blob: c31249dc74a1dc63cbabac516a305186f7ae18ef [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "wificond/net/netlink_utils.h"
#include <array>
#include <algorithm>
#include <bitset>
#include <map>
#include <string>
#include <vector>
#include <net/if.h>
#include <linux/netlink.h>
#include <android-base/logging.h>
#include "wificond/net/kernel-header-latest/nl80211.h"
#include "wificond/net/mlme_event_handler.h"
#include "wificond/net/nl80211_packet.h"
using std::array;
using std::make_pair;
using std::make_unique;
using std::map;
using std::move;
using std::pair;
using std::string;
using std::unique_ptr;
using std::vector;
namespace android {
namespace wificond {
namespace {
uint32_t k2GHzFrequencyLowerBound = 2400;
uint32_t k2GHzFrequencyUpperBound = 2500;
uint32_t k5GHzFrequencyLowerBound = 5000;
// This upper bound will exclude any 5.9Ghz channels which belong to 802.11p
// for "vehicular communication systems".
uint32_t k5GHzFrequencyUpperBound = 5865;
uint32_t k6GHzFrequencyLowerBound = 5925;
uint32_t k6GHzFrequencyUpperBound = 7125;
constexpr uint8_t kHtMcsSetNumByte = 16;
constexpr uint8_t kVhtMcsSetNumByte = 8;
constexpr uint8_t kHeMcsSetNumByteMin = 4;
constexpr uint8_t kMaxStreams = 8;
constexpr uint8_t kVht160MhzBitMask = 0x4;
constexpr uint8_t kVht80p80MhzBitMask = 0x8;
// Some old Linux kernel versions set it to 9.
// 9 is OK because only 1st byte is used
constexpr uint8_t kHeCapPhyNumByte = 9; // Should be 11
constexpr uint8_t kHe160MhzBitMask = 0x8;
constexpr uint8_t kHe80p80MhzBitMask = 0x10;
bool IsExtFeatureFlagSet(
const std::vector<uint8_t>& ext_feature_flags_bytes,
enum nl80211_ext_feature_index ext_feature_flag) {
static_assert(NUM_NL80211_EXT_FEATURES <= SIZE_MAX,
"Ext feature values doesn't fit in |size_t|");
// TODO:This is an unsafe cast because this assumes that the values
// are always unsigned!
size_t ext_feature_flag_idx = static_cast<size_t>(ext_feature_flag);
size_t ext_feature_flag_byte_pos = ext_feature_flag_idx / 8;
size_t ext_feature_flag_bit_pos = ext_feature_flag_idx % 8;
if (ext_feature_flag_byte_pos >= ext_feature_flags_bytes.size()) {
return false;
}
uint8_t ext_feature_flag_byte =
ext_feature_flags_bytes[ext_feature_flag_byte_pos];
return (ext_feature_flag_byte & (1U << ext_feature_flag_bit_pos));
}
} // namespace
WiphyFeatures::WiphyFeatures(uint32_t feature_flags,
const std::vector<uint8_t>& ext_feature_flags_bytes)
: supports_random_mac_oneshot_scan(
feature_flags & NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR),
supports_random_mac_sched_scan(
feature_flags & NL80211_FEATURE_SCHED_SCAN_RANDOM_MAC_ADDR) {
supports_low_span_oneshot_scan =
IsExtFeatureFlagSet(ext_feature_flags_bytes,
NL80211_EXT_FEATURE_LOW_SPAN_SCAN);
supports_low_power_oneshot_scan =
IsExtFeatureFlagSet(ext_feature_flags_bytes,
NL80211_EXT_FEATURE_LOW_POWER_SCAN);
supports_high_accuracy_oneshot_scan =
IsExtFeatureFlagSet(ext_feature_flags_bytes,
NL80211_EXT_FEATURE_HIGH_ACCURACY_SCAN);
// TODO (b/112029045) check if sending frame at specified MCS is supported
supports_tx_mgmt_frame_mcs = false;
supports_ext_sched_scan_relative_rssi =
IsExtFeatureFlagSet(ext_feature_flags_bytes,
NL80211_EXT_FEATURE_SCHED_SCAN_RELATIVE_RSSI);
}
NetlinkUtils::NetlinkUtils(NetlinkManager* netlink_manager)
: netlink_manager_(netlink_manager) {
if (!netlink_manager_->IsStarted()) {
netlink_manager_->Start();
}
uint32_t protocol_features = 0;
supports_split_wiphy_dump_ = GetProtocolFeatures(&protocol_features) &&
(protocol_features & NL80211_PROTOCOL_FEATURE_SPLIT_WIPHY_DUMP);
}
NetlinkUtils::~NetlinkUtils() {}
bool NetlinkUtils::GetWiphyIndex(uint32_t* out_wiphy_index,
const std::string& iface_name) {
NL80211Packet get_wiphy(
netlink_manager_->GetFamilyId(),
NL80211_CMD_GET_WIPHY,
netlink_manager_->GetSequenceNumber(),
getpid());
get_wiphy.AddFlag(NLM_F_DUMP);
if (!iface_name.empty()) {
int ifindex = if_nametoindex(iface_name.c_str());
get_wiphy.AddAttribute(NL80211Attr<uint32_t>(NL80211_ATTR_IFINDEX, ifindex));
}
vector<unique_ptr<const NL80211Packet>> response;
if (!netlink_manager_->SendMessageAndGetResponses(get_wiphy, &response)) {
LOG(ERROR) << "NL80211_CMD_GET_WIPHY dump failed";
return false;
}
if (response.empty()) {
LOG(DEBUG) << "No wiphy is found";
return false;
}
for (auto& packet : response) {
if (packet->GetMessageType() == NLMSG_ERROR) {
LOG(ERROR) << "Receive ERROR message: "
<< strerror(packet->GetErrorCode());
return false;
}
if (packet->GetMessageType() != netlink_manager_->GetFamilyId()) {
LOG(ERROR) << "Wrong message type for new interface message: "
<< packet->GetMessageType();
return false;
}
if (packet->GetCommand() != NL80211_CMD_NEW_WIPHY) {
LOG(ERROR) << "Wrong command in response to "
<< "a wiphy dump request: "
<< static_cast<int>(packet->GetCommand());
return false;
}
if (!packet->GetAttributeValue(NL80211_ATTR_WIPHY, out_wiphy_index)) {
LOG(ERROR) << "Failed to get wiphy index from reply message";
return false;
}
}
return true;
}
bool NetlinkUtils::GetWiphyIndex(uint32_t* out_wiphy_index) {
return GetWiphyIndex(out_wiphy_index, "");
}
bool NetlinkUtils::GetInterfaces(uint32_t wiphy_index,
vector<InterfaceInfo>* interface_info) {
NL80211Packet get_interfaces(
netlink_manager_->GetFamilyId(),
NL80211_CMD_GET_INTERFACE,
netlink_manager_->GetSequenceNumber(),
getpid());
get_interfaces.AddFlag(NLM_F_DUMP);
get_interfaces.AddAttribute(
NL80211Attr<uint32_t>(NL80211_ATTR_WIPHY, wiphy_index));
vector<unique_ptr<const NL80211Packet>> response;
if (!netlink_manager_->SendMessageAndGetResponses(get_interfaces, &response)) {
LOG(ERROR) << "NL80211_CMD_GET_INTERFACE dump failed";
return false;
}
if (response.empty()) {
LOG(ERROR) << "No interface is found";
return false;
}
for (auto& packet : response) {
if (packet->GetMessageType() == NLMSG_ERROR) {
LOG(ERROR) << "Receive ERROR message: "
<< strerror(packet->GetErrorCode());
return false;
}
if (packet->GetMessageType() != netlink_manager_->GetFamilyId()) {
LOG(ERROR) << "Wrong message type for new interface message: "
<< packet->GetMessageType();
return false;
}
if (packet->GetCommand() != NL80211_CMD_NEW_INTERFACE) {
LOG(ERROR) << "Wrong command in response to "
<< "an interface dump request: "
<< static_cast<int>(packet->GetCommand());
return false;
}
// In some situations, it has been observed that the kernel tells us
// about a pseudo interface that does not have a real netdev. In this
// case, responses will have a NL80211_ATTR_WDEV, and not the expected
// IFNAME/IFINDEX. In this case we just skip these pseudo interfaces.
uint32_t if_index;
if (!packet->GetAttributeValue(NL80211_ATTR_IFINDEX, &if_index)) {
LOG(DEBUG) << "Failed to get interface index";
continue;
}
// Today we don't check NL80211_ATTR_IFTYPE because at this point of time
// driver always reports that interface is in STATION mode. Even when we
// are asking interfaces infomation on behalf of tethering, it is still so
// because hostapd is supposed to set interface to AP mode later.
string if_name;
if (!packet->GetAttributeValue(NL80211_ATTR_IFNAME, &if_name)) {
LOG(WARNING) << "Failed to get interface name";
continue;
}
array<uint8_t, ETH_ALEN> if_mac_addr;
if (!packet->GetAttributeValue(NL80211_ATTR_MAC, &if_mac_addr)) {
LOG(WARNING) << "Failed to get interface mac address";
continue;
}
interface_info->emplace_back(if_index, if_name, if_mac_addr);
}
return true;
}
bool NetlinkUtils::SetInterfaceMode(uint32_t interface_index,
InterfaceMode mode) {
uint32_t set_to_mode = NL80211_IFTYPE_UNSPECIFIED;
if (mode == STATION_MODE) {
set_to_mode = NL80211_IFTYPE_STATION;
} else {
LOG(ERROR) << "Unexpected mode for interface with index: "
<< interface_index;
return false;
}
NL80211Packet set_interface_mode(
netlink_manager_->GetFamilyId(),
NL80211_CMD_SET_INTERFACE,
netlink_manager_->GetSequenceNumber(),
getpid());
// Force an ACK response upon success.
set_interface_mode.AddFlag(NLM_F_ACK);
set_interface_mode.AddAttribute(
NL80211Attr<uint32_t>(NL80211_ATTR_IFINDEX, interface_index));
set_interface_mode.AddAttribute(
NL80211Attr<uint32_t>(NL80211_ATTR_IFTYPE, set_to_mode));
if (!netlink_manager_->SendMessageAndGetAck(set_interface_mode)) {
LOG(ERROR) << "NL80211_CMD_SET_INTERFACE failed";
return false;
}
return true;
}
bool NetlinkUtils::GetProtocolFeatures(uint32_t* features) {
NL80211Packet get_protocol_features(
netlink_manager_->GetFamilyId(),
NL80211_CMD_GET_PROTOCOL_FEATURES,
netlink_manager_->GetSequenceNumber(),
getpid());
unique_ptr<const NL80211Packet> response;
if (!netlink_manager_->SendMessageAndGetSingleResponse(get_protocol_features,
&response)) {
LOG(ERROR) << "NL80211_CMD_GET_PROTOCOL_FEATURES failed";
return false;
}
if (!response->GetAttributeValue(NL80211_ATTR_PROTOCOL_FEATURES, features)) {
LOG(ERROR) << "Failed to get NL80211_ATTR_PROTOCOL_FEATURES";
return false;
}
return true;
}
bool NetlinkUtils::GetWiphyInfo(
uint32_t wiphy_index,
BandInfo* out_band_info,
ScanCapabilities* out_scan_capabilities,
WiphyFeatures* out_wiphy_features) {
NL80211Packet get_wiphy(
netlink_manager_->GetFamilyId(),
NL80211_CMD_GET_WIPHY,
netlink_manager_->GetSequenceNumber(),
getpid());
get_wiphy.AddAttribute(NL80211Attr<uint32_t>(NL80211_ATTR_WIPHY, wiphy_index));
if (supports_split_wiphy_dump_) {
get_wiphy.AddFlagAttribute(NL80211_ATTR_SPLIT_WIPHY_DUMP);
get_wiphy.AddFlag(NLM_F_DUMP);
}
vector<unique_ptr<const NL80211Packet>> response;
if (!netlink_manager_->SendMessageAndGetResponses(get_wiphy, &response)) {
LOG(ERROR) << "NL80211_CMD_GET_WIPHY dump failed";
return false;
}
vector<NL80211Packet> packet_per_wiphy;
if (supports_split_wiphy_dump_) {
if (!MergePacketsForSplitWiphyDump(response, &packet_per_wiphy)) {
LOG(WARNING) << "Failed to merge responses from split wiphy dump";
}
} else {
for (auto& packet : response) {
packet_per_wiphy.push_back(move(*(packet.release())));
}
}
for (const auto& packet : packet_per_wiphy) {
uint32_t current_wiphy_index;
if (!packet.GetAttributeValue(NL80211_ATTR_WIPHY, &current_wiphy_index) ||
// Not the wihpy we requested.
current_wiphy_index != wiphy_index) {
continue;
}
if (ParseWiphyInfoFromPacket(packet, out_band_info,
out_scan_capabilities, out_wiphy_features)) {
return true;
}
}
LOG(ERROR) << "Failed to find expected wiphy info "
<< "from NL80211_CMD_GET_WIPHY responses";
return false;
}
bool NetlinkUtils::ParseWiphyInfoFromPacket(
const NL80211Packet& packet,
BandInfo* out_band_info,
ScanCapabilities* out_scan_capabilities,
WiphyFeatures* out_wiphy_features) {
if (packet.GetCommand() != NL80211_CMD_NEW_WIPHY) {
LOG(ERROR) << "Wrong command in response to a get wiphy request: "
<< static_cast<int>(packet.GetCommand());
return false;
}
if (!ParseBandInfo(&packet, out_band_info) ||
!ParseScanCapabilities(&packet, out_scan_capabilities)) {
return false;
}
uint32_t feature_flags;
if (!packet.GetAttributeValue(NL80211_ATTR_FEATURE_FLAGS,
&feature_flags)) {
LOG(ERROR) << "Failed to get NL80211_ATTR_FEATURE_FLAGS";
return false;
}
std::vector<uint8_t> ext_feature_flags_bytes;
if (!packet.GetAttributeValue(NL80211_ATTR_EXT_FEATURES,
&ext_feature_flags_bytes)) {
LOG(WARNING) << "Failed to get NL80211_ATTR_EXT_FEATURES";
}
*out_wiphy_features = WiphyFeatures(feature_flags,
ext_feature_flags_bytes);
return true;
}
bool NetlinkUtils::ParseScanCapabilities(
const NL80211Packet* const packet,
ScanCapabilities* out_scan_capabilities) {
uint8_t max_num_scan_ssids;
if (!packet->GetAttributeValue(NL80211_ATTR_MAX_NUM_SCAN_SSIDS,
&max_num_scan_ssids)) {
LOG(ERROR) << "Failed to get the capacity of maximum number of scan ssids";
return false;
}
uint8_t max_num_sched_scan_ssids;
if (!packet->GetAttributeValue(NL80211_ATTR_MAX_NUM_SCHED_SCAN_SSIDS,
&max_num_sched_scan_ssids)) {
LOG(ERROR) << "Failed to get the capacity of "
<< "maximum number of scheduled scan ssids";
return false;
}
// Use default value 0 for scan plan capabilities if attributes are missing.
uint32_t max_num_scan_plans = 0;
packet->GetAttributeValue(NL80211_ATTR_MAX_NUM_SCHED_SCAN_PLANS,
&max_num_scan_plans);
uint32_t max_scan_plan_interval = 0;
packet->GetAttributeValue(NL80211_ATTR_MAX_SCAN_PLAN_INTERVAL,
&max_scan_plan_interval);
uint32_t max_scan_plan_iterations = 0;
packet->GetAttributeValue(NL80211_ATTR_MAX_SCAN_PLAN_ITERATIONS,
&max_scan_plan_iterations);
uint8_t max_match_sets;
if (!packet->GetAttributeValue(NL80211_ATTR_MAX_MATCH_SETS,
&max_match_sets)) {
LOG(ERROR) << "Failed to get the capacity of maximum number of match set"
<< "of a scheduled scan";
return false;
}
*out_scan_capabilities = ScanCapabilities(max_num_scan_ssids,
max_num_sched_scan_ssids,
max_match_sets,
max_num_scan_plans,
max_scan_plan_interval,
max_scan_plan_iterations);
return true;
}
bool NetlinkUtils::ParseBandInfo(const NL80211Packet* const packet,
BandInfo* out_band_info) {
NL80211NestedAttr bands_attr(0);
if (!packet->GetAttribute(NL80211_ATTR_WIPHY_BANDS, &bands_attr)) {
LOG(ERROR) << "Failed to get NL80211_ATTR_WIPHY_BANDS";
return false;
}
vector<NL80211NestedAttr> bands;
if (!bands_attr.GetListOfNestedAttributes(&bands)) {
LOG(ERROR) << "Failed to get bands within NL80211_ATTR_WIPHY_BANDS";
return false;
}
*out_band_info = BandInfo();
for (auto& band : bands) {
NL80211NestedAttr freqs_attr(0);
if (band.GetAttribute(NL80211_BAND_ATTR_FREQS, &freqs_attr)) {
handleBandFreqAttributes(freqs_attr, out_band_info);
}
if (band.HasAttribute(NL80211_BAND_ATTR_HT_CAPA)) {
out_band_info->is_80211n_supported = true;
}
if (band.HasAttribute(NL80211_BAND_ATTR_VHT_CAPA)) {
out_band_info->is_80211ac_supported = true;
}
NL80211NestedAttr iftype_data_attr(0);
if (band.GetAttribute(NL80211_BAND_ATTR_IFTYPE_DATA,
&iftype_data_attr)) {
ParseIfTypeDataAttributes(iftype_data_attr, out_band_info);
}
ParseHtVhtPhyCapabilities(band, out_band_info);
}
return true;
}
void NetlinkUtils::ParseIfTypeDataAttributes(
const NL80211NestedAttr& iftype_data_attr,
BandInfo* out_band_info) {
vector<NL80211NestedAttr> attrs;
if (!iftype_data_attr.GetListOfNestedAttributes(&attrs) || attrs.empty()) {
LOG(ERROR) << "Failed to get the list of attributes under iftype_data_attr";
return;
}
NL80211NestedAttr attr = attrs[0];
if (attr.HasAttribute(NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY)) {
out_band_info->is_80211ax_supported = true;
ParseHeCapPhyAttribute(attr, out_band_info);
}
if (attr.HasAttribute(NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET)) {
ParseHeMcsSetAttribute(attr, out_band_info);
}
return;
}
void NetlinkUtils::handleBandFreqAttributes(const NL80211NestedAttr& freqs_attr,
BandInfo* out_band_info) {
vector<NL80211NestedAttr> freqs;
if (!freqs_attr.GetListOfNestedAttributes(&freqs)) {
LOG(ERROR) << "Failed to get frequency attributes";
return;
}
for (auto& freq : freqs) {
uint32_t frequency_value;
if (!freq.GetAttributeValue(NL80211_FREQUENCY_ATTR_FREQ,
&frequency_value)) {
LOG(DEBUG) << "Failed to get NL80211_FREQUENCY_ATTR_FREQ";
continue;
}
// Channel is disabled in current regulatory domain.
if (freq.HasAttribute(NL80211_FREQUENCY_ATTR_DISABLED)) {
continue;
}
if (frequency_value > k2GHzFrequencyLowerBound &&
frequency_value < k2GHzFrequencyUpperBound) {
out_band_info->band_2g.push_back(frequency_value);
} else if (frequency_value > k5GHzFrequencyLowerBound &&
frequency_value <= k5GHzFrequencyUpperBound) {
// If this is an available/usable DFS frequency, we should save it to
// DFS frequencies list.
uint32_t dfs_state;
if (freq.GetAttributeValue(NL80211_FREQUENCY_ATTR_DFS_STATE,
&dfs_state) &&
(dfs_state == NL80211_DFS_AVAILABLE ||
dfs_state == NL80211_DFS_USABLE)) {
out_band_info->band_dfs.push_back(frequency_value);
continue;
}
// Put non-dfs passive-only channels into the dfs category.
// This aligns with what framework always assumes.
if (freq.HasAttribute(NL80211_FREQUENCY_ATTR_NO_IR)) {
out_band_info->band_dfs.push_back(frequency_value);
continue;
}
// Otherwise, this is a regular 5g frequency.
out_band_info->band_5g.push_back(frequency_value);
} else if (frequency_value > k6GHzFrequencyLowerBound &&
frequency_value < k6GHzFrequencyUpperBound) {
out_band_info->band_6g.push_back(frequency_value);
}
}
}
void NetlinkUtils::ParseHtVhtPhyCapabilities(const NL80211NestedAttr& band,
BandInfo* out_band_info) {
ParseHtMcsSetAttribute(band, out_band_info);
ParseVhtMcsSetAttribute(band, out_band_info);
ParseVhtCapAttribute(band, out_band_info);
}
void NetlinkUtils::ParseHtMcsSetAttribute(const NL80211NestedAttr& band,
BandInfo* out_band_info) {
vector<uint8_t> ht_mcs_set;
if (!band.GetAttributeValue(NL80211_BAND_ATTR_HT_MCS_SET, &ht_mcs_set)) {
return;
}
if (ht_mcs_set.size() < kHtMcsSetNumByte) {
LOG(ERROR) << "HT MCS set size is incorrect";
return;
}
pair<uint32_t, uint32_t> max_streams_ht = ParseHtMcsSet(ht_mcs_set);
out_band_info->max_tx_streams = std::max(out_band_info->max_tx_streams,
max_streams_ht.first);
out_band_info->max_rx_streams = std::max(out_band_info->max_rx_streams,
max_streams_ht.second);
}
pair<uint32_t, uint32_t> NetlinkUtils::ParseHtMcsSet(
const vector<uint8_t>& ht_mcs_set) {
uint32_t max_rx_streams = 1;
for (int i = 4; i >= 1; i--) {
if (ht_mcs_set[i - 1] > 0) {
max_rx_streams = i;
break;
}
}
uint32_t max_tx_streams = max_rx_streams;
uint8_t supported_tx_mcs_set = ht_mcs_set[12];
uint8_t tx_mcs_set_defined = supported_tx_mcs_set & 0x1;
uint8_t tx_rx_mcs_set_not_equal = (supported_tx_mcs_set >> 1) & 0x1;
if (tx_mcs_set_defined && tx_rx_mcs_set_not_equal) {
uint8_t max_nss_tx_field_value = (supported_tx_mcs_set >> 2) & 0x3;
// The maximum number of Tx streams is 1 more than the field value.
max_tx_streams = max_nss_tx_field_value + 1;
}
return std::make_pair(max_tx_streams, max_rx_streams);
}
void NetlinkUtils::ParseVhtMcsSetAttribute(const NL80211NestedAttr& band,
BandInfo* out_band_info) {
vector<uint8_t> vht_mcs_set;
if (!band.GetAttributeValue(NL80211_BAND_ATTR_VHT_MCS_SET, &vht_mcs_set)) {
return;
}
if (vht_mcs_set.size() < kVhtMcsSetNumByte) {
LOG(ERROR) << "VHT MCS set size is incorrect";
return;
}
uint16_t vht_mcs_set_rx = (vht_mcs_set[1] << 8) | vht_mcs_set[0];
uint32_t max_rx_streams_vht = ParseMcsMap(vht_mcs_set_rx);
uint16_t vht_mcs_set_tx = (vht_mcs_set[5] << 8) | vht_mcs_set[4];
uint32_t max_tx_streams_vht = ParseMcsMap(vht_mcs_set_tx);
out_band_info->max_tx_streams = std::max(out_band_info->max_tx_streams,
max_tx_streams_vht);
out_band_info->max_rx_streams = std::max(out_band_info->max_rx_streams,
max_rx_streams_vht);
}
void NetlinkUtils::ParseHeMcsSetAttribute(const NL80211NestedAttr& attribute,
BandInfo* out_band_info) {
vector<uint8_t> he_mcs_set;
if (!attribute.GetAttributeValue(
NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET,
&he_mcs_set)) {
LOG(ERROR) << " HE MCS set is not found ";
return;
}
if (he_mcs_set.size() < kHeMcsSetNumByteMin) {
LOG(ERROR) << "HE MCS set size is incorrect";
return;
}
uint16_t he_mcs_map_rx = (he_mcs_set[1] << 8) | he_mcs_set[0];
uint32_t max_rx_streams_he = ParseMcsMap(he_mcs_map_rx);
uint16_t he_mcs_map_tx = (he_mcs_set[3] << 8) | he_mcs_set[2];
uint32_t max_tx_streams_he = ParseMcsMap(he_mcs_map_tx);
out_band_info->max_tx_streams = std::max(out_band_info->max_tx_streams,
max_tx_streams_he);
out_band_info->max_rx_streams = std::max(out_band_info->max_rx_streams,
max_rx_streams_he);
}
uint32_t NetlinkUtils::ParseMcsMap(uint16_t mcs_map)
{
uint32_t max_nss = 1;
for (int i = kMaxStreams; i >= 1; i--) {
uint16_t stream_map = (mcs_map >> ((i - 1) * 2)) & 0x3;
// 0x3 means unsupported
if (stream_map != 0x3) {
max_nss = i;
break;
}
}
return max_nss;
}
void NetlinkUtils::ParseVhtCapAttribute(const NL80211NestedAttr& band,
BandInfo* out_band_info) {
uint32_t vht_cap;
if (!band.GetAttributeValue(NL80211_BAND_ATTR_VHT_CAPA, &vht_cap)) {
return;
}
if (vht_cap & kVht160MhzBitMask) {
out_band_info->is_160_mhz_supported = true;
}
if (vht_cap & kVht80p80MhzBitMask) {
out_band_info->is_80p80_mhz_supported = true;
}
}
void NetlinkUtils::ParseHeCapPhyAttribute(const NL80211NestedAttr& attribute,
BandInfo* out_band_info) {
vector<uint8_t> he_cap_phy;
if (!attribute.GetAttributeValue(
NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY,
&he_cap_phy)) {
LOG(ERROR) << " HE CAP PHY is not found";
return;
}
if (he_cap_phy.size() < kHeCapPhyNumByte) {
LOG(ERROR) << "HE Cap PHY size is incorrect";
return;
}
if (he_cap_phy[0] & kHe160MhzBitMask) {
out_band_info->is_160_mhz_supported = true;
}
if (he_cap_phy[0] & kHe80p80MhzBitMask) {
out_band_info->is_80p80_mhz_supported = true;
}
}
bool NetlinkUtils::GetStationInfo(uint32_t interface_index,
const array<uint8_t, ETH_ALEN>& mac_address,
StationInfo* out_station_info) {
NL80211Packet get_station(
netlink_manager_->GetFamilyId(),
NL80211_CMD_GET_STATION,
netlink_manager_->GetSequenceNumber(),
getpid());
get_station.AddAttribute(NL80211Attr<uint32_t>(NL80211_ATTR_IFINDEX,
interface_index));
get_station.AddAttribute(NL80211Attr<array<uint8_t, ETH_ALEN>>(
NL80211_ATTR_MAC, mac_address));
unique_ptr<const NL80211Packet> response;
if (!netlink_manager_->SendMessageAndGetSingleResponse(get_station,
&response)) {
LOG(ERROR) << "NL80211_CMD_GET_STATION failed";
return false;
}
if (response->GetCommand() != NL80211_CMD_NEW_STATION) {
LOG(ERROR) << "Wrong command in response to a get station request: "
<< static_cast<int>(response->GetCommand());
return false;
}
NL80211NestedAttr sta_info(0);
if (!response->GetAttribute(NL80211_ATTR_STA_INFO, &sta_info)) {
LOG(ERROR) << "Failed to get NL80211_ATTR_STA_INFO";
return false;
}
int32_t tx_good, tx_bad;
if (!sta_info.GetAttributeValue(NL80211_STA_INFO_TX_PACKETS, &tx_good)) {
LOG(ERROR) << "Failed to get NL80211_STA_INFO_TX_PACKETS";
return false;
}
if (!sta_info.GetAttributeValue(NL80211_STA_INFO_TX_FAILED, &tx_bad)) {
LOG(ERROR) << "Failed to get NL80211_STA_INFO_TX_FAILED";
return false;
}
int8_t current_rssi;
if (!sta_info.GetAttributeValue(NL80211_STA_INFO_SIGNAL, &current_rssi)) {
LOG(ERROR) << "Failed to get NL80211_STA_INFO_SIGNAL";
return false;
}
NL80211NestedAttr tx_bitrate_attr(0);
uint32_t tx_bitrate = 0;
if (sta_info.GetAttribute(NL80211_STA_INFO_TX_BITRATE,
&tx_bitrate_attr)) {
if (!tx_bitrate_attr.GetAttributeValue(NL80211_RATE_INFO_BITRATE32,
&tx_bitrate)) {
// Return invalid tx rate to avoid breaking the get station cmd
tx_bitrate = 0;
}
}
NL80211NestedAttr rx_bitrate_attr(0);
uint32_t rx_bitrate = 0;
if (sta_info.GetAttribute(NL80211_STA_INFO_RX_BITRATE,
&rx_bitrate_attr)) {
if (!rx_bitrate_attr.GetAttributeValue(NL80211_RATE_INFO_BITRATE32,
&rx_bitrate)) {
// Return invalid rx rate to avoid breaking the get station cmd
rx_bitrate = 0;
}
}
*out_station_info = StationInfo(tx_good, tx_bad, tx_bitrate, current_rssi, rx_bitrate);
return true;
}
// This is a helper function for merging split NL80211_CMD_NEW_WIPHY packets.
// For example:
// First NL80211_CMD_NEW_WIPHY has attribute A with payload 0x1234.
// Second NL80211_CMD_NEW_WIPHY has attribute A with payload 0x5678.
// The generated NL80211_CMD_NEW_WIPHY will have attribute A with
// payload 0x12345678.
// NL80211_ATTR_WIPHY, NL80211_ATTR_IFINDEX, and NL80211_ATTR_WDEV
// are used for filtering packets so we know which packets should
// be merged together.
bool NetlinkUtils::MergePacketsForSplitWiphyDump(
const vector<unique_ptr<const NL80211Packet>>& split_dump_info,
vector<NL80211Packet>* packet_per_wiphy) {
map<uint32_t, map<int, BaseNL80211Attr>> attr_by_wiphy_and_id;
// Construct the map using input packets.
for (const auto& packet : split_dump_info) {
uint32_t wiphy_index;
if (!packet->GetAttributeValue(NL80211_ATTR_WIPHY, &wiphy_index)) {
LOG(ERROR) << "Failed to get NL80211_ATTR_WIPHY from wiphy split dump";
return false;
}
vector<BaseNL80211Attr> attributes;
if (!packet->GetAllAttributes(&attributes)) {
return false;
}
for (auto& attr : attributes) {
int attr_id = attr.GetAttributeId();
if (attr_id != NL80211_ATTR_WIPHY &&
attr_id != NL80211_ATTR_IFINDEX &&
attr_id != NL80211_ATTR_WDEV) {
auto attr_id_and_attr =
attr_by_wiphy_and_id[wiphy_index].find(attr_id);
if (attr_id_and_attr == attr_by_wiphy_and_id[wiphy_index].end()) {
attr_by_wiphy_and_id[wiphy_index].
insert(make_pair(attr_id, move(attr)));
} else {
attr_id_and_attr->second.Merge(attr);
}
}
}
}
// Generate output packets using the constructed map.
for (const auto& wiphy_and_attributes : attr_by_wiphy_and_id) {
NL80211Packet new_wiphy(0, NL80211_CMD_NEW_WIPHY, 0, 0);
new_wiphy.AddAttribute(
NL80211Attr<uint32_t>(NL80211_ATTR_WIPHY, wiphy_and_attributes.first));
for (const auto& attr : wiphy_and_attributes.second) {
new_wiphy.AddAttribute(attr.second);
}
packet_per_wiphy->emplace_back(move(new_wiphy));
}
return true;
}
bool NetlinkUtils::GetCountryCode(string* out_country_code) {
NL80211Packet get_country_code(
netlink_manager_->GetFamilyId(),
NL80211_CMD_GET_REG,
netlink_manager_->GetSequenceNumber(),
getpid());
unique_ptr<const NL80211Packet> response;
if (!netlink_manager_->SendMessageAndGetSingleResponse(get_country_code,
&response)) {
LOG(ERROR) << "NL80211_CMD_GET_REG failed";
return false;
}
if (!response->GetAttributeValue(NL80211_ATTR_REG_ALPHA2, out_country_code)) {
LOG(ERROR) << "Get NL80211_ATTR_REG_ALPHA2 failed";
return false;
}
return true;
}
bool NetlinkUtils::SendMgmtFrame(uint32_t interface_index,
const vector<uint8_t>& frame, int32_t mcs, uint64_t* out_cookie) {
NL80211Packet send_mgmt_frame(
netlink_manager_->GetFamilyId(),
NL80211_CMD_FRAME,
netlink_manager_->GetSequenceNumber(),
getpid());
send_mgmt_frame.AddAttribute(
NL80211Attr<uint32_t>(NL80211_ATTR_IFINDEX, interface_index));
send_mgmt_frame.AddAttribute(
NL80211Attr<vector<uint8_t>>(NL80211_ATTR_FRAME, frame));
if (mcs >= 0) {
// TODO (b/112029045) if mcs >= 0, add MCS attribute
}
unique_ptr<const NL80211Packet> response;
if (!netlink_manager_->SendMessageAndGetSingleResponse(
send_mgmt_frame, &response)) {
LOG(ERROR) << "NL80211_CMD_FRAME failed";
return false;
}
if (!response->GetAttributeValue(NL80211_ATTR_COOKIE, out_cookie)) {
LOG(ERROR) << "Get NL80211_ATTR_COOKIE failed";
return false;
}
return true;
}
void NetlinkUtils::SubscribeMlmeEvent(uint32_t interface_index,
MlmeEventHandler* handler) {
netlink_manager_->SubscribeMlmeEvent(interface_index, handler);
}
void NetlinkUtils::UnsubscribeMlmeEvent(uint32_t interface_index) {
netlink_manager_->UnsubscribeMlmeEvent(interface_index);
}
void NetlinkUtils::SubscribeRegDomainChange(
uint32_t wiphy_index,
OnRegDomainChangedHandler handler) {
netlink_manager_->SubscribeRegDomainChange(wiphy_index, handler);
}
void NetlinkUtils::UnsubscribeRegDomainChange(uint32_t wiphy_index) {
netlink_manager_->UnsubscribeRegDomainChange(wiphy_index);
}
void NetlinkUtils::SubscribeStationEvent(uint32_t interface_index,
OnStationEventHandler handler) {
netlink_manager_->SubscribeStationEvent(interface_index, handler);
}
void NetlinkUtils::UnsubscribeStationEvent(uint32_t interface_index) {
netlink_manager_->UnsubscribeStationEvent(interface_index);
}
void NetlinkUtils::SubscribeChannelSwitchEvent(uint32_t interface_index,
OnChannelSwitchEventHandler handler) {
netlink_manager_->SubscribeChannelSwitchEvent(interface_index, handler);
}
void NetlinkUtils::UnsubscribeChannelSwitchEvent(uint32_t interface_index) {
netlink_manager_->UnsubscribeChannelSwitchEvent(interface_index);
}
void NetlinkUtils::SubscribeFrameTxStatusEvent(
uint32_t interface_index, OnFrameTxStatusEventHandler handler) {
netlink_manager_->SubscribeFrameTxStatusEvent(interface_index, handler);
}
void NetlinkUtils::UnsubscribeFrameTxStatusEvent(uint32_t interface_index) {
netlink_manager_->UnsubscribeFrameTxStatusEvent(interface_index);
}
} // namespace wificond
} // namespace android