response;
}
if (req->read_size % MMC_BLOCK_SIZE != 0 || req->read_size > sizeof(read_buf)) {
ALOGE("%s: invalid read size %u\n", __func__, req->read_size);
msg->result = STORAGE_ERR_NOT_VALID;
goto err_response;
}
if (dev_type == MMC_RPMB) {
rc = send_mmc_rpmb_req(rpmb_fd, req);
if (rc < 0) {
msg->result = STORAGE_ERR_GENERIC;
goto err_response;
}
} else if (dev_type == UFS_RPMB) {
rc = send_ufs_rpmb_req(rpmb_fd, req);
if (rc < 0) {
ALOGE("send_ufs_rpmb_req failed: %d, %s\n", rc, strerror(errno));
msg->result = STORAGE_ERR_GENERIC;
goto err_response;
}
} else if ((dev_type == VIRT_RPMB) || (dev_type == SOCK_RPMB)) {
size_t payload_size = req->reliable_write_size + req->write_size;
rc = send_virt_rpmb_req(rpmb_fd, read_buf, req->read_size, req->payload, payload_size);
if (rc < 0) {
ALOGE("send_virt_rpmb_req failed: %d, %s\n", rc, strerror(errno));
msg->result = STORAGE_ERR_GENERIC;
goto err_response;
}
if (rc != req->read_size) {
ALOGE("send_virt_rpmb_req got incomplete response: "
"(size %d, expected %d)\n",
rc, req->read_size);
msg->result = STORAGE_ERR_GENERIC;
goto err_response;
}
} else {
ALOGE("Unsupported dev_type\n");
msg->result = STORAGE_ERR_GENERIC;
goto err_response;
}
#ifdef RPMB_DEBUG
if (req->read_size) log_buf(ANDROID_LOG_INFO, "response: ", read_buf, req->read_size);
#endif
if (msg->flags & STORAGE_MSG_FLAG_POST_COMMIT) {
/*
* Nothing todo for post msg commit request as MMC_IOC_MULTI_CMD
* is fully synchronous in this implementation.
*/
}
msg->result = STORAGE_NO_ERROR;
return ipc_respond(msg, read_buf, req->read_size);
err_response:
return ipc_respond(msg, NULL, 0);
}
int rpmb_open(const char* rpmb_devname, enum dev_type open_dev_type) {
int rc, sg_version_num;
dev_type = open_dev_type;
if (dev_type != SOCK_RPMB) {
rc = open(rpmb_devname, O_RDWR, 0);
if (rc < 0) {
ALOGE("unable (%d) to open rpmb device '%s': %s\n", errno, rpmb_devname, strerror(errno));
return rc;
}
rpmb_fd = rc;
/* For UFS, it is prudent to check we have a sg device by calling an ioctl */
if (dev_type == UFS_RPMB) {
if ((ioctl(rpmb_fd, SG_GET_VERSION_NUM, &sg_version_num) < 0) ||
(sg_version_num < RPMB_MIN_SG_VERSION_NUM)) {
ALOGE("%s is not a sg device, or old sg driver\n", rpmb_devname);
return -1;
}
}
} else {
struct sockaddr_un unaddr;
struct sockaddr *addr = (struct sockaddr *)&unaddr;
rc = socket(AF_UNIX, SOCK_STREAM, 0);
if (rc < 0) {
ALOGE("unable (%d) to create socket: %s\n", errno, strerror(errno));
return rc;
}
rpmb_fd = rc;
memset(&unaddr, 0, sizeof(unaddr));
unaddr.sun_family = AF_UNIX;
// TODO if it overflowed, bail rather than connecting?
strncpy(unaddr.sun_path, rpmb_devname, sizeof(unaddr.sun_path)-1);
rc = connect(rpmb_fd, addr, sizeof(unaddr));
if (rc < 0) {
ALOGE("unable (%d) to connect to rpmb socket '%s': %s\n", errno, rpmb_devname, strerror(errno));
return rc;
}
}
return 0;
}
void rpmb_close(void) {
close(rpmb_fd);
rpmb_fd = -1;
}