blob: 9fdc24c8bc1d671e206c1efcd3b46c59ab31d213 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define TRACE_TAG TRACE_SYSDEPS
#include "sysdeps.h"
#include <winsock2.h> /* winsock.h *must* be included before windows.h. */
#include <windows.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <memory>
#include <string>
#include <cutils/sockets.h>
#include <base/logging.h>
#include <base/stringprintf.h>
#include <base/strings.h>
#include "adb.h"
extern void fatal(const char *fmt, ...);
/* forward declarations */
typedef const struct FHClassRec_* FHClass;
typedef struct FHRec_* FH;
typedef struct EventHookRec_* EventHook;
typedef struct FHClassRec_ {
void (*_fh_init)(FH);
int (*_fh_close)(FH);
int (*_fh_lseek)(FH, int, int);
int (*_fh_read)(FH, void*, int);
int (*_fh_write)(FH, const void*, int);
void (*_fh_hook)(FH, int, EventHook);
} FHClassRec;
static void _fh_file_init(FH);
static int _fh_file_close(FH);
static int _fh_file_lseek(FH, int, int);
static int _fh_file_read(FH, void*, int);
static int _fh_file_write(FH, const void*, int);
static void _fh_file_hook(FH, int, EventHook);
static const FHClassRec _fh_file_class = {
_fh_file_init,
_fh_file_close,
_fh_file_lseek,
_fh_file_read,
_fh_file_write,
_fh_file_hook
};
static void _fh_socket_init(FH);
static int _fh_socket_close(FH);
static int _fh_socket_lseek(FH, int, int);
static int _fh_socket_read(FH, void*, int);
static int _fh_socket_write(FH, const void*, int);
static void _fh_socket_hook(FH, int, EventHook);
static const FHClassRec _fh_socket_class = {
_fh_socket_init,
_fh_socket_close,
_fh_socket_lseek,
_fh_socket_read,
_fh_socket_write,
_fh_socket_hook
};
#define assert(cond) do { if (!(cond)) fatal( "assertion failed '%s' on %s:%ld\n", #cond, __FILE__, __LINE__ ); } while (0)
std::string SystemErrorCodeToString(const DWORD error_code) {
const int kErrorMessageBufferSize = 256;
char msgbuf[kErrorMessageBufferSize];
DWORD flags = FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS;
DWORD len = FormatMessageA(flags, nullptr, error_code, 0, msgbuf,
arraysize(msgbuf), nullptr);
if (len == 0) {
return android::base::StringPrintf(
"Error (%lu) while retrieving error. (%lu)", GetLastError(),
error_code);
}
std::string msg(msgbuf);
// Messages returned by the system end with line breaks.
msg = android::base::Trim(msg);
// There are many Windows error messages compared to POSIX, so include the
// numeric error code for easier, quicker, accurate identification. Use
// decimal instead of hex because there are decimal ranges like 10000-11999
// for Winsock.
android::base::StringAppendF(&msg, " (%lu)", error_code);
return msg;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** replaces libs/cutils/load_file.c *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
void *load_file(const char *fn, unsigned *_sz)
{
HANDLE file;
char *data;
DWORD file_size;
file = CreateFile( fn,
GENERIC_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
0,
NULL );
if (file == INVALID_HANDLE_VALUE)
return NULL;
file_size = GetFileSize( file, NULL );
data = NULL;
if (file_size > 0) {
data = (char*) malloc( file_size + 1 );
if (data == NULL) {
D("load_file: could not allocate %ld bytes\n", file_size );
file_size = 0;
} else {
DWORD out_bytes;
if ( !ReadFile( file, data, file_size, &out_bytes, NULL ) ||
out_bytes != file_size )
{
D("load_file: could not read %ld bytes from '%s'\n", file_size, fn);
free(data);
data = NULL;
file_size = 0;
}
}
}
CloseHandle( file );
*_sz = (unsigned) file_size;
return data;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** common file descriptor handling *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
/* used to emulate unix-domain socket pairs */
typedef struct SocketPairRec_* SocketPair;
typedef struct FHRec_
{
FHClass clazz;
int used;
int eof;
union {
HANDLE handle;
SOCKET socket;
SocketPair pair;
} u;
HANDLE event;
int mask;
char name[32];
} FHRec;
#define fh_handle u.handle
#define fh_socket u.socket
#define fh_pair u.pair
#define WIN32_FH_BASE 100
#define WIN32_MAX_FHS 128
static adb_mutex_t _win32_lock;
static FHRec _win32_fhs[ WIN32_MAX_FHS ];
static int _win32_fh_count;
static FH
_fh_from_int( int fd, const char* func )
{
FH f;
fd -= WIN32_FH_BASE;
if (fd < 0 || fd >= _win32_fh_count) {
D( "_fh_from_int: invalid fd %d passed to %s\n", fd + WIN32_FH_BASE,
func );
errno = EBADF;
return NULL;
}
f = &_win32_fhs[fd];
if (f->used == 0) {
D( "_fh_from_int: invalid fd %d passed to %s\n", fd + WIN32_FH_BASE,
func );
errno = EBADF;
return NULL;
}
return f;
}
static int
_fh_to_int( FH f )
{
if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
return (int)(f - _win32_fhs) + WIN32_FH_BASE;
return -1;
}
static FH
_fh_alloc( FHClass clazz )
{
int nn;
FH f = NULL;
adb_mutex_lock( &_win32_lock );
if (_win32_fh_count < WIN32_MAX_FHS) {
f = &_win32_fhs[ _win32_fh_count++ ];
goto Exit;
}
for (nn = 0; nn < WIN32_MAX_FHS; nn++) {
if ( _win32_fhs[nn].clazz == NULL) {
f = &_win32_fhs[nn];
goto Exit;
}
}
D( "_fh_alloc: no more free file descriptors\n" );
Exit:
if (f) {
f->clazz = clazz;
f->used = 1;
f->eof = 0;
clazz->_fh_init(f);
}
adb_mutex_unlock( &_win32_lock );
return f;
}
static int
_fh_close( FH f )
{
if ( f->used ) {
f->clazz->_fh_close( f );
f->used = 0;
f->eof = 0;
f->clazz = NULL;
}
return 0;
}
// Deleter for unique_fh.
class fh_deleter {
public:
void operator()(struct FHRec_* fh) {
// We're called from a destructor and destructors should not overwrite
// errno because callers may do:
// errno = EBLAH;
// return -1; // calls destructor, which should not overwrite errno
const int saved_errno = errno;
_fh_close(fh);
errno = saved_errno;
}
};
// Like std::unique_ptr, but calls _fh_close() instead of operator delete().
typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh;
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** file-based descriptor handling *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
static void _fh_file_init( FH f ) {
f->fh_handle = INVALID_HANDLE_VALUE;
}
static int _fh_file_close( FH f ) {
CloseHandle( f->fh_handle );
f->fh_handle = INVALID_HANDLE_VALUE;
return 0;
}
static int _fh_file_read( FH f, void* buf, int len ) {
DWORD read_bytes;
if ( !ReadFile( f->fh_handle, buf, (DWORD)len, &read_bytes, NULL ) ) {
D( "adb_read: could not read %d bytes from %s\n", len, f->name );
errno = EIO;
return -1;
} else if (read_bytes < (DWORD)len) {
f->eof = 1;
}
return (int)read_bytes;
}
static int _fh_file_write( FH f, const void* buf, int len ) {
DWORD wrote_bytes;
if ( !WriteFile( f->fh_handle, buf, (DWORD)len, &wrote_bytes, NULL ) ) {
D( "adb_file_write: could not write %d bytes from %s\n", len, f->name );
errno = EIO;
return -1;
} else if (wrote_bytes < (DWORD)len) {
f->eof = 1;
}
return (int)wrote_bytes;
}
static int _fh_file_lseek( FH f, int pos, int origin ) {
DWORD method;
DWORD result;
switch (origin)
{
case SEEK_SET: method = FILE_BEGIN; break;
case SEEK_CUR: method = FILE_CURRENT; break;
case SEEK_END: method = FILE_END; break;
default:
errno = EINVAL;
return -1;
}
result = SetFilePointer( f->fh_handle, pos, NULL, method );
if (result == INVALID_SET_FILE_POINTER) {
errno = EIO;
return -1;
} else {
f->eof = 0;
}
return (int)result;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** file-based descriptor handling *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
int adb_open(const char* path, int options)
{
FH f;
DWORD desiredAccess = 0;
DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
switch (options) {
case O_RDONLY:
desiredAccess = GENERIC_READ;
break;
case O_WRONLY:
desiredAccess = GENERIC_WRITE;
break;
case O_RDWR:
desiredAccess = GENERIC_READ | GENERIC_WRITE;
break;
default:
D("adb_open: invalid options (0x%0x)\n", options);
errno = EINVAL;
return -1;
}
f = _fh_alloc( &_fh_file_class );
if ( !f ) {
errno = ENOMEM;
return -1;
}
f->fh_handle = CreateFile( path, desiredAccess, shareMode, NULL, OPEN_EXISTING,
0, NULL );
if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
const DWORD err = GetLastError();
_fh_close(f);
D( "adb_open: could not open '%s': ", path );
switch (err) {
case ERROR_FILE_NOT_FOUND:
D( "file not found\n" );
errno = ENOENT;
return -1;
case ERROR_PATH_NOT_FOUND:
D( "path not found\n" );
errno = ENOTDIR;
return -1;
default:
D( "unknown error: %ld\n", err );
errno = ENOENT;
return -1;
}
}
snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
D( "adb_open: '%s' => fd %d\n", path, _fh_to_int(f) );
return _fh_to_int(f);
}
/* ignore mode on Win32 */
int adb_creat(const char* path, int mode)
{
FH f;
f = _fh_alloc( &_fh_file_class );
if ( !f ) {
errno = ENOMEM;
return -1;
}
f->fh_handle = CreateFile( path, GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL,
NULL );
if ( f->fh_handle == INVALID_HANDLE_VALUE ) {
const DWORD err = GetLastError();
_fh_close(f);
D( "adb_creat: could not open '%s': ", path );
switch (err) {
case ERROR_FILE_NOT_FOUND:
D( "file not found\n" );
errno = ENOENT;
return -1;
case ERROR_PATH_NOT_FOUND:
D( "path not found\n" );
errno = ENOTDIR;
return -1;
default:
D( "unknown error: %ld\n", err );
errno = ENOENT;
return -1;
}
}
snprintf( f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path );
D( "adb_creat: '%s' => fd %d\n", path, _fh_to_int(f) );
return _fh_to_int(f);
}
int adb_read(int fd, void* buf, int len)
{
FH f = _fh_from_int(fd, __func__);
if (f == NULL) {
return -1;
}
return f->clazz->_fh_read( f, buf, len );
}
int adb_write(int fd, const void* buf, int len)
{
FH f = _fh_from_int(fd, __func__);
if (f == NULL) {
return -1;
}
return f->clazz->_fh_write(f, buf, len);
}
int adb_lseek(int fd, int pos, int where)
{
FH f = _fh_from_int(fd, __func__);
if (!f) {
return -1;
}
return f->clazz->_fh_lseek(f, pos, where);
}
int adb_close(int fd)
{
FH f = _fh_from_int(fd, __func__);
if (!f) {
return -1;
}
D( "adb_close: %s\n", f->name);
_fh_close(f);
return 0;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** socket-based file descriptors *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
#undef setsockopt
static void _socket_set_errno( const DWORD err ) {
// The Windows C Runtime (MSVCRT.DLL) strerror() does not support a lot of
// POSIX and socket error codes, so this can only meaningfully map so much.
switch ( err ) {
case 0: errno = 0; break;
case WSAEWOULDBLOCK: errno = EAGAIN; break;
case WSAEINTR: errno = EINTR; break;
case WSAEFAULT: errno = EFAULT; break;
case WSAEINVAL: errno = EINVAL; break;
case WSAEMFILE: errno = EMFILE; break;
default:
errno = EINVAL;
D( "_socket_set_errno: mapping Windows error code %lu to errno %d\n",
err, errno );
}
}
static void _fh_socket_init( FH f ) {
f->fh_socket = INVALID_SOCKET;
f->event = WSACreateEvent();
if (f->event == WSA_INVALID_EVENT) {
D("WSACreateEvent failed: %s\n",
SystemErrorCodeToString(WSAGetLastError()).c_str());
// _event_socket_start assumes that this field is INVALID_HANDLE_VALUE
// on failure, instead of NULL which is what Windows really returns on
// error. It might be better to change all the other code to look for
// NULL, but that is a much riskier change.
f->event = INVALID_HANDLE_VALUE;
}
f->mask = 0;
}
static int _fh_socket_close( FH f ) {
if (f->fh_socket != INVALID_SOCKET) {
/* gently tell any peer that we're closing the socket */
if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
// If the socket is not connected, this returns an error. We want to
// minimize logging spam, so don't log these errors for now.
#if 0
D("socket shutdown failed: %s\n",
SystemErrorCodeToString(WSAGetLastError()).c_str());
#endif
}
if (closesocket(f->fh_socket) == SOCKET_ERROR) {
D("closesocket failed: %s\n",
SystemErrorCodeToString(WSAGetLastError()).c_str());
}
f->fh_socket = INVALID_SOCKET;
}
if (f->event != NULL) {
if (!CloseHandle(f->event)) {
D("CloseHandle failed: %s\n",
SystemErrorCodeToString(GetLastError()).c_str());
}
f->event = NULL;
}
f->mask = 0;
return 0;
}
static int _fh_socket_lseek( FH f, int pos, int origin ) {
errno = EPIPE;
return -1;
}
static int _fh_socket_read(FH f, void* buf, int len) {
int result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
if (result == SOCKET_ERROR) {
const DWORD err = WSAGetLastError();
D("recv fd %d failed: %s\n", _fh_to_int(f),
SystemErrorCodeToString(err).c_str());
_socket_set_errno(err);
result = -1;
}
return result;
}
static int _fh_socket_write(FH f, const void* buf, int len) {
int result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
if (result == SOCKET_ERROR) {
const DWORD err = WSAGetLastError();
D("send fd %d failed: %s\n", _fh_to_int(f),
SystemErrorCodeToString(err).c_str());
_socket_set_errno(err);
result = -1;
}
return result;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** replacement for libs/cutils/socket_xxxx.c *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
#include <winsock2.h>
static int _winsock_init;
static void
_cleanup_winsock( void )
{
// TODO: WSAStartup() might be called multiple times and this won't properly
// cleanup the right number of times. Plus, WSACleanup() probably doesn't
// make sense since it might interrupt other threads using Winsock (since
// our various threads are not explicitly cleanly shutdown at process exit).
WSACleanup();
}
static void
_init_winsock( void )
{
// TODO: Multiple threads calling this may potentially cause multiple calls
// to WSAStartup() and multiple atexit() calls.
if (!_winsock_init) {
WSADATA wsaData;
int rc = WSAStartup( MAKEWORD(2,2), &wsaData);
if (rc != 0) {
fatal( "adb: could not initialize Winsock: %s",
SystemErrorCodeToString( rc ).c_str());
}
atexit( _cleanup_winsock );
_winsock_init = 1;
}
}
int network_loopback_client(int port, int type, std::string* error) {
struct sockaddr_in addr;
SOCKET s;
unique_fh f(_fh_alloc(&_fh_socket_class));
if (!f) {
*error = strerror(errno);
return -1;
}
if (!_winsock_init)
_init_winsock();
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
s = socket(AF_INET, type, 0);
if(s == INVALID_SOCKET) {
*error = SystemErrorCodeToString(WSAGetLastError());
D("could not create socket: %s\n", error->c_str());
return -1;
}
f->fh_socket = s;
if(connect(s, (struct sockaddr *) &addr, sizeof(addr)) == SOCKET_ERROR) {
*error = SystemErrorCodeToString(WSAGetLastError());
D("could not connect to %s:%d: %s\n",
type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
return -1;
}
const int fd = _fh_to_int(f.get());
snprintf( f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd,
type != SOCK_STREAM ? "udp:" : "", port );
D( "port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp",
fd );
f.release();
return fd;
}
#define LISTEN_BACKLOG 4
// interface_address is INADDR_LOOPBACK or INADDR_ANY.
static int _network_server(int port, int type, u_long interface_address,
std::string* error) {
struct sockaddr_in addr;
SOCKET s;
int n;
unique_fh f(_fh_alloc(&_fh_socket_class));
if (!f) {
*error = strerror(errno);
return -1;
}
if (!_winsock_init)
_init_winsock();
memset(&addr, 0, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = htonl(interface_address);
// TODO: Consider using dual-stack socket that can simultaneously listen on
// IPv4 and IPv6.
s = socket(AF_INET, type, 0);
if (s == INVALID_SOCKET) {
*error = SystemErrorCodeToString(WSAGetLastError());
D("could not create socket: %s\n", error->c_str());
return -1;
}
f->fh_socket = s;
n = 1;
if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n,
sizeof(n)) == SOCKET_ERROR) {
*error = SystemErrorCodeToString(WSAGetLastError());
D("setsockopt level %d optname %d failed: %s\n",
SOL_SOCKET, SO_EXCLUSIVEADDRUSE, error->c_str());
return -1;
}
if(bind(s, (struct sockaddr *) &addr, sizeof(addr)) == SOCKET_ERROR) {
*error = SystemErrorCodeToString(WSAGetLastError());
D("could not bind to %s:%d: %s\n",
type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
return -1;
}
if (type == SOCK_STREAM) {
if (listen(s, LISTEN_BACKLOG) == SOCKET_ERROR) {
*error = SystemErrorCodeToString(WSAGetLastError());
D("could not listen on %s:%d: %s\n",
type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
return -1;
}
}
const int fd = _fh_to_int(f.get());
snprintf( f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd,
interface_address == INADDR_LOOPBACK ? "lo" : "any",
type != SOCK_STREAM ? "udp:" : "", port );
D( "port %d type %s => fd %d\n", port, type != SOCK_STREAM ? "udp" : "tcp",
fd );
f.release();
return fd;
}
int network_loopback_server(int port, int type, std::string* error) {
return _network_server(port, type, INADDR_LOOPBACK, error);
}
int network_inaddr_any_server(int port, int type, std::string* error) {
return _network_server(port, type, INADDR_ANY, error);
}
int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) {
unique_fh f(_fh_alloc(&_fh_socket_class));
if (!f) {
*error = strerror(errno);
return -1;
}
if (!_winsock_init) _init_winsock();
struct addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = type;
char port_str[16];
snprintf(port_str, sizeof(port_str), "%d", port);
struct addrinfo* addrinfo_ptr = nullptr;
if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) {
*error = SystemErrorCodeToString(WSAGetLastError());
D("could not resolve host '%s' and port %s: %s\n", host.c_str(),
port_str, error->c_str());
return -1;
}
std::unique_ptr<struct addrinfo, decltype(freeaddrinfo)*>
addrinfo(addrinfo_ptr, freeaddrinfo);
addrinfo_ptr = nullptr;
// TODO: Try all the addresses if there's more than one? This just uses
// the first. Or, could call WSAConnectByName() (Windows Vista and newer)
// which tries all addresses, takes a timeout and more.
SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype,
addrinfo->ai_protocol);
if(s == INVALID_SOCKET) {
*error = SystemErrorCodeToString(WSAGetLastError());
D("could not create socket: %s\n", error->c_str());
return -1;
}
f->fh_socket = s;
// TODO: Implement timeouts for Windows. Seems like the default in theory
// (according to http://serverfault.com/a/671453) and in practice is 21 sec.
if(connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) {
*error = SystemErrorCodeToString(WSAGetLastError());
D("could not connect to %s:%s:%s: %s\n",
type != SOCK_STREAM ? "udp" : "tcp", host.c_str(), port_str,
error->c_str());
return -1;
}
const int fd = _fh_to_int(f.get());
snprintf( f->name, sizeof(f->name), "%d(net-client:%s%d)", fd,
type != SOCK_STREAM ? "udp:" : "", port );
D( "host '%s' port %d type %s => fd %d\n", host.c_str(), port,
type != SOCK_STREAM ? "udp" : "tcp", fd );
f.release();
return fd;
}
#undef accept
int adb_socket_accept(int serverfd, struct sockaddr* addr, socklen_t *addrlen)
{
FH serverfh = _fh_from_int(serverfd, __func__);
if ( !serverfh || serverfh->clazz != &_fh_socket_class ) {
D("adb_socket_accept: invalid fd %d\n", serverfd);
errno = EBADF;
return -1;
}
unique_fh fh(_fh_alloc( &_fh_socket_class ));
if (!fh) {
PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket "
"descriptor";
return -1;
}
fh->fh_socket = accept( serverfh->fh_socket, addr, addrlen );
if (fh->fh_socket == INVALID_SOCKET) {
const DWORD err = WSAGetLastError();
LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd <<
" failed: " + SystemErrorCodeToString(err);
_socket_set_errno( err );
return -1;
}
const int fd = _fh_to_int(fh.get());
snprintf( fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name );
D( "adb_socket_accept on fd %d returns fd %d\n", serverfd, fd );
fh.release();
return fd;
}
int adb_setsockopt( int fd, int level, int optname, const void* optval, socklen_t optlen )
{
FH fh = _fh_from_int(fd, __func__);
if ( !fh || fh->clazz != &_fh_socket_class ) {
D("adb_setsockopt: invalid fd %d\n", fd);
errno = EBADF;
return -1;
}
int result = setsockopt( fh->fh_socket, level, optname,
reinterpret_cast<const char*>(optval), optlen );
if ( result == SOCKET_ERROR ) {
const DWORD err = WSAGetLastError();
D( "adb_setsockopt: setsockopt on fd %d level %d optname %d "
"failed: %s\n", fd, level, optname,
SystemErrorCodeToString(err).c_str() );
_socket_set_errno( err );
result = -1;
}
return result;
}
int adb_shutdown(int fd)
{
FH f = _fh_from_int(fd, __func__);
if (!f || f->clazz != &_fh_socket_class) {
D("adb_shutdown: invalid fd %d\n", fd);
errno = EBADF;
return -1;
}
D( "adb_shutdown: %s\n", f->name);
if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
const DWORD err = WSAGetLastError();
D("socket shutdown fd %d failed: %s\n", fd,
SystemErrorCodeToString(err).c_str());
_socket_set_errno(err);
return -1;
}
return 0;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** emulated socketpairs *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
/* we implement socketpairs directly in use space for the following reasons:
* - it avoids copying data from/to the Nt kernel
* - it allows us to implement fdevent hooks easily and cheaply, something
* that is not possible with standard Win32 pipes !!
*
* basically, we use two circular buffers, each one corresponding to a given
* direction.
*
* each buffer is implemented as two regions:
*
* region A which is (a_start,a_end)
* region B which is (0, b_end) with b_end <= a_start
*
* an empty buffer has: a_start = a_end = b_end = 0
*
* a_start is the pointer where we start reading data
* a_end is the pointer where we start writing data, unless it is BUFFER_SIZE,
* then you start writing at b_end
*
* the buffer is full when b_end == a_start && a_end == BUFFER_SIZE
*
* there is room when b_end < a_start || a_end < BUFER_SIZE
*
* when reading, a_start is incremented, it a_start meets a_end, then
* we do: a_start = 0, a_end = b_end, b_end = 0, and keep going on..
*/
#define BIP_BUFFER_SIZE 4096
#if 0
#include <stdio.h>
# define BIPD(x) D x
# define BIPDUMP bip_dump_hex
static void bip_dump_hex( const unsigned char* ptr, size_t len )
{
int nn, len2 = len;
if (len2 > 8) len2 = 8;
for (nn = 0; nn < len2; nn++)
printf("%02x", ptr[nn]);
printf(" ");
for (nn = 0; nn < len2; nn++) {
int c = ptr[nn];
if (c < 32 || c > 127)
c = '.';
printf("%c", c);
}
printf("\n");
fflush(stdout);
}
#else
# define BIPD(x) do {} while (0)
# define BIPDUMP(p,l) BIPD(p)
#endif
typedef struct BipBufferRec_
{
int a_start;
int a_end;
int b_end;
int fdin;
int fdout;
int closed;
int can_write; /* boolean */
HANDLE evt_write; /* event signaled when one can write to a buffer */
int can_read; /* boolean */
HANDLE evt_read; /* event signaled when one can read from a buffer */
CRITICAL_SECTION lock;
unsigned char buff[ BIP_BUFFER_SIZE ];
} BipBufferRec, *BipBuffer;
static void
bip_buffer_init( BipBuffer buffer )
{
D( "bit_buffer_init %p\n", buffer );
buffer->a_start = 0;
buffer->a_end = 0;
buffer->b_end = 0;
buffer->can_write = 1;
buffer->can_read = 0;
buffer->fdin = 0;
buffer->fdout = 0;
buffer->closed = 0;
buffer->evt_write = CreateEvent( NULL, TRUE, TRUE, NULL );
buffer->evt_read = CreateEvent( NULL, TRUE, FALSE, NULL );
InitializeCriticalSection( &buffer->lock );
}
static void
bip_buffer_close( BipBuffer bip )
{
bip->closed = 1;
if (!bip->can_read) {
SetEvent( bip->evt_read );
}
if (!bip->can_write) {
SetEvent( bip->evt_write );
}
}
static void
bip_buffer_done( BipBuffer bip )
{
BIPD(( "bip_buffer_done: %d->%d\n", bip->fdin, bip->fdout ));
CloseHandle( bip->evt_read );
CloseHandle( bip->evt_write );
DeleteCriticalSection( &bip->lock );
}
static int
bip_buffer_write( BipBuffer bip, const void* src, int len )
{
int avail, count = 0;
if (len <= 0)
return 0;
BIPD(( "bip_buffer_write: enter %d->%d len %d\n", bip->fdin, bip->fdout, len ));
BIPDUMP( src, len );
EnterCriticalSection( &bip->lock );
while (!bip->can_write) {
int ret;
LeaveCriticalSection( &bip->lock );
if (bip->closed) {
errno = EPIPE;
return -1;
}
/* spinlocking here is probably unfair, but let's live with it */
ret = WaitForSingleObject( bip->evt_write, INFINITE );
if (ret != WAIT_OBJECT_0) { /* buffer probably closed */
D( "bip_buffer_write: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError() );
return 0;
}
if (bip->closed) {
errno = EPIPE;
return -1;
}
EnterCriticalSection( &bip->lock );
}
BIPD(( "bip_buffer_write: exec %d->%d len %d\n", bip->fdin, bip->fdout, len ));
avail = BIP_BUFFER_SIZE - bip->a_end;
if (avail > 0)
{
/* we can append to region A */
if (avail > len)
avail = len;
memcpy( bip->buff + bip->a_end, src, avail );
src = (const char *)src + avail;
count += avail;
len -= avail;
bip->a_end += avail;
if (bip->a_end == BIP_BUFFER_SIZE && bip->a_start == 0) {
bip->can_write = 0;
ResetEvent( bip->evt_write );
goto Exit;
}
}
if (len == 0)
goto Exit;
avail = bip->a_start - bip->b_end;
assert( avail > 0 ); /* since can_write is TRUE */
if (avail > len)
avail = len;
memcpy( bip->buff + bip->b_end, src, avail );
count += avail;
bip->b_end += avail;
if (bip->b_end == bip->a_start) {
bip->can_write = 0;
ResetEvent( bip->evt_write );
}
Exit:
assert( count > 0 );
if ( !bip->can_read ) {
bip->can_read = 1;
SetEvent( bip->evt_read );
}
BIPD(( "bip_buffer_write: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n",
bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read ));
LeaveCriticalSection( &bip->lock );
return count;
}
static int
bip_buffer_read( BipBuffer bip, void* dst, int len )
{
int avail, count = 0;
if (len <= 0)
return 0;
BIPD(( "bip_buffer_read: enter %d->%d len %d\n", bip->fdin, bip->fdout, len ));
EnterCriticalSection( &bip->lock );
while ( !bip->can_read )
{
#if 0
LeaveCriticalSection( &bip->lock );
errno = EAGAIN;
return -1;
#else
int ret;
LeaveCriticalSection( &bip->lock );
if (bip->closed) {
errno = EPIPE;
return -1;
}
ret = WaitForSingleObject( bip->evt_read, INFINITE );
if (ret != WAIT_OBJECT_0) { /* probably closed buffer */
D( "bip_buffer_read: error %d->%d WaitForSingleObject returned %d, error %ld\n", bip->fdin, bip->fdout, ret, GetLastError());
return 0;
}
if (bip->closed) {
errno = EPIPE;
return -1;
}
EnterCriticalSection( &bip->lock );
#endif
}
BIPD(( "bip_buffer_read: exec %d->%d len %d\n", bip->fdin, bip->fdout, len ));
avail = bip->a_end - bip->a_start;
assert( avail > 0 ); /* since can_read is TRUE */
if (avail > len)
avail = len;
memcpy( dst, bip->buff + bip->a_start, avail );
dst = (char *)dst + avail;
count += avail;
len -= avail;
bip->a_start += avail;
if (bip->a_start < bip->a_end)
goto Exit;
bip->a_start = 0;
bip->a_end = bip->b_end;
bip->b_end = 0;
avail = bip->a_end;
if (avail > 0) {
if (avail > len)
avail = len;
memcpy( dst, bip->buff, avail );
count += avail;
bip->a_start += avail;
if ( bip->a_start < bip->a_end )
goto Exit;
bip->a_start = bip->a_end = 0;
}
bip->can_read = 0;
ResetEvent( bip->evt_read );
Exit:
assert( count > 0 );
if (!bip->can_write ) {
bip->can_write = 1;
SetEvent( bip->evt_write );
}
BIPDUMP( (const unsigned char*)dst - count, count );
BIPD(( "bip_buffer_read: exit %d->%d count %d (as=%d ae=%d be=%d cw=%d cr=%d\n",
bip->fdin, bip->fdout, count, bip->a_start, bip->a_end, bip->b_end, bip->can_write, bip->can_read ));
LeaveCriticalSection( &bip->lock );
return count;
}
typedef struct SocketPairRec_
{
BipBufferRec a2b_bip;
BipBufferRec b2a_bip;
FH a_fd;
int used;
} SocketPairRec;
void _fh_socketpair_init( FH f )
{
f->fh_pair = NULL;
}
static int
_fh_socketpair_close( FH f )
{
if ( f->fh_pair ) {
SocketPair pair = f->fh_pair;
if ( f == pair->a_fd ) {
pair->a_fd = NULL;
}
bip_buffer_close( &pair->b2a_bip );
bip_buffer_close( &pair->a2b_bip );
if ( --pair->used == 0 ) {
bip_buffer_done( &pair->b2a_bip );
bip_buffer_done( &pair->a2b_bip );
free( pair );
}
f->fh_pair = NULL;
}
return 0;
}
static int
_fh_socketpair_lseek( FH f, int pos, int origin )
{
errno = ESPIPE;
return -1;
}
static int
_fh_socketpair_read( FH f, void* buf, int len )
{
SocketPair pair = f->fh_pair;
BipBuffer bip;
if (!pair)
return -1;
if ( f == pair->a_fd )
bip = &pair->b2a_bip;
else
bip = &pair->a2b_bip;
return bip_buffer_read( bip, buf, len );
}
static int
_fh_socketpair_write( FH f, const void* buf, int len )
{
SocketPair pair = f->fh_pair;
BipBuffer bip;
if (!pair)
return -1;
if ( f == pair->a_fd )
bip = &pair->a2b_bip;
else
bip = &pair->b2a_bip;
return bip_buffer_write( bip, buf, len );
}
static void _fh_socketpair_hook( FH f, int event, EventHook hook ); /* forward */
static const FHClassRec _fh_socketpair_class =
{
_fh_socketpair_init,
_fh_socketpair_close,
_fh_socketpair_lseek,
_fh_socketpair_read,
_fh_socketpair_write,
_fh_socketpair_hook
};
int adb_socketpair(int sv[2]) {
SocketPair pair;
unique_fh fa(_fh_alloc(&_fh_socketpair_class));
if (!fa) {
return -1;
}
unique_fh fb(_fh_alloc(&_fh_socketpair_class));
if (!fb) {
return -1;
}
pair = reinterpret_cast<SocketPair>(malloc(sizeof(*pair)));
if (pair == NULL) {
D("adb_socketpair: not enough memory to allocate pipes\n" );
return -1;
}
bip_buffer_init( &pair->a2b_bip );
bip_buffer_init( &pair->b2a_bip );
fa->fh_pair = pair;
fb->fh_pair = pair;
pair->used = 2;
pair->a_fd = fa.get();
sv[0] = _fh_to_int(fa.get());
sv[1] = _fh_to_int(fb.get());
pair->a2b_bip.fdin = sv[0];
pair->a2b_bip.fdout = sv[1];
pair->b2a_bip.fdin = sv[1];
pair->b2a_bip.fdout = sv[0];
snprintf( fa->name, sizeof(fa->name), "%d(pair:%d)", sv[0], sv[1] );
snprintf( fb->name, sizeof(fb->name), "%d(pair:%d)", sv[1], sv[0] );
D( "adb_socketpair: returns (%d, %d)\n", sv[0], sv[1] );
fa.release();
fb.release();
return 0;
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** fdevents emulation *****/
/***** *****/
/***** this is a very simple implementation, we rely on the fact *****/
/***** that ADB doesn't use FDE_ERROR. *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
#define FATAL(x...) fatal(__FUNCTION__, x)
#if DEBUG
static void dump_fde(fdevent *fde, const char *info)
{
fprintf(stderr,"FDE #%03d %c%c%c %s\n", fde->fd,
fde->state & FDE_READ ? 'R' : ' ',
fde->state & FDE_WRITE ? 'W' : ' ',
fde->state & FDE_ERROR ? 'E' : ' ',
info);
}
#else
#define dump_fde(fde, info) do { } while(0)
#endif
#define FDE_EVENTMASK 0x00ff
#define FDE_STATEMASK 0xff00
#define FDE_ACTIVE 0x0100
#define FDE_PENDING 0x0200
#define FDE_CREATED 0x0400
static void fdevent_plist_enqueue(fdevent *node);
static void fdevent_plist_remove(fdevent *node);
static fdevent *fdevent_plist_dequeue(void);
static fdevent list_pending = {
.next = &list_pending,
.prev = &list_pending,
};
static fdevent **fd_table = 0;
static int fd_table_max = 0;
typedef struct EventLooperRec_* EventLooper;
typedef struct EventHookRec_
{
EventHook next;
FH fh;
HANDLE h;
int wanted; /* wanted event flags */
int ready; /* ready event flags */
void* aux;
void (*prepare)( EventHook hook );
int (*start) ( EventHook hook );
void (*stop) ( EventHook hook );
int (*check) ( EventHook hook );
int (*peek) ( EventHook hook );
} EventHookRec;
static EventHook _free_hooks;
static EventHook
event_hook_alloc(FH fh) {
EventHook hook = _free_hooks;
if (hook != NULL) {
_free_hooks = hook->next;
} else {
hook = reinterpret_cast<EventHook>(malloc(sizeof(*hook)));
if (hook == NULL)
fatal( "could not allocate event hook\n" );
}
hook->next = NULL;
hook->fh = fh;
hook->wanted = 0;
hook->ready = 0;
hook->h = INVALID_HANDLE_VALUE;
hook->aux = NULL;
hook->prepare = NULL;
hook->start = NULL;
hook->stop = NULL;
hook->check = NULL;
hook->peek = NULL;
return hook;
}
static void
event_hook_free( EventHook hook )
{
hook->fh = NULL;
hook->wanted = 0;
hook->ready = 0;
hook->next = _free_hooks;
_free_hooks = hook;
}
static void
event_hook_signal( EventHook hook )
{
FH f = hook->fh;
int fd = _fh_to_int(f);
fdevent* fde = fd_table[ fd - WIN32_FH_BASE ];
if (fde != NULL && fde->fd == fd) {
if ((fde->state & FDE_PENDING) == 0) {
fde->state |= FDE_PENDING;
fdevent_plist_enqueue( fde );
}
fde->events |= hook->wanted;
}
}
#define MAX_LOOPER_HANDLES WIN32_MAX_FHS
typedef struct EventLooperRec_
{
EventHook hooks;
HANDLE htab[ MAX_LOOPER_HANDLES ];
int htab_count;
} EventLooperRec;
static EventHook*
event_looper_find_p( EventLooper looper, FH fh )
{
EventHook *pnode = &looper->hooks;
EventHook node = *pnode;
for (;;) {
if ( node == NULL || node->fh == fh )
break;
pnode = &node->next;
node = *pnode;
}
return pnode;
}
static void
event_looper_hook( EventLooper looper, int fd, int events )
{
FH f = _fh_from_int(fd, __func__);
EventHook *pnode;
EventHook node;
if (f == NULL) /* invalid arg */ {
D("event_looper_hook: invalid fd=%d\n", fd);
return;
}
pnode = event_looper_find_p( looper, f );
node = *pnode;
if ( node == NULL ) {
node = event_hook_alloc( f );
node->next = *pnode;
*pnode = node;
}
if ( (node->wanted & events) != events ) {
/* this should update start/stop/check/peek */
D("event_looper_hook: call hook for %d (new=%x, old=%x)\n",
fd, node->wanted, events);
f->clazz->_fh_hook( f, events & ~node->wanted, node );
node->wanted |= events;
} else {
D("event_looper_hook: ignoring events %x for %d wanted=%x)\n",
events, fd, node->wanted);
}
}
static void
event_looper_unhook( EventLooper looper, int fd, int events )
{
FH fh = _fh_from_int(fd, __func__);
EventHook *pnode = event_looper_find_p( looper, fh );
EventHook node = *pnode;
if (node != NULL) {
int events2 = events & node->wanted;
if ( events2 == 0 ) {
D( "event_looper_unhook: events %x not registered for fd %d\n", events, fd );
return;
}
node->wanted &= ~events2;
if (!node->wanted) {
*pnode = node->next;
event_hook_free( node );
}
}
}
/*
* A fixer for WaitForMultipleObjects on condition that there are more than 64
* handles to wait on.
*
* In cetain cases DDMS may establish more than 64 connections with ADB. For
* instance, this may happen if there are more than 64 processes running on a
* device, or there are multiple devices connected (including the emulator) with
* the combined number of running processes greater than 64. In this case using
* WaitForMultipleObjects to wait on connection events simply wouldn't cut,
* because of the API limitations (64 handles max). So, we need to provide a way
* to scale WaitForMultipleObjects to accept an arbitrary number of handles. The
* easiest (and "Microsoft recommended") way to do that would be dividing the
* handle array into chunks with the chunk size less than 64, and fire up as many
* waiting threads as there are chunks. Then each thread would wait on a chunk of
* handles, and will report back to the caller which handle has been set.
* Here is the implementation of that algorithm.
*/
/* Number of handles to wait on in each wating thread. */
#define WAIT_ALL_CHUNK_SIZE 63
/* Descriptor for a wating thread */
typedef struct WaitForAllParam {
/* A handle to an event to signal when waiting is over. This handle is shared
* accross all the waiting threads, so each waiting thread knows when any
* other thread has exited, so it can exit too. */
HANDLE main_event;
/* Upon exit from a waiting thread contains the index of the handle that has
* been signaled. The index is an absolute index of the signaled handle in
* the original array. This pointer is shared accross all the waiting threads
* and it's not guaranteed (due to a race condition) that when all the
* waiting threads exit, the value contained here would indicate the first
* handle that was signaled. This is fine, because the caller cares only
* about any handle being signaled. It doesn't care about the order, nor
* about the whole list of handles that were signaled. */
LONG volatile *signaled_index;
/* Array of handles to wait on in a waiting thread. */
HANDLE* handles;
/* Number of handles in 'handles' array to wait on. */
int handles_count;
/* Index inside the main array of the first handle in the 'handles' array. */
int first_handle_index;
/* Waiting thread handle. */
HANDLE thread;
} WaitForAllParam;
/* Waiting thread routine. */
static unsigned __stdcall
_in_waiter_thread(void* arg)
{
HANDLE wait_on[WAIT_ALL_CHUNK_SIZE + 1];
int res;
WaitForAllParam* const param = (WaitForAllParam*)arg;
/* We have to wait on the main_event in order to be notified when any of the
* sibling threads is exiting. */
wait_on[0] = param->main_event;
/* The rest of the handles go behind the main event handle. */
memcpy(wait_on + 1, param->handles, param->handles_count * sizeof(HANDLE));
res = WaitForMultipleObjects(param->handles_count + 1, wait_on, FALSE, INFINITE);
if (res > 0 && res < (param->handles_count + 1)) {
/* One of the original handles got signaled. Save its absolute index into
* the output variable. */
InterlockedCompareExchange(param->signaled_index,
res - 1L + param->first_handle_index, -1L);
}
/* Notify the caller (and the siblings) that the wait is over. */
SetEvent(param->main_event);
_endthreadex(0);
return 0;
}
/* WaitForMultipeObjects fixer routine.
* Param:
* handles Array of handles to wait on.
* handles_count Number of handles in the array.
* Return:
* (>= 0 && < handles_count) - Index of the signaled handle in the array, or
* WAIT_FAILED on an error.
*/
static int
_wait_for_all(HANDLE* handles, int handles_count)
{
WaitForAllParam* threads;
HANDLE main_event;
int chunks, chunk, remains;
/* This variable is going to be accessed by several threads at the same time,
* this is bound to fail randomly when the core is run on multi-core machines.
* To solve this, we need to do the following (1 _and_ 2):
* 1. Use the "volatile" qualifier to ensure the compiler doesn't optimize
* out the reads/writes in this function unexpectedly.
* 2. Ensure correct memory ordering. The "simple" way to do that is to wrap
* all accesses inside a critical section. But we can also use
* InterlockedCompareExchange() which always provide a full memory barrier
* on Win32.
*/
volatile LONG sig_index = -1;
/* Calculate number of chunks, and allocate thread param array. */
chunks = handles_count / WAIT_ALL_CHUNK_SIZE;
remains = handles_count % WAIT_ALL_CHUNK_SIZE;
threads = (WaitForAllParam*)malloc((chunks + (remains ? 1 : 0)) *
sizeof(WaitForAllParam));
if (threads == NULL) {
D("Unable to allocate thread array for %d handles.\n", handles_count);
return (int)WAIT_FAILED;
}
/* Create main event to wait on for all waiting threads. This is a "manualy
* reset" event that will remain set once it was set. */
main_event = CreateEvent(NULL, TRUE, FALSE, NULL);
if (main_event == NULL) {
D("Unable to create main event. Error: %ld\n", GetLastError());
free(threads);
return (int)WAIT_FAILED;
}
/*
* Initialize waiting thread parameters.
*/
for (chunk = 0; chunk < chunks; chunk++) {
threads[chunk].main_event = main_event;
threads[chunk].signaled_index = &sig_index;
threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk;
threads[chunk].handles = handles + threads[chunk].first_handle_index;
threads[chunk].handles_count = WAIT_ALL_CHUNK_SIZE;
}
if (remains) {
threads[chunk].main_event = main_event;
threads[chunk].signaled_index = &sig_index;
threads[chunk].first_handle_index = WAIT_ALL_CHUNK_SIZE * chunk;
threads[chunk].handles = handles + threads[chunk].first_handle_index;
threads[chunk].handles_count = remains;
chunks++;
}
/* Start the waiting threads. */
for (chunk = 0; chunk < chunks; chunk++) {
/* Note that using adb_thread_create is not appropriate here, since we
* need a handle to wait on for thread termination. */
threads[chunk].thread = (HANDLE)_beginthreadex(NULL, 0, _in_waiter_thread,
&threads[chunk], 0, NULL);
if (threads[chunk].thread == NULL) {
/* Unable to create a waiter thread. Collapse. */
D("Unable to create a waiting thread %d of %d. errno=%d\n",
chunk, chunks, errno);
chunks = chunk;
SetEvent(main_event);
break;
}
}
/* Wait on any of the threads to get signaled. */
WaitForSingleObject(main_event, INFINITE);
/* Wait on all the waiting threads to exit. */
for (chunk = 0; chunk < chunks; chunk++) {
WaitForSingleObject(threads[chunk].thread, INFINITE);
CloseHandle(threads[chunk].thread);
}
CloseHandle(main_event);
free(threads);
const int ret = (int)InterlockedCompareExchange(&sig_index, -1, -1);
return (ret >= 0) ? ret : (int)WAIT_FAILED;
}
static EventLooperRec win32_looper;
static void fdevent_init(void)
{
win32_looper.htab_count = 0;
win32_looper.hooks = NULL;
}
static void fdevent_connect(fdevent *fde)
{
EventLooper looper = &win32_looper;
int events = fde->state & FDE_EVENTMASK;
if (events != 0)
event_looper_hook( looper, fde->fd, events );
}
static void fdevent_disconnect(fdevent *fde)
{
EventLooper looper = &win32_looper;
int events = fde->state & FDE_EVENTMASK;
if (events != 0)
event_looper_unhook( looper, fde->fd, events );
}
static void fdevent_update(fdevent *fde, unsigned events)
{
EventLooper looper = &win32_looper;
unsigned events0 = fde->state & FDE_EVENTMASK;
if (events != events0) {
int removes = events0 & ~events;
int adds = events & ~events0;
if (removes) {
D("fdevent_update: remove %x from %d\n", removes, fde->fd);
event_looper_unhook( looper, fde->fd, removes );
}
if (adds) {
D("fdevent_update: add %x to %d\n", adds, fde->fd);
event_looper_hook ( looper, fde->fd, adds );
}
}
}
static void fdevent_process()
{
EventLooper looper = &win32_looper;
EventHook hook;
int gotone = 0;
/* if we have at least one ready hook, execute it/them */
for (hook = looper->hooks; hook; hook = hook->next) {
hook->ready = 0;
if (hook->prepare) {
hook->prepare(hook);
if (hook->ready != 0) {
event_hook_signal( hook );
gotone = 1;
}
}
}
/* nothing's ready yet, so wait for something to happen */
if (!gotone)
{
looper->htab_count = 0;
for (hook = looper->hooks; hook; hook = hook->next)
{
if (hook->start && !hook->start(hook)) {
D( "fdevent_process: error when starting a hook\n" );
return;
}
if (hook->h != INVALID_HANDLE_VALUE) {
int nn;
for (nn = 0; nn < looper->htab_count; nn++)
{
if ( looper->htab[nn] == hook->h )
goto DontAdd;
}
looper->htab[ looper->htab_count++ ] = hook->h;
DontAdd:
;
}
}
if (looper->htab_count == 0) {
D( "fdevent_process: nothing to wait for !!\n" );
return;
}
do
{
int wait_ret;
D( "adb_win32: waiting for %d events\n", looper->htab_count );
if (looper->htab_count > MAXIMUM_WAIT_OBJECTS) {
D("handle count %d exceeds MAXIMUM_WAIT_OBJECTS.\n", looper->htab_count);
wait_ret = _wait_for_all(looper->htab, looper->htab_count);
} else {
wait_ret = WaitForMultipleObjects( looper->htab_count, looper->htab, FALSE, INFINITE );
}
if (wait_ret == (int)WAIT_FAILED) {
D( "adb_win32: wait failed, error %ld\n", GetLastError() );
} else {
D( "adb_win32: got one (index %d)\n", wait_ret );
/* according to Cygwin, some objects like consoles wake up on "inappropriate" events
* like mouse movements. we need to filter these with the "check" function
*/
if ((unsigned)wait_ret < (unsigned)looper->htab_count)
{
for (hook = looper->hooks; hook; hook = hook->next)
{
if ( looper->htab[wait_ret] == hook->h &&
(!hook->check || hook->check(hook)) )
{
D( "adb_win32: signaling %s for %x\n", hook->fh->name, hook->ready );
event_hook_signal( hook );
gotone = 1;
break;
}
}
}
}
}
while (!gotone);
for (hook = looper->hooks; hook; hook = hook->next) {
if (hook->stop)
hook->stop( hook );
}
}
for (hook = looper->hooks; hook; hook = hook->next) {
if (hook->peek && hook->peek(hook))
event_hook_signal( hook );
}
}
static void fdevent_register(fdevent *fde)
{
int fd = fde->fd - WIN32_FH_BASE;
if(fd < 0) {
FATAL("bogus negative fd (%d)\n", fde->fd);
}
if(fd >= fd_table_max) {
int oldmax = fd_table_max;
if(fde->fd > 32000) {
FATAL("bogus huuuuge fd (%d)\n", fde->fd);
}
if(fd_table_max == 0) {
fdevent_init();
fd_table_max = 256;
}
while(fd_table_max <= fd) {
fd_table_max *= 2;
}
fd_table = reinterpret_cast<fdevent**>(realloc(fd_table, sizeof(fdevent*) * fd_table_max));
if(fd_table == 0) {
FATAL("could not expand fd_table to %d entries\n", fd_table_max);
}
memset(fd_table + oldmax, 0, sizeof(int) * (fd_table_max - oldmax));
}
fd_table[fd] = fde;
}
static void fdevent_unregister(fdevent *fde)
{
int fd = fde->fd - WIN32_FH_BASE;
if((fd < 0) || (fd >= fd_table_max)) {
FATAL("fd out of range (%d)\n", fde->fd);
}
if(fd_table[fd] != fde) {
FATAL("fd_table out of sync");
}
fd_table[fd] = 0;
if(!(fde->state & FDE_DONT_CLOSE)) {
dump_fde(fde, "close");
adb_close(fde->fd);
}
}
static void fdevent_plist_enqueue(fdevent *node)
{
fdevent *list = &list_pending;
node->next = list;
node->prev = list->prev;
node->prev->next = node;
list->prev = node;
}
static void fdevent_plist_remove(fdevent *node)
{
node->prev->next = node->next;
node->next->prev = node->prev;
node->next = 0;
node->prev = 0;
}
static fdevent *fdevent_plist_dequeue(void)
{
fdevent *list = &list_pending;
fdevent *node = list->next;
if(node == list) return 0;
list->next = node->next;
list->next->prev = list;
node->next = 0;
node->prev = 0;
return node;
}
fdevent *fdevent_create(int fd, fd_func func, void *arg)
{
fdevent *fde = (fdevent*) malloc(sizeof(fdevent));
if(fde == 0) return 0;
fdevent_install(fde, fd, func, arg);
fde->state |= FDE_CREATED;
return fde;
}
void fdevent_destroy(fdevent *fde)
{
if(fde == 0) return;
if(!(fde->state & FDE_CREATED)) {
FATAL("fde %p not created by fdevent_create()\n", fde);
}
fdevent_remove(fde);
}
void fdevent_install(fdevent *fde, int fd, fd_func func, void *arg)
{
memset(fde, 0, sizeof(fdevent));
fde->state = FDE_ACTIVE;
fde->fd = fd;
fde->func = func;
fde->arg = arg;
fdevent_register(fde);
dump_fde(fde, "connect");
fdevent_connect(fde);
fde->state |= FDE_ACTIVE;
}
void fdevent_remove(fdevent *fde)
{
if(fde->state & FDE_PENDING) {
fdevent_plist_remove(fde);
}
if(fde->state & FDE_ACTIVE) {
fdevent_disconnect(fde);
dump_fde(fde, "disconnect");
fdevent_unregister(fde);
}
fde->state = 0;
fde->events = 0;
}
void fdevent_set(fdevent *fde, unsigned events)
{
events &= FDE_EVENTMASK;
if((fde->state & FDE_EVENTMASK) == (int)events) return;
if(fde->state & FDE_ACTIVE) {
fdevent_update(fde, events);
dump_fde(fde, "update");
}
fde->state = (fde->state & FDE_STATEMASK) | events;
if(fde->state & FDE_PENDING) {
/* if we're pending, make sure
** we don't signal an event that
** is no longer wanted.
*/
fde->events &= (~events);
if(fde->events == 0) {
fdevent_plist_remove(fde);
fde->state &= (~FDE_PENDING);
}
}
}
void fdevent_add(fdevent *fde, unsigned events)
{
fdevent_set(
fde, (fde->state & FDE_EVENTMASK) | (events & FDE_EVENTMASK));
}
void fdevent_del(fdevent *fde, unsigned events)
{
fdevent_set(
fde, (fde->state & FDE_EVENTMASK) & (~(events & FDE_EVENTMASK)));
}
void fdevent_loop()
{
fdevent *fde;
for(;;) {
#if DEBUG
fprintf(stderr,"--- ---- waiting for events\n");
#endif
fdevent_process();
while((fde = fdevent_plist_dequeue())) {
unsigned events = fde->events;
fde->events = 0;
fde->state &= (~FDE_PENDING);
dump_fde(fde, "callback");
fde->func(fde->fd, events, fde->arg);
}
}
}
/** FILE EVENT HOOKS
**/
static void _event_file_prepare( EventHook hook )
{
if (hook->wanted & (FDE_READ|FDE_WRITE)) {
/* we can always read/write */
hook->ready |= hook->wanted & (FDE_READ|FDE_WRITE);
}
}
static int _event_file_peek( EventHook hook )
{
return (hook->wanted & (FDE_READ|FDE_WRITE));
}
static void _fh_file_hook( FH f, int events, EventHook hook )
{
hook->h = f->fh_handle;
hook->prepare = _event_file_prepare;
hook->peek = _event_file_peek;
}
/** SOCKET EVENT HOOKS
**/
static void _event_socket_verify( EventHook hook, WSANETWORKEVENTS* evts )
{
if ( evts->lNetworkEvents & (FD_READ|FD_ACCEPT|FD_CLOSE) ) {
if (hook->wanted & FDE_READ)
hook->ready |= FDE_READ;
if ((evts->iErrorCode[FD_READ] != 0) && hook->wanted & FDE_ERROR)
hook->ready |= FDE_ERROR;
}
if ( evts->lNetworkEvents & (FD_WRITE|FD_CONNECT|FD_CLOSE) ) {
if (hook->wanted & FDE_WRITE)
hook->ready |= FDE_WRITE;
if ((evts->iErrorCode[FD_WRITE] != 0) && hook->wanted & FDE_ERROR)
hook->ready |= FDE_ERROR;
}
if ( evts->lNetworkEvents & FD_OOB ) {
if (hook->wanted & FDE_ERROR)
hook->ready |= FDE_ERROR;
}
}
static void _event_socket_prepare( EventHook hook )
{
WSANETWORKEVENTS evts;
/* look if some of the events we want already happened ? */
if (!WSAEnumNetworkEvents( hook->fh->fh_socket, NULL, &evts ))
_event_socket_verify( hook, &evts );
}
static int _socket_wanted_to_flags( int wanted )
{
int flags = 0;
if (wanted & FDE_READ)
flags |= FD_READ | FD_ACCEPT | FD_CLOSE;
if (wanted & FDE_WRITE)
flags |= FD_WRITE | FD_CONNECT | FD_CLOSE;
if (wanted & FDE_ERROR)
flags |= FD_OOB;
return flags;
}
static int _event_socket_start( EventHook hook )
{
/* create an event which we're going to wait for */
FH fh = hook->fh;
long flags = _socket_wanted_to_flags( hook->wanted );
hook->h = fh->event;
if (hook->h == INVALID_HANDLE_VALUE) {
D( "_event_socket_start: no event for %s\n", fh->name );
return 0;
}
if ( flags != fh->mask ) {
D( "_event_socket_start: hooking %s for %x (flags %ld)\n", hook->fh->name, hook->wanted, flags );
if ( WSAEventSelect( fh->fh_socket, hook->h, flags ) ) {
D( "_event_socket_start: WSAEventSelect() for %s failed, error %d\n", hook->fh->name, WSAGetLastError() );
CloseHandle( hook->h );
hook->h = INVALID_HANDLE_VALUE;
exit(1);
return 0;
}
fh->mask = flags;
}
return 1;
}
static void _event_socket_stop( EventHook hook )
{
hook->h = INVALID_HANDLE_VALUE;
}
static int _event_socket_check( EventHook hook )
{
int result = 0;
FH fh = hook->fh;
WSANETWORKEVENTS evts;
if (!WSAEnumNetworkEvents( fh->fh_socket, hook->h, &evts ) ) {
_event_socket_verify( hook, &evts );
result = (hook->ready != 0);
if (result) {
ResetEvent( hook->h );
}
}
D( "_event_socket_check %s returns %d\n", fh->name, result );
return result;
}
static int _event_socket_peek( EventHook hook )
{
WSANETWORKEVENTS evts;
FH fh = hook->fh;
/* look if some of the events we want already happened ? */
if (!WSAEnumNetworkEvents( fh->fh_socket, NULL, &evts )) {
_event_socket_verify( hook, &evts );
if (hook->ready)
ResetEvent( hook->h );
}
return hook->ready != 0;
}
static void _fh_socket_hook( FH f, int events, EventHook hook )
{
hook->prepare = _event_socket_prepare;
hook->start = _event_socket_start;
hook->stop = _event_socket_stop;
hook->check = _event_socket_check;
hook->peek = _event_socket_peek;
// TODO: check return value?
_event_socket_start( hook );
}
/** SOCKETPAIR EVENT HOOKS
**/
static void _event_socketpair_prepare( EventHook hook )
{
FH fh = hook->fh;
SocketPair pair = fh->fh_pair;
BipBuffer rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip;
BipBuffer wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip;
if (hook->wanted & FDE_READ && rbip->can_read)
hook->ready |= FDE_READ;
if (hook->wanted & FDE_WRITE && wbip->can_write)
hook->ready |= FDE_WRITE;
}
static int _event_socketpair_start( EventHook hook )
{
FH fh = hook->fh;
SocketPair pair = fh->fh_pair;
BipBuffer rbip = (pair->a_fd == fh) ? &pair->b2a_bip : &pair->a2b_bip;
BipBuffer wbip = (pair->a_fd == fh) ? &pair->a2b_bip : &pair->b2a_bip;
if (hook->wanted == FDE_READ)
hook->h = rbip->evt_read;
else if (hook->wanted == FDE_WRITE)
hook->h = wbip->evt_write;
else {
D("_event_socketpair_start: can't handle FDE_READ+FDE_WRITE\n" );
return 0;
}
D( "_event_socketpair_start: hook %s for %x wanted=%x\n",
hook->fh->name, _fh_to_int(fh), hook->wanted);
return 1;
}
static int _event_socketpair_peek( EventHook hook )
{
_event_socketpair_prepare( hook );
return hook->ready != 0;
}
static void _fh_socketpair_hook( FH fh, int events, EventHook hook )
{
hook->prepare = _event_socketpair_prepare;
hook->start = _event_socketpair_start;
hook->peek = _event_socketpair_peek;
}
void
adb_sysdeps_init( void )
{
#define ADB_MUTEX(x) InitializeCriticalSection( & x );
#include "mutex_list.h"
InitializeCriticalSection( &_win32_lock );
}
/**************************************************************************/
/**************************************************************************/
/***** *****/
/***** Console Window Terminal Emulation *****/
/***** *****/
/**************************************************************************/
/**************************************************************************/
// This reads input from a Win32 console window and translates it into Unix
// terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
// mode, not Application mode), which itself emulates xterm. Gnome Terminal
// is emulated instead of xterm because it is probably more popular than xterm:
// Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
// supports modern fonts, etc. It seems best to emulate the terminal that most
// Android developers use because they'll fix apps (the shell, etc.) to keep
// working with that terminal's emulation.
//
// The point of this emulation is not to be perfect or to solve all issues with
// console windows on Windows, but to be better than the original code which
// just called read() (which called ReadFile(), which called ReadConsoleA())
// which did not support Ctrl-C, tab completion, shell input line editing
// keys, server echo, and more.
//
// This implementation reconfigures the console with SetConsoleMode(), then
// calls ReadConsoleInput() to get raw input which it remaps to Unix
// terminal-style sequences which is returned via unix_read() which is used
// by the 'adb shell' command.
//
// Code organization:
//
// * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
// * unix_read() detects console windows (as opposed to pipes, files, etc.).
// * _console_read() is the main code of the emulation.
// Read an input record from the console; one that should be processed.
static bool _get_interesting_input_record_uncached(const HANDLE console,
INPUT_RECORD* const input_record) {
for (;;) {
DWORD read_count = 0;
memset(input_record, 0, sizeof(*input_record));
if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
D("_get_interesting_input_record_uncached: ReadConsoleInputA() "
"failure, error %ld\n", GetLastError());
errno = EIO;
return false;
}
if (read_count == 0) { // should be impossible
fatal("ReadConsoleInputA returned 0");
}
if (read_count != 1) { // should be impossible
fatal("ReadConsoleInputA did not return one input record");
}
if ((input_record->EventType == KEY_EVENT) &&
(input_record->Event.KeyEvent.bKeyDown)) {
if (input_record->Event.KeyEvent.wRepeatCount == 0) {
fatal("ReadConsoleInputA returned a key event with zero repeat"
" count");
}
// Got an interesting INPUT_RECORD, so return
return true;
}
}
}
// Cached input record (in case _console_read() is passed a buffer that doesn't
// have enough space to fit wRepeatCount number of key sequences). A non-zero
// wRepeatCount indicates that a record is cached.
static INPUT_RECORD _win32_input_record;
// Get the next KEY_EVENT_RECORD that should be processed.
static KEY_EVENT_RECORD* _get_key_event_record(const HANDLE console) {
// If nothing cached, read directly from the console until we get an
// interesting record.
if (_win32_input_record.Event.KeyEvent.wRepeatCount == 0) {
if (!_get_interesting_input_record_uncached(console,
&_win32_input_record)) {
// There was an error, so make sure wRepeatCount is zero because
// that signifies no cached input record.
_win32_input_record.Event.KeyEvent.wRepeatCount = 0;
return NULL;
}
}
return &_win32_input_record.Event.KeyEvent;
}
static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
return (control_key_state & SHIFT_PRESSED) != 0;
}
static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
}
static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
}
static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
return (control_key_state & NUMLOCK_ON) != 0;
}
static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
return (control_key_state & CAPSLOCK_ON) != 0;
}
static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
return (control_key_state & ENHANCED_KEY) != 0;
}
// Constants from MSDN for ToAscii().
static const BYTE TOASCII_KEY_OFF = 0x00;
static const BYTE TOASCII_KEY_DOWN = 0x80;
static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock
// Given a key event, ignore a modifier key and return the character that was
// entered without the modifier. Writes to *ch and returns the number of bytes
// written.
static size_t _get_char_ignoring_modifier(char* const ch,
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
const WORD modifier) {
// If there is no character from Windows, try ignoring the specified
// modifier and look for a character. Note that if AltGr is being used,
// there will be a character from Windows.
if (key_event->uChar.AsciiChar == '\0') {
// Note that we read the control key state from the passed in argument
// instead of from key_event since the argument has been normalized.
if (((modifier == VK_SHIFT) &&
_is_shift_pressed(control_key_state)) ||
((modifier == VK_CONTROL) &&
_is_ctrl_pressed(control_key_state)) ||
((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) {
BYTE key_state[256] = {0};
key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ?
TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ?
TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
key_state[VK_MENU] = _is_alt_pressed(control_key_state) ?
TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ?
TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
// cause this modifier to be ignored
key_state[modifier] = TOASCII_KEY_OFF;
WORD translated = 0;
if (ToAscii(key_event->wVirtualKeyCode,
key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
// Ignoring the modifier, we found a character.
*ch = (CHAR)translated;
return 1;
}
}
}
// Just use whatever Windows told us originally.
*ch = key_event->uChar.AsciiChar;
// If the character from Windows is NULL, return a size of zero.
return (*ch == '\0') ? 0 : 1;
}
// If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
// but taking into account the shift key. This is because for a sequence like
// Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
// we want to find the character ')'.
//
// Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
// because it is the default key-sequence to switch the input language.
// This is configurable in the Region and Language control panel.
static __inline__ size_t _get_non_control_char(char* const ch,
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
return _get_char_ignoring_modifier(ch, key_event, control_key_state,
VK_CONTROL);
}
// Get without Alt.
static __inline__ size_t _get_non_alt_char(char* const ch,
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
return _get_char_ignoring_modifier(ch, key_event, control_key_state,
VK_MENU);
}
// Ignore the control key, find the character from Windows, and apply any
// Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
// *pch and returns number of bytes written.
static size_t _get_control_character(char* const pch,
const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
const size_t len = _get_non_control_char(pch, key_event,
control_key_state);
if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
char ch = *pch;
switch (ch) {
case '2':
case '@':
case '`':
ch = '\0';
break;
case '3':
case '[':
case '{':
ch = '\x1b';
break;
case '4':
case '\\':
case '|':
ch = '\x1c';
break;
case '5':
case ']':
case '}':
ch = '\x1d';
break;
case '6':
case '^':
case '~':
ch = '\x1e';
break;
case '7':
case '-':
case '_':
ch = '\x1f';
break;
case '8':
ch = '\x7f';
break;
case '/':
if (!_is_alt_pressed(control_key_state)) {
ch = '\x1f';
}
break;
case '?':
if (!_is_alt_pressed(control_key_state)) {
ch = '\x7f';
}
break;
}
*pch = ch;
}
return len;
}
static DWORD _normalize_altgr_control_key_state(
const KEY_EVENT_RECORD* const key_event) {
DWORD control_key_state = key_event->dwControlKeyState;
// If we're in an AltGr situation where the AltGr key is down (depending on
// the keyboard layout, that might be the physical right alt key which
// produces a control_key_state where Right-Alt and Left-Ctrl are down) or
// AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
// a character (which indicates that there was an AltGr mapping), then act
// as if alt and control are not really down for the purposes of modifiers.
// This makes it so that if the user with, say, a German keyboard layout
// presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
// output the key and we don't see the Alt and Ctrl keys.
if (_is_ctrl_pressed(control_key_state) &&
_is_alt_pressed(control_key_state)
&& (key_event->uChar.AsciiChar != '\0')) {
// Try to remove as few bits as possible to improve our chances of
// detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
// Left-Alt + Right-Ctrl + AltGr.
if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
// Remove Right-Alt.
control_key_state &= ~RIGHT_ALT_PRESSED;
// If uChar is set, a Ctrl key is pressed, and Right-Alt is
// pressed, Left-Ctrl is almost always set, except if the user
// presses Right-Ctrl, then AltGr (in that specific order) for
// whatever reason. At any rate, make sure the bit is not set.
control_key_state &= ~LEFT_CTRL_PRESSED;
} else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
// Remove Left-Alt.
control_key_state &= ~LEFT_ALT_PRESSED;
// Whichever Ctrl key is down, remove it from the state. We only
// remove one key, to improve our chances of detecting the
// corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
// Remove Left-Ctrl.
control_key_state &= ~LEFT_CTRL_PRESSED;
} else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
// Remove Right-Ctrl.
control_key_state &= ~RIGHT_CTRL_PRESSED;
}
}
// Note that this logic isn't 100% perfect because Windows doesn't
// allow us to detect all combinations because a physical AltGr key
// press shows up as two bits, plus some combinations are ambiguous
// about what is actually physically pressed.
}
return control_key_state;
}
// If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
// dwControlKeyState for the following keypad keys: period, 0-9. If we detect
// this scenario, set the SHIFT_PRESSED bit so we can add modifiers
// appropriately.
static DWORD _normalize_keypad_control_key_state(const WORD vk,
const DWORD control_key_state) {
if (!_is_numlock_on(control_key_state)) {
return control_key_state;
}
if (!_is_enhanced_key(control_key_state)) {
switch (vk) {
case VK_INSERT: // 0
case VK_DELETE: // .
case VK_END: // 1
case VK_DOWN: // 2
case VK_NEXT: // 3
case VK_LEFT: // 4
case VK_CLEAR: // 5
case VK_RIGHT: // 6
case VK_HOME: // 7
case VK_UP: // 8
case VK_PRIOR: // 9
return control_key_state | SHIFT_PRESSED;
}
}
return control_key_state;
}
static const char* _get_keypad_sequence(const DWORD control_key_state,
const char* const normal, const char* const shifted) {
if (_is_shift_pressed(control_key_state)) {
// Shift is pressed and NumLock is off
return shifted;
} else {
// Shift is not pressed and NumLock is off, or,
// Shift is pressed and NumLock is on, in which case we want the
// NumLock and Shift to neutralize each other, thus, we want the normal
// sequence.
return normal;
}
// If Shift is not pressed and NumLock is on, a different virtual key code
// is returned by Windows, which can be taken care of by a different case
// statement in _console_read().
}
// Write sequence to buf and return the number of bytes written.
static size_t _get_modifier_sequence(char* const buf, const WORD vk,
DWORD control_key_state, const char* const normal) {
// Copy the base sequence into buf.
const size_t len = strlen(normal);
memcpy(buf, normal, len);
int code = 0;
control_key_state = _normalize_keypad_control_key_state(vk,
control_key_state);
if (_is_shift_pressed(control_key_state)) {
code |= 0x1;
}
if (_is_alt_pressed(control_key_state)) { // any alt key pressed
code |= 0x2;
}
if (_is_ctrl_pressed(control_key_state)) { // any control key pressed
code |= 0x4;
}
// If some modifier was held down, then we need to insert the modifier code
if (code != 0) {
if (len == 0) {
// Should be impossible because caller should pass a string of
// non-zero length.
return 0;
}
size_t index = len - 1;
const char lastChar = buf[index];
if (lastChar != '~') {
buf[index++] = '1';
}
buf[index++] = ';'; // modifier separator
// 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
// 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
buf[index++] = '1' + code;
buf[index++] = lastChar; // move ~ (or other last char) to the end
return index;
}
return len;
}
// Write sequence to buf and return the number of bytes written.
static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
const DWORD control_key_state, const char* const normal,
const char shifted) {
if (_is_shift_pressed(control_key_state)) {
// Shift is pressed and NumLock is off
if (shifted != '\0') {
buf[0] = shifted;
return sizeof(buf[0]);
} else {
return 0;
}
} else {
// Shift is not pressed and NumLock is off, or,
// Shift is pressed and NumLock is on, in which case we want the
// NumLock and Shift to neutralize each other, thus, we want the normal
// sequence.
return _get_modifier_sequence(buf, vk, control_key_state, normal);
}
// If Shift is not pressed and NumLock is on, a different virtual key code
// is returned by Windows, which can be taken care of by a different case
// statement in _console_read().
}
// The decimal key on the keypad produces a '.' for U.S. English and a ',' for
// Standard German. Figure this out at runtime so we know what to output for
// Shift-VK_DELETE.
static char _get_decimal_char() {
return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
}
// Prefix the len bytes in buf with the escape character, and then return the
// new buffer length.
size_t _escape_prefix(char* const buf, const size_t len) {
// If nothing to prefix, don't do anything. We might be called with
// len == 0, if alt was held down with a dead key which produced nothing.
if (len == 0) {
return 0;
}
memmove(&buf[1], buf, len);
buf[0] = '\x1b';
return len + 1;
}
// Writes to buffer buf (of length len), returning number of bytes written or
// -1 on error. Never returns zero because Win32 consoles are never 'closed'
// (as far as I can tell).
static int _console_read(const HANDLE console, void* buf, size_t len) {
for (;;) {
KEY_EVENT_RECORD* const key_event = _get_key_event_record(console);
if (key_event == NULL) {
return -1;
}
const WORD vk = key_event->wVirtualKeyCode;
const CHAR ch = key_event->uChar.AsciiChar;
const DWORD control_key_state = _normalize_altgr_control_key_state(
key_event);
// The following emulation code should write the output sequence to
// either seqstr or to seqbuf and seqbuflen.