blob: 45833e121a2d0da456069b4b7fb505185414587e [file] [log] [blame]
//
// Copyright (C) 2020 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <android-base/file.h>
#include <android-base/logging.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <gflags/gflags.h>
#include <libsnapshot/cow_writer.h>
#include <openssl/sha.h>
#include <sparse/sparse.h>
#include <ziparchive/zip_archive.h>
DEFINE_string(source_tf, "", "Source target files (dir or zip file)");
DEFINE_string(ota_tf, "", "Target files of the build for an OTA");
DEFINE_string(compression, "gz", "Compression (options: none, gz, brotli)");
namespace android {
namespace snapshot {
using android::base::borrowed_fd;
using android::base::unique_fd;
static constexpr size_t kBlockSize = 4096;
void MyLogger(android::base::LogId, android::base::LogSeverity severity, const char*, const char*,
unsigned int, const char* message) {
if (severity == android::base::ERROR) {
fprintf(stderr, "%s\n", message);
} else {
fprintf(stdout, "%s\n", message);
}
}
class TargetFilesPackage final {
public:
explicit TargetFilesPackage(const std::string& path);
bool Open();
bool HasFile(const std::string& path);
std::unordered_set<std::string> GetDynamicPartitionNames();
unique_fd OpenFile(const std::string& path);
unique_fd OpenImage(const std::string& path);
private:
std::string path_;
unique_fd fd_;
std::unique_ptr<ZipArchive, decltype(&CloseArchive)> zip_;
};
TargetFilesPackage::TargetFilesPackage(const std::string& path)
: path_(path), zip_(nullptr, &CloseArchive) {}
bool TargetFilesPackage::Open() {
fd_.reset(open(path_.c_str(), O_RDONLY));
if (fd_ < 0) {
PLOG(ERROR) << "open failed: " << path_;
return false;
}
struct stat s;
if (fstat(fd_.get(), &s) < 0) {
PLOG(ERROR) << "fstat failed: " << path_;
return false;
}
if (S_ISDIR(s.st_mode)) {
return true;
}
// Otherwise, assume it's a zip file.
ZipArchiveHandle handle;
if (OpenArchiveFd(fd_.get(), path_.c_str(), &handle, false)) {
LOG(ERROR) << "Could not open " << path_ << " as a zip archive.";
return false;
}
zip_.reset(handle);
return true;
}
bool TargetFilesPackage::HasFile(const std::string& path) {
if (zip_) {
ZipEntry64 entry;
return !FindEntry(zip_.get(), path, &entry);
}
auto full_path = path_ + "/" + path;
return access(full_path.c_str(), F_OK) == 0;
}
unique_fd TargetFilesPackage::OpenFile(const std::string& path) {
if (!zip_) {
auto full_path = path_ + "/" + path;
unique_fd fd(open(full_path.c_str(), O_RDONLY));
if (fd < 0) {
PLOG(ERROR) << "open failed: " << full_path;
return {};
}
return fd;
}
ZipEntry64 entry;
if (FindEntry(zip_.get(), path, &entry)) {
LOG(ERROR) << path << " not found in archive: " << path_;
return {};
}
TemporaryFile temp;
if (temp.fd < 0) {
PLOG(ERROR) << "mkstemp failed";
return {};
}
LOG(INFO) << "Extracting " << path << " from " << path_ << " ...";
if (ExtractEntryToFile(zip_.get(), &entry, temp.fd)) {
LOG(ERROR) << "could not extract " << path << " from " << path_;
return {};
}
if (lseek(temp.fd, 0, SEEK_SET) < 0) {
PLOG(ERROR) << "lseek failed";
return {};
}
return unique_fd{temp.release()};
}
unique_fd TargetFilesPackage::OpenImage(const std::string& path) {
auto fd = OpenFile(path);
if (fd < 0) {
return {};
}
LOG(INFO) << "Unsparsing " << path << " ...";
std::unique_ptr<struct sparse_file, decltype(&sparse_file_destroy)> s(
sparse_file_import(fd.get(), false, false), &sparse_file_destroy);
if (!s) {
return fd;
}
TemporaryFile temp;
if (temp.fd < 0) {
PLOG(ERROR) << "mkstemp failed";
return {};
}
if (sparse_file_write(s.get(), temp.fd, false, false, false) < 0) {
LOG(ERROR) << "sparse_file_write failed";
return {};
}
if (lseek(temp.fd, 0, SEEK_SET) < 0) {
PLOG(ERROR) << "lseek failed";
return {};
}
fd.reset(temp.release());
return fd;
}
std::unordered_set<std::string> TargetFilesPackage::GetDynamicPartitionNames() {
auto fd = OpenFile("META/misc_info.txt");
if (fd < 0) {
return {};
}
std::string contents;
if (!android::base::ReadFdToString(fd, &contents)) {
PLOG(ERROR) << "read failed";
return {};
}
std::unordered_set<std::string> set;
auto lines = android::base::Split(contents, "\n");
for (const auto& line : lines) {
auto parts = android::base::Split(line, "=");
if (parts.size() == 2 && parts[0] == "dynamic_partition_list") {
auto partitions = android::base::Split(parts[1], " ");
for (const auto& name : partitions) {
if (!name.empty()) {
set.emplace(name);
}
}
break;
}
}
return set;
}
class NonAbEstimator final {
public:
NonAbEstimator(const std::string& ota_tf_path, const std::string& source_tf_path)
: ota_tf_path_(ota_tf_path), source_tf_path_(source_tf_path) {}
bool Run();
private:
bool OpenPackages();
bool AnalyzePartition(const std::string& partition_name);
std::unordered_map<std::string, uint64_t> GetBlockMap(borrowed_fd fd);
std::string ota_tf_path_;
std::string source_tf_path_;
std::unique_ptr<TargetFilesPackage> ota_tf_;
std::unique_ptr<TargetFilesPackage> source_tf_;
uint64_t size_ = 0;
};
bool NonAbEstimator::Run() {
if (!OpenPackages()) {
return false;
}
auto partitions = ota_tf_->GetDynamicPartitionNames();
if (partitions.empty()) {
LOG(ERROR) << "No dynamic partitions found in META/misc_info.txt";
return false;
}
for (const auto& partition : partitions) {
if (!AnalyzePartition(partition)) {
return false;
}
}
int64_t size_in_mb = int64_t(double(size_) / 1024.0 / 1024.0);
std::cout << "Estimated COW size: " << size_ << " (" << size_in_mb << "MiB)\n";
return true;
}
bool NonAbEstimator::OpenPackages() {
ota_tf_ = std::make_unique<TargetFilesPackage>(ota_tf_path_);
if (!ota_tf_->Open()) {
return false;
}
if (!source_tf_path_.empty()) {
source_tf_ = std::make_unique<TargetFilesPackage>(source_tf_path_);
if (!source_tf_->Open()) {
return false;
}
}
return true;
}
static std::string SHA256(const std::string& input) {
std::string hash(32, '\0');
SHA256_CTX c;
SHA256_Init(&c);
SHA256_Update(&c, input.data(), input.size());
SHA256_Final(reinterpret_cast<unsigned char*>(hash.data()), &c);
return hash;
}
bool NonAbEstimator::AnalyzePartition(const std::string& partition_name) {
auto path = "IMAGES/" + partition_name + ".img";
auto fd = ota_tf_->OpenImage(path);
if (fd < 0) {
return false;
}
unique_fd source_fd;
uint64_t source_size = 0;
std::unordered_map<std::string, uint64_t> source_blocks;
if (source_tf_) {
auto dap = source_tf_->GetDynamicPartitionNames();
source_fd = source_tf_->OpenImage(path);
if (source_fd >= 0) {
struct stat s;
if (fstat(source_fd.get(), &s)) {
PLOG(ERROR) << "fstat failed";
return false;
}
source_size = s.st_size;
std::cout << "Hashing blocks for " << partition_name << "...\n";
source_blocks = GetBlockMap(source_fd);
if (source_blocks.empty()) {
LOG(ERROR) << "Could not build a block map for source partition: "
<< partition_name;
return false;
}
} else {
if (dap.count(partition_name)) {
return false;
}
LOG(ERROR) << "Warning: " << partition_name
<< " has no incremental diff since it's not in the source image.";
}
}
TemporaryFile cow;
if (cow.fd < 0) {
PLOG(ERROR) << "mkstemp failed";
return false;
}
CowOptions options;
options.block_size = kBlockSize;
options.compression = FLAGS_compression;
auto writer = std::make_unique<CowWriter>(options);
if (!writer->Initialize(borrowed_fd{cow.fd})) {
LOG(ERROR) << "Could not initialize COW writer";
return false;
}
LOG(INFO) << "Analyzing " << partition_name << " ...";
std::string zeroes(kBlockSize, '\0');
std::string chunk(kBlockSize, '\0');
std::string src_chunk(kBlockSize, '\0');
uint64_t next_block_number = 0;
while (true) {
if (!android::base::ReadFully(fd, chunk.data(), chunk.size())) {
if (errno) {
PLOG(ERROR) << "read failed";
return false;
}
break;
}
uint64_t block_number = next_block_number++;
if (chunk == zeroes) {
if (!writer->AddZeroBlocks(block_number, 1)) {
LOG(ERROR) << "Could not add zero block";
return false;
}
continue;
}
uint64_t source_offset = block_number * kBlockSize;
if (source_fd >= 0 && source_offset <= source_size) {
off64_t offset = block_number * kBlockSize;
if (android::base::ReadFullyAtOffset(source_fd, src_chunk.data(), src_chunk.size(),
offset)) {
if (chunk == src_chunk) {
continue;
}
} else if (errno) {
PLOG(ERROR) << "pread failed";
return false;
}
}
auto hash = SHA256(chunk);
if (auto iter = source_blocks.find(hash); iter != source_blocks.end()) {
if (!writer->AddCopy(block_number, iter->second)) {
return false;
}
continue;
}
if (!writer->AddRawBlocks(block_number, chunk.data(), chunk.size())) {
return false;
}
}
if (!writer->Finalize()) {
return false;
}
struct stat s;
if (fstat(cow.fd, &s) < 0) {
PLOG(ERROR) << "fstat failed";
return false;
}
size_ += s.st_size;
return true;
}
std::unordered_map<std::string, uint64_t> NonAbEstimator::GetBlockMap(borrowed_fd fd) {
std::string chunk(kBlockSize, '\0');
std::unordered_map<std::string, uint64_t> block_map;
uint64_t block_number = 0;
while (true) {
if (!android::base::ReadFully(fd, chunk.data(), chunk.size())) {
if (errno) {
PLOG(ERROR) << "read failed";
return {};
}
break;
}
auto hash = SHA256(chunk);
block_map[hash] = block_number;
block_number++;
}
return block_map;
}
} // namespace snapshot
} // namespace android
using namespace android::snapshot;
int main(int argc, char** argv) {
android::base::InitLogging(argv, android::snapshot::MyLogger);
gflags::SetUsageMessage("Estimate VAB disk usage from Non A/B builds");
gflags::ParseCommandLineFlags(&argc, &argv, false);
if (FLAGS_ota_tf.empty()) {
std::cerr << "Must specify -ota_tf on the command-line." << std::endl;
return 1;
}
NonAbEstimator estimator(FLAGS_ota_tf, FLAGS_source_tf);
if (!estimator.Run()) {
return 1;
}
return 0;
}