blob: f08462648a1beb90180f0b07e100c1580cb9185d [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <chre.h>
#include <cinttypes>
#include "chre/util/macros.h"
#include "chre/util/nanoapp/log.h"
#include "chre/util/nanoapp/sensor.h"
#include "chre/util/time.h"
#define LOG_TAG "[SensorWorld]"
#ifdef CHRE_NANOAPP_INTERNAL
#include "chre/platform/platform_static_nanoapp_init.h"
namespace chre {
namespace {
#endif // CHRE_NANOAPP_INTERNAL
namespace {
struct SensorState {
const uint8_t type;
uint32_t handle;
bool isInitialized;
bool enable;
uint64_t interval; // nsec
uint64_t latency; // nsec
chreSensorInfo info;
};
SensorState sensors[] = {
{ .type = CHRE_SENSOR_TYPE_ACCELEROMETER,
.enable = true,
.interval = Milliseconds(80).toRawNanoseconds(),
.latency = Seconds(4).toRawNanoseconds(),
},
{ .type = CHRE_SENSOR_TYPE_INSTANT_MOTION_DETECT,
.enable = false,
},
{ .type = CHRE_SENSOR_TYPE_STATIONARY_DETECT,
.enable = false,
},
{ .type = CHRE_SENSOR_TYPE_GYROSCOPE,
.enable = true,
.interval = Milliseconds(80).toRawNanoseconds(),
.latency = Seconds(4).toRawNanoseconds(),
},
{ .type = CHRE_SENSOR_TYPE_GEOMAGNETIC_FIELD,
.enable = true,
.interval = Milliseconds(80).toRawNanoseconds(),
.latency = Seconds(4).toRawNanoseconds(),
},
{ .type = CHRE_SENSOR_TYPE_PRESSURE,
.enable = true,
.interval = Milliseconds(200).toRawNanoseconds(),
.latency = Seconds(4).toRawNanoseconds(),
},
{ .type = CHRE_SENSOR_TYPE_LIGHT,
.enable = true,
.interval = Milliseconds(200).toRawNanoseconds(),
.latency = 0,
},
{ .type = CHRE_SENSOR_TYPE_PROXIMITY,
.enable = true,
.interval = Milliseconds(200).toRawNanoseconds(),
.latency = 0,
},
{ .type = CHRE_SENSOR_TYPE_ACCELEROMETER_TEMPERATURE,
.enable = true,
.interval = Seconds(2).toRawNanoseconds(),
.latency = 0,
},
{ .type = CHRE_SENSOR_TYPE_GYROSCOPE_TEMPERATURE,
.enable = true,
.interval = Seconds(2).toRawNanoseconds(),
.latency = 0,
},
{ .type = CHRE_SENSOR_TYPE_UNCALIBRATED_ACCELEROMETER,
.enable = true,
.interval = Milliseconds(80).toRawNanoseconds(),
.latency = Seconds(4).toRawNanoseconds(),
},
{ .type = CHRE_SENSOR_TYPE_UNCALIBRATED_GYROSCOPE,
.enable = true,
.interval = Milliseconds(80).toRawNanoseconds(),
.latency = Seconds(4).toRawNanoseconds(),
},
{ .type = CHRE_SENSOR_TYPE_UNCALIBRATED_GEOMAGNETIC_FIELD,
.enable = true,
.interval = Milliseconds(80).toRawNanoseconds(),
.latency = Seconds(4).toRawNanoseconds(),
},
};
// Helpers for testing InstantMotion and StationaryDetect
enum class MotionMode {
Instant,
Stationary,
};
// Storage to help access InstantMotion and StationaryDetect sensor handle and
// info
static size_t motionSensorIndices[2];
static MotionMode motionMode = MotionMode::Instant;
size_t getMotionSensorIndex() {
motionMode = (motionMode == MotionMode::Instant) ?
MotionMode::Stationary : MotionMode::Instant;
return motionSensorIndices[static_cast<size_t>(motionMode)];
}
} // namespace
bool nanoappStart() {
LOGI("App started on platform ID %" PRIx64, chreGetPlatformId());
for (size_t i = 0; i < ARRAY_SIZE(sensors); i++) {
SensorState& sensor = sensors[i];
sensor.isInitialized = chreSensorFindDefault(sensor.type, &sensor.handle);
LOGI("Sensor %d initialized: %s with handle %" PRIu32,
i, sensor.isInitialized ? "true" : "false", sensor.handle);
if (sensor.type == CHRE_SENSOR_TYPE_INSTANT_MOTION_DETECT) {
motionSensorIndices[static_cast<size_t>(MotionMode::Instant)] = i;
} else if (sensor.type == CHRE_SENSOR_TYPE_STATIONARY_DETECT) {
motionSensorIndices[static_cast<size_t>(MotionMode::Stationary)] = i;
}
if (sensor.isInitialized) {
// Get sensor info
chreSensorInfo& info = sensor.info;
bool infoStatus = chreGetSensorInfo(sensor.handle, &info);
if (infoStatus) {
LOGI("SensorInfo: %s, Type=%" PRIu8 " OnChange=%d"
" OneShot=%d minInterval=%" PRIu64 "nsec",
info.sensorName, info.sensorType, info.isOnChange,
info.isOneShot, info.minInterval);
} else {
LOGE("chreGetSensorInfo failed");
}
// Subscribe to sensors
if (sensor.enable) {
float odrHz = 1e9 / sensor.interval;
float latencySec = sensor.latency / 1e9;
bool status = chreSensorConfigure(sensor.handle,
CHRE_SENSOR_CONFIGURE_MODE_CONTINUOUS, sensor.interval,
sensor.latency);
LOGI("Requested data: odr %f Hz, latency %f sec, %s",
odrHz, latencySec, status ? "success" : "failure");
}
}
}
return true;
}
void nanoappHandleEvent(uint32_t senderInstanceId,
uint16_t eventType,
const void *eventData) {
switch (eventType) {
case CHRE_EVENT_SENSOR_ACCELEROMETER_DATA:
case CHRE_EVENT_SENSOR_UNCALIBRATED_ACCELEROMETER_DATA:
case CHRE_EVENT_SENSOR_GYROSCOPE_DATA:
case CHRE_EVENT_SENSOR_UNCALIBRATED_GYROSCOPE_DATA:
case CHRE_EVENT_SENSOR_GEOMAGNETIC_FIELD_DATA:
case CHRE_EVENT_SENSOR_UNCALIBRATED_GEOMAGNETIC_FIELD_DATA: {
const auto *ev = static_cast<const chreSensorThreeAxisData *>(eventData);
const auto header = ev->header;
const auto *data = ev->readings;
float x = 0, y = 0, z = 0;
for (size_t i = 0; i < header.readingCount; i++) {
x += data[i].v[0];
y += data[i].v[1];
z += data[i].v[2];
}
x /= header.readingCount;
y /= header.readingCount;
z /= header.readingCount;
LOGI("%s, %d samples: %f %f %f",
getSensorNameForEventType(eventType), header.readingCount, x, y, z);
break;
}
case CHRE_EVENT_SENSOR_PRESSURE_DATA:
case CHRE_EVENT_SENSOR_LIGHT_DATA:
case CHRE_EVENT_SENSOR_ACCELEROMETER_TEMPERATURE_DATA:
case CHRE_EVENT_SENSOR_GYROSCOPE_TEMPERATURE_DATA: {
const auto *ev = static_cast<const chreSensorFloatData *>(eventData);
const auto header = ev->header;
float v = 0;
for (size_t i = 0; i < header.readingCount; i++) {
v += ev->readings[i].value;
}
v /= header.readingCount;
LOGI("%s, %d samples: %f",
getSensorNameForEventType(eventType), header.readingCount, v);
break;
}
case CHRE_EVENT_SENSOR_PROXIMITY_DATA: {
const auto *ev = static_cast<const chreSensorByteData *>(eventData);
const auto header = ev->header;
const auto reading = ev->readings[0];
LOGI("%s, %d samples: isNear %d, invalid %d",
getSensorNameForEventType(eventType), header.readingCount,
reading.isNear, reading.invalid);
// Enable InstantMotion and StationaryDetect alternatively on near->far.
if (reading.isNear == 0) {
size_t motionSensorIndex = getMotionSensorIndex();
bool status = chreSensorConfigure(sensors[motionSensorIndex].handle,
CHRE_SENSOR_CONFIGURE_MODE_ONE_SHOT,
CHRE_SENSOR_INTERVAL_DEFAULT,
CHRE_SENSOR_LATENCY_DEFAULT);
LOGI("Requested %s: %s", sensors[motionSensorIndex].info.sensorName,
status ? "success" : "failure");
}
break;
}
case CHRE_EVENT_SENSOR_INSTANT_MOTION_DETECT_DATA:
case CHRE_EVENT_SENSOR_STATIONARY_DETECT_DATA: {
const auto *ev = static_cast<const chreSensorOccurrenceData *>(eventData);
const auto header = ev->header;
LOGI("%s, %d samples",
getSensorNameForEventType(eventType), header.readingCount);
break;
}
default:
LOGW("Unhandled event %d", eventType);
break;
}
}
void nanoappStop() {
LOGI("Stopped");
}
#ifdef CHRE_NANOAPP_INTERNAL
} // namespace
PLATFORM_STATIC_NANOAPP_INIT(SensorWorld);
} // namespace chre
#endif // CHRE_NANOAPP_INTERNAL