blob: 50b6e78db0e5969a0113181be8b21988957cf883 [file] [log] [blame]
/*
* Copyright (C) 2016, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <unistd.h>
#include <algorithm>
#include <cstring>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include "android-base/unique_fd.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "wifilogd/byte_buffer.h"
#include "wifilogd/local_utils.h"
#include "wifilogd/protocol.h"
#include "wifilogd/tests/mock_os.h"
#include "wifilogd/command_processor.h"
namespace android {
namespace wifilogd {
namespace {
using ::android::base::unique_fd;
using ::testing::_;
using ::testing::AnyNumber;
using ::testing::AtLeast;
using ::testing::EndsWith;
using ::testing::HasSubstr;
using ::testing::Invoke;
using ::testing::Return;
using ::testing::StartsWith;
using ::testing::StrictMock;
using local_utils::GetMaxVal;
// The CommandBuffer is deliberately larger than the maximal permitted
// command, so that we can test the CommandProcessor's handling of oversized
// inputs.
using CommandBuffer = ByteBuffer<protocol::kMaxMessageSize * 2>;
constexpr size_t kBufferSizeBytes = protocol::kMaxMessageSize * 16;
constexpr char kLogRecordSeparator = '\n';
constexpr size_t kMaxAsciiMessagePayloadLen = protocol::kMaxMessageSize -
sizeof(protocol::Command) -
sizeof(protocol::AsciiMessage);
class CommandProcessorTest : public ::testing::Test {
public:
CommandProcessorTest() {
os_ = new StrictMock<MockOs>();
auto& accumulator = written_to_os_;
ON_CALL(*os_, Write(_, _, _))
.WillByDefault(Invoke(
[&accumulator](int /*fd*/, const void* write_buf, size_t buflen) {
accumulator.append(static_cast<const char*>(write_buf), buflen);
return std::tuple<size_t, Os::Errno>(buflen, 0);
}));
command_processor_ = std::unique_ptr<CommandProcessor>(
new CommandProcessor(kBufferSizeBytes, std::unique_ptr<Os>(os_)));
}
protected:
CommandBuffer BuildAsciiMessageCommandWithAdjustments(
const std::string& tag, const std::string& message,
ssize_t command_payload_len_adjustment,
ssize_t ascii_message_tag_len_adjustment,
ssize_t ascii_message_data_len_adjustment) {
const size_t adjusted_tag_len =
tag.length() + ascii_message_tag_len_adjustment;
const size_t adjusted_data_len =
message.length() + ascii_message_data_len_adjustment;
const auto ascii_message_header =
protocol::AsciiMessage()
.set_tag_len(SAFELY_CLAMP(
adjusted_tag_len, uint8_t, 0,
GetMaxVal<decltype(protocol::AsciiMessage::tag_len)>()))
.set_data_len(SAFELY_CLAMP(
adjusted_data_len, uint16_t, 0,
GetMaxVal<decltype(protocol::AsciiMessage::data_len)>()))
.set_severity(protocol::MessageSeverity::kError);
EXPECT_EQ(adjusted_tag_len, ascii_message_header.tag_len);
EXPECT_EQ(adjusted_data_len, ascii_message_header.data_len);
const size_t payload_len = sizeof(ascii_message_header) + tag.length() +
message.length() +
command_payload_len_adjustment;
const auto command =
protocol::Command()
.set_opcode(protocol::Opcode::kWriteAsciiMessage)
.set_payload_len(SAFELY_CLAMP(
payload_len, uint16_t, 0,
GetMaxVal<decltype(protocol::Command::payload_len)>()));
EXPECT_EQ(payload_len, command.payload_len);
return CommandBuffer()
.AppendOrDie(&command, sizeof(command))
.AppendOrDie(&ascii_message_header, sizeof(ascii_message_header))
.AppendOrDie(tag.data(), tag.length())
.AppendOrDie(message.data(), message.length());
}
CommandBuffer BuildAsciiMessageCommand(const std::string& tag,
const std::string& message) {
return BuildAsciiMessageCommandWithAdjustments(tag, message, 0, 0, 0);
}
bool SendAsciiMessageWithAdjustments(
const std::string& tag, const std::string& message,
ssize_t transport_len_adjustment, ssize_t command_payload_len_adjustment,
ssize_t ascii_message_tag_len_adjustment,
ssize_t ascii_message_data_len_adjustment) {
const CommandBuffer& command_buffer(BuildAsciiMessageCommandWithAdjustments(
tag, message, command_payload_len_adjustment,
ascii_message_tag_len_adjustment, ascii_message_data_len_adjustment));
EXPECT_CALL(*os_, GetTimestamp(CLOCK_MONOTONIC));
EXPECT_CALL(*os_, GetTimestamp(CLOCK_BOOTTIME));
EXPECT_CALL(*os_, GetTimestamp(CLOCK_REALTIME));
return command_processor_->ProcessCommand(
command_buffer.data(), command_buffer.size() + transport_len_adjustment,
Os::kInvalidFd);
}
bool SendAsciiMessage(const std::string& tag, const std::string& message) {
return SendAsciiMessageWithAdjustments(tag, message, 0, 0, 0, 0);
}
bool SendDumpBuffers() {
const auto command = protocol::Command()
.set_opcode(protocol::Opcode::kDumpBuffers)
.set_payload_len(0);
const auto buf = CommandBuffer().AppendOrDie(&command, sizeof(command));
constexpr int kFakeFd = 100;
return command_processor_->ProcessCommand(buf.data(), buf.size(), kFakeFd);
}
std::string written_to_os_; // Must out-live |os_|
std::unique_ptr<CommandProcessor> command_processor_;
// We use a raw pointer to access the mock, since ownership passes
// to |command_processor_|.
StrictMock<MockOs>* os_;
};
} // namespace
// A valid ASCII message should, of course, be processed successfully.
TEST_F(CommandProcessorTest, ProcessCommandOnValidAsciiMessageSucceeds) {
EXPECT_TRUE(SendAsciiMessage("tag", "message"));
}
// If the buffer given to ProcessCommand() is shorter than a protocol::Command,
// then we discard the data.
TEST_F(CommandProcessorTest,
ProcessCommandOnAsciiMessageShorterThanCommandFails) {
const CommandBuffer& command_buffer(
BuildAsciiMessageCommand("tag", "message"));
EXPECT_FALSE(command_processor_->ProcessCommand(
command_buffer.data(), sizeof(protocol::Command) - 1, Os::kInvalidFd));
}
// In all other cases, we save the data we got, and will try to salvage the
// contents when dumping.
TEST_F(CommandProcessorTest, ProcessCommandOnAsciiMessageWithEmtpyTagSucceeds) {
EXPECT_TRUE(SendAsciiMessage("", "message"));
}
TEST_F(CommandProcessorTest,
ProcessCommandOnAsciiMessageWithEmptyMessageSucceeds) {
EXPECT_TRUE(SendAsciiMessage("tag", ""));
}
TEST_F(CommandProcessorTest,
ProcessCommandOnAsciiMessageWithEmptyTagAndMessageSucceeds) {
EXPECT_TRUE(SendAsciiMessage("", ""));
}
TEST_F(CommandProcessorTest,
ProcessCommandOnAsciiMessageWithBadCommandLengthSucceeds) {
EXPECT_TRUE(SendAsciiMessageWithAdjustments("tag", "message", 0, 1, 0, 0));
EXPECT_TRUE(SendAsciiMessageWithAdjustments("tag", "message", 0, -1, 0, 0));
}
TEST_F(CommandProcessorTest,
ProcessCommandOnAsciiMessageWithBadTagLengthSucceeds) {
EXPECT_TRUE(SendAsciiMessageWithAdjustments("tag", "message", 0, 0, 1, 0));
EXPECT_TRUE(SendAsciiMessageWithAdjustments("tag", "message", 0, 0, -1, 0));
}
TEST_F(CommandProcessorTest,
ProcessCommandOnAsciiMessageWithBadMessageLengthSucceeds) {
EXPECT_TRUE(SendAsciiMessageWithAdjustments("tag", "message", 0, 0, 0, 1));
EXPECT_TRUE(SendAsciiMessageWithAdjustments("tag", "message", 0, 0, 0, -1));
}
TEST_F(CommandProcessorTest, ProcessCommandOnOverlyLargeAsciiMessageSucceeds) {
const std::string tag{"tag"};
EXPECT_TRUE(SendAsciiMessage(
tag, std::string(kMaxAsciiMessagePayloadLen - tag.size() + 1, '.')));
}
TEST_F(CommandProcessorTest, ProcessCommandInvalidOpcodeReturnsFailure) {
using opcode_enum_t = decltype(protocol::Command::opcode);
using opcode_integral_t = std::underlying_type<opcode_enum_t>::type;
constexpr auto invalid_opcode = GetMaxVal<opcode_integral_t>();
const auto command =
protocol::Command()
.set_opcode(local_utils::CopyFromBufferOrDie<opcode_enum_t>(
&invalid_opcode, sizeof(invalid_opcode)))
.set_payload_len(0);
const auto buf = CommandBuffer().AppendOrDie(&command, sizeof(command));
constexpr int kFakeFd = 100;
EXPECT_FALSE(
command_processor_->ProcessCommand(buf.data(), buf.size(), kFakeFd));
}
TEST_F(CommandProcessorTest, ProcessCommandSucceedsEvenAfterFillingBuffer) {
const std::string tag{"tag"};
const std::string message(kMaxAsciiMessagePayloadLen - tag.size(), '.');
for (size_t cumulative_payload_bytes = 0;
cumulative_payload_bytes <= kBufferSizeBytes;
cumulative_payload_bytes += (tag.size() + message.size())) {
EXPECT_TRUE(SendAsciiMessage(tag, message));
}
}
TEST_F(CommandProcessorTest,
ProcessCommandDumpBuffersOutputIncludesCorrectlyFormattedTimestamps) {
const CommandBuffer& command_buf(BuildAsciiMessageCommand("tag", "message"));
EXPECT_CALL(*os_, GetTimestamp(CLOCK_MONOTONIC))
.WillOnce(Return(Os::Timestamp{0, 999}));
EXPECT_CALL(*os_, GetTimestamp(CLOCK_BOOTTIME))
.WillOnce(Return(Os::Timestamp{1, 1000}));
EXPECT_CALL(*os_, GetTimestamp(CLOCK_REALTIME))
.WillOnce(Return(Os::Timestamp{123456, 123456000}));
EXPECT_TRUE(command_processor_->ProcessCommand(
command_buf.data(), command_buf.size(), Os::kInvalidFd));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
EXPECT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_, StartsWith("0.000000 1.000001 123456.123456"));
}
TEST_F(CommandProcessorTest, ProcessCommandDumpBuffersSucceedsOnEmptyLog) {
EXPECT_CALL(*os_, Write(_, _, _)).Times(0);
EXPECT_TRUE(SendDumpBuffers());
}
TEST_F(CommandProcessorTest, ProcessCommandDumpBuffersIncludesAllMessages) {
constexpr int kNumMessages = 5;
for (size_t i = 0; i < kNumMessages; ++i) {
ASSERT_TRUE(SendAsciiMessage("tag", "message"));
}
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
EXPECT_TRUE(SendDumpBuffers());
EXPECT_EQ(kNumMessages,
std::count(written_to_os_.begin(), written_to_os_.end(),
kLogRecordSeparator));
}
TEST_F(CommandProcessorTest,
ProcessCommandDumpBuffersAsciiMessageIncludesTagAndMessage) {
ASSERT_TRUE(SendAsciiMessage("tag", "message"));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_, EndsWith("tag message\n"));
}
TEST_F(CommandProcessorTest,
ProcessCommandDumpBuffersAsciiMessageHandlesEmptyTag) {
ASSERT_TRUE(SendAsciiMessage("", "message"));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_, EndsWith("[empty] message\n"));
}
TEST_F(CommandProcessorTest,
ProcessCommandDumpBuffersAsciiMessageHandlesEmptyMessage) {
ASSERT_TRUE(SendAsciiMessage("tag", ""));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_, EndsWith("tag [empty]\n"));
}
TEST_F(CommandProcessorTest,
ProcessCommandDumpBuffersAsciiMessageHandlesEmptyTagAndEmptyMessage) {
ASSERT_TRUE(SendAsciiMessage("", ""));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_, EndsWith("[empty] [empty]\n"));
}
TEST_F(CommandProcessorTest,
ProcessCommandDumpBuffersAsciiMessageSanitizesUnprintableChars) {
ASSERT_TRUE(SendAsciiMessage("\xfftag\xff", "\xffmessage\xff"));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_, EndsWith("?tag? ?message?\n"));
}
TEST_F(
CommandProcessorTest,
ProcessCommandDumpBuffersAsciiMessageHandlesMessageTooShortForAsciiMessage) { // NOLINT(whitespace/line_length)
ASSERT_TRUE(SendAsciiMessageWithAdjustments("", "", -1, 0, 0, 0));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_, EndsWith("[truncated-header]\n"));
}
TEST_F(CommandProcessorTest,
ProcessCommandDumpBuffersAsciiMessageHandlesMessageTooShortForTagStart) {
constexpr char kTag[] = "tag";
constexpr char kMessage[] = "message";
ASSERT_TRUE(SendAsciiMessageWithAdjustments(
kTag, kMessage, -(std::strlen(kTag) + std::strlen(kMessage)), 0, 0, 0));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_, EndsWith("[buffer-overrun] [buffer-overrun]\n"));
}
TEST_F(CommandProcessorTest,
ProcessCommandDumpBuffersAsciiMessageHandlesMessageTooShortForTagEnd) {
constexpr char kTag[] = "tag";
constexpr char kMessage[] = "message";
ASSERT_TRUE(SendAsciiMessageWithAdjustments(
kTag, kMessage, -(1 + std::strlen(kMessage)), 0, 0, 0));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_,
EndsWith("ta[buffer-overrun] [buffer-overrun]\n"));
}
TEST_F(
CommandProcessorTest,
ProcessCommandDumpBuffersAsciiMessageHandlesMessageTooShortForLogMessageStart) { // NOLINT(whitespace/line_length)
constexpr char kTag[] = "tag";
constexpr char kMessage[] = "message";
ASSERT_TRUE(SendAsciiMessageWithAdjustments(kTag, kMessage,
-std::strlen(kMessage), 0, 0, 0));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_, EndsWith("tag [buffer-overrun]\n"));
}
TEST_F(
CommandProcessorTest,
ProcessCommandDumpBuffersAsciiMessageHandlesMessageTooShortForLogMessageEnd) { // NOLINT(whitespace/line_length)
ASSERT_TRUE(SendAsciiMessageWithAdjustments("tag", "message", -1, 0, 0, 0));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_, EndsWith("tag messag[buffer-overrun]\n"));
}
TEST_F(CommandProcessorTest,
ProcessCommandDumpBuffersAsciiMessageHandlesMessageTooLongForTag) {
ASSERT_TRUE(SendAsciiMessageWithAdjustments("tag", "", 100, 0, 0, 0));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_, EndsWith("tag [empty]\n"));
}
TEST_F(CommandProcessorTest,
ProcessCommandDumpBuffersAsciiMessageHandlesMessageTooLongForMessage) {
ASSERT_TRUE(SendAsciiMessageWithAdjustments("tag", "message", 100, 0, 0, 0));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
EXPECT_THAT(written_to_os_, EndsWith("tag message\n"));
}
TEST_F(CommandProcessorTest, ProcessCommandDumpBuffersStopsAfterFirstError) {
ASSERT_TRUE(SendAsciiMessage("tag", "message"));
ASSERT_TRUE(SendAsciiMessage("tag", "message"));
EXPECT_CALL(*os_, Write(_, _, _))
.WillOnce(Return(std::tuple<size_t, Os::Errno>{-1, EBADF}));
ASSERT_FALSE(SendDumpBuffers());
}
TEST_F(CommandProcessorTest, ProcessCommandDumpBuffersContinuesPastEintr) {
constexpr int kNumMessages = 5;
for (size_t i = 0; i < kNumMessages; ++i) {
ASSERT_TRUE(SendAsciiMessage("tag", "message"));
}
std::string written_to_os;
EXPECT_CALL(*os_, Write(_, _, _))
.WillRepeatedly(Invoke(
[&written_to_os](int /*fd*/, const void* write_buf, size_t buflen) {
written_to_os.append(static_cast<const char*>(write_buf), buflen);
return std::tuple<size_t, Os::Errno>{buflen / 2, EINTR};
}));
EXPECT_TRUE(SendDumpBuffers());
EXPECT_EQ(kNumMessages, std::count(written_to_os.begin(), written_to_os.end(),
kLogRecordSeparator));
}
TEST_F(CommandProcessorTest, ProcessCommandDumpBuffersIsIdempotent) {
ASSERT_TRUE(SendAsciiMessage("tag", "message"));
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
ASSERT_TRUE(SendDumpBuffers());
ASSERT_GT(written_to_os_.size(), 0U);
written_to_os_.clear();
ASSERT_EQ(0U, written_to_os_.size());
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
EXPECT_TRUE(SendDumpBuffers());
EXPECT_GT(written_to_os_.size(), 0U);
}
TEST_F(CommandProcessorTest,
ProcessCommandDumpBuffersIsIdempotentEvenWithWriteFailure) {
ASSERT_TRUE(SendAsciiMessage("tag", "message"));
EXPECT_CALL(*os_, Write(_, _, _))
.WillOnce(Return(std::tuple<size_t, Os::Errno>{-1, EBADF}));
ASSERT_FALSE(SendDumpBuffers());
ASSERT_EQ(0U, written_to_os_.size());
EXPECT_CALL(*os_, Write(_, _, _)).Times(AtLeast(1));
EXPECT_TRUE(SendDumpBuffers());
EXPECT_GT(written_to_os_.size(), 0U);
}
// Strictly speaking, this is not a unit test. But there's no easy way to get
// unique_fd to call on an instance of our Os.
TEST_F(CommandProcessorTest, ProcessCommandClosesFd) {
int pipe_fds[2];
ASSERT_EQ(0, pipe(pipe_fds));
const unique_fd our_fd{pipe_fds[0]};
const int their_fd = pipe_fds[1];
const CommandBuffer& command_buffer(
BuildAsciiMessageCommand("tag", "message"));
EXPECT_CALL(*os_, GetTimestamp(_)).Times(AnyNumber());
EXPECT_TRUE(command_processor_->ProcessCommand(
command_buffer.data(), command_buffer.size(), their_fd));
EXPECT_EQ(-1, close(their_fd));
EXPECT_EQ(EBADF, errno);
}
// Strictly speaking, this is not a unit test. But there's no easy way to get
// unique_fd to call on an instance of our Os.
TEST_F(CommandProcessorTest, ProcessCommandClosesFdEvenOnFailure) {
int pipe_fds[2];
ASSERT_EQ(0, pipe(pipe_fds));
const unique_fd our_fd{pipe_fds[0]};
const int their_fd = pipe_fds[1];
const CommandBuffer command_buffer;
EXPECT_FALSE(command_processor_->ProcessCommand(
command_buffer.data(), command_buffer.size(), their_fd));
EXPECT_EQ(-1, close(their_fd));
EXPECT_EQ(EBADF, errno);
}
} // namespace wifilogd
} // namespace android