blob: fe87e5e3e80ef2a71ff1ec64f5a111fa865aaa56 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <chre.h>
#include <cinttypes>
#include <cmath>
#include "chre/util/macros.h"
#include "chre/util/nanoapp/log.h"
#include "chre/util/nanoapp/wifi.h"
#include "chre/util/time.h"
using chre::kOneMillisecondInNanoseconds;
using chre::Nanoseconds;
using chre::Seconds;
#define LOG_TAG "[WifiWorld]"
//#define WIFI_WORLD_VERBOSE_WIFI_RESULT_LOGS
#ifdef CHRE_NANOAPP_INTERNAL
namespace chre {
namespace {
#endif // CHRE_NANOAPP_INTERNAL
namespace {
//! A fake/unused cookie to pass into the configure scan monitoring async
//! request.
constexpr uint32_t kScanMonitoringCookie = 0x1337;
//! A fake/unused cookie to pass into on-demand scan async request.
constexpr uint32_t kOnDemandScanCookie = 0xcafe;
//! A fake/unused cookie to pass into ranging async request.
constexpr uint32_t kRangingCookie = 0xbeef;
//! The interval for on-demand wifi scans.
constexpr Nanoseconds kWifiScanInterval = Nanoseconds(Seconds(10));
//! A handle for the cyclic timer to request periodic on-demand wifi-scans.
uint32_t gWifiScanTimerHandle;
//! A global instance of wifi capabilities to use when reqeuesting wifi
//! functionality. This is populated at startup.
uint32_t gWifiCapabilities;
//! The last time in nanoseconds a wifi scan request was sucessfully made.
uint64_t gLastRequestTimeNs = 0;
//! True if CHRE_WIFI_REQUEST_TYPE_REQUEST_SCAN mode is requested.
bool gPendingOnDemandScan = false;
//! Accumulating count of the scan request results so far.
uint32_t gScanResultAcc = 0;
//! The currently requested on-demand wifi scan parameters.
chreWifiScanParams gWifiScanParams = {};
//! The sequence of on-demand wifi scan types to request for.
constexpr chreWifiScanType gWifiScanTypes[] = {
CHRE_WIFI_SCAN_TYPE_ACTIVE, CHRE_WIFI_SCAN_TYPE_ACTIVE_PLUS_PASSIVE_DFS,
CHRE_WIFI_SCAN_TYPE_PASSIVE};
//! The index of the next wifi scan type to request for.
uint8_t gScanTypeIndex = 0;
//! Whether to enable WiFi RTT ranging requests.
bool gEnableRanging = true;
//! The number of targets to make ranging request for.
uint8_t gTargetCount = 0;
//! The list of ranging targets.
chreWifiRangingTarget gTargetList[CHRE_WIFI_RANGING_LIST_MAX_LEN];
//! TIme last ranging request was made.
uint64_t gLastRangingTimeNs = 0;
//! Whether the app is awaiting any ranging event.
bool gPendingRanging = false;
/**
* Logs a CHRE wifi scan result.
*
* @param result the scan result to log.
*/
void logChreWifiResult(const chreWifiScanResult &result) {
const char *ssidStr = "<non-printable>";
char ssidBuffer[chre::kMaxSsidStrLen];
if (result.ssidLen == 0) {
ssidStr = "<empty>";
} else if (chre::parseSsidToStr(ssidBuffer, sizeof(ssidBuffer), result.ssid,
result.ssidLen)) {
ssidStr = ssidBuffer;
}
LOGI("Found network with SSID: %s", ssidStr);
#ifdef WIFI_WORLD_VERBOSE_WIFI_RESULT_LOGS
const char *bssidStr = "<non-printable>";
char bssidBuffer[chre::kBssidStrLen];
if (chre::parseBssidToStr(result.bssid, bssidBuffer, sizeof(bssidBuffer))) {
bssidStr = bssidBuffer;
}
LOGI(" age (ms): %" PRIu32, result.ageMs);
LOGI(" capability info: %" PRIx16, result.capabilityInfo);
LOGI(" bssid: %s", bssidStr);
LOGI(" flags: %" PRIx8, result.flags);
LOGI(" rssi: %" PRId8 "dBm", result.rssi);
LOGI(" band: %s (%" PRIu8 ")", chre::parseChreWifiBand(result.band),
result.band);
LOGI(" primary channel: %" PRIu32, result.primaryChannel);
LOGI(" center frequency primary: %" PRIu32, result.centerFreqPrimary);
LOGI(" center frequency secondary: %" PRIu32, result.centerFreqSecondary);
LOGI(" channel width: %" PRIu8, result.channelWidth);
LOGI(" security mode: %" PRIx8, result.securityMode);
#endif // WIFI_WORLD_VERBOSE_WIFI_RESULT_LOGS
}
/**
* Logs a CHRE WiFi ranging result.
*
* @param result the ranging result to log.
*/
void logChreRangingResult(const chreWifiRangingResult &result) {
const char *bssidStr = "<non-printable>";
char bssidBuffer[chre::kBssidStrLen];
if (chre::parseBssidToStr(result.macAddress, bssidBuffer,
sizeof(bssidBuffer))) {
bssidStr = bssidBuffer;
}
LOGI("BSSID %s", bssidStr);
LOGI(" age: %" PRIu64 " ms",
(chreGetTime() - result.timestamp) / kOneMillisecondInNanoseconds);
if (result.status != CHRE_WIFI_RANGING_STATUS_SUCCESS) {
LOGE(" ranging failed");
} else {
LOGI(" rssi: %" PRId8 " dBm", result.rssi);
LOGI(" distance: %" PRIu32 " mm", result.distance);
LOGI(" distanceStdDev: %" PRIu32 " mm", result.distanceStdDev);
if (result.flags & CHRE_WIFI_RTT_RESULT_HAS_LCI) {
const chreWifiRangingResult::chreWifiLci lci = result.lci;
LOGI(" latitude: 0x%" PRIx64 ", %f degs", lci.latitude,
static_cast<float>(lci.latitude) / static_cast<float>(1 << 25));
LOGI(" longitude: 0x%" PRIx64 ", %f degs", lci.longitude,
static_cast<float>(lci.longitude) / static_cast<float>(1 << 25));
float altitude =
static_cast<float>(lci.altitude) / static_cast<float>(1 << 8);
if (lci.altitudeType == CHRE_WIFI_LCI_UNCERTAINTY_UNKNOWN) {
LOGI(" altitude: unknown");
} else if (lci.altitudeType == CHRE_WIFI_LCI_ALTITUDE_TYPE_METERS) {
LOGI(" altitude: 0x%" PRIx32 ", %f m", lci.altitude, altitude);
} else if (lci.altitudeType == CHRE_WIFI_LCI_ALTITUDE_TYPE_FLOORS) {
LOGI(" altitude: 0x%" PRIx32 ", %f floors", lci.altitude, altitude);
} else {
LOGE(" altitude: undefined");
}
if (lci.latitudeUncertainty == CHRE_WIFI_LCI_UNCERTAINTY_UNKNOWN) {
LOGI(" latitude uncertainty: unknown");
} else {
LOGI(" latitude uncertainty: %f degs",
powf(2, 8 - lci.latitudeUncertainty));
}
if (lci.longitudeUncertainty == CHRE_WIFI_LCI_UNCERTAINTY_UNKNOWN) {
LOGI(" longitude uncertainty: unknown");
} else {
LOGI(" longitude uncertainty: %f degs",
powf(2, 8 - lci.longitudeUncertainty));
}
if (lci.altitudeUncertainty == CHRE_WIFI_LCI_UNCERTAINTY_UNKNOWN ||
lci.altitudeType != CHRE_WIFI_LCI_ALTITUDE_TYPE_METERS) {
LOGI(" altitude uncertainty: unknown");
} else {
LOGI(" altitude uncertainty: %f m",
powf(2, 21 - lci.altitudeUncertainty));
}
}
}
}
/**
* Requests a delayed WiFi scan using a one-shot timer. The interval is
* specified as a constant at the top of this file.
*/
void requestDelayedWifiScan() {
if (gWifiCapabilities & CHRE_WIFI_CAPABILITIES_ON_DEMAND_SCAN) {
// Schedule a timer to send an active WiFi scan.
gWifiScanTimerHandle =
chreTimerSet(kWifiScanInterval.toRawNanoseconds(),
&gWifiScanTimerHandle /* data */, true /* oneShot */);
if (gWifiScanTimerHandle == CHRE_TIMER_INVALID) {
LOGE("Failed to set timer for delayed WiFi scan");
} else {
LOGI("Set a timer to request a WiFi scan");
}
}
}
/**
* Handles the result of an asynchronous request for a WiFi resource.
*
* @param result a pointer to the event structure containing the result of the
* request.
*/
void handleWifiAsyncResult(const chreAsyncResult *result) {
if (result->requestType == CHRE_WIFI_REQUEST_TYPE_CONFIGURE_SCAN_MONITOR) {
if (result->success) {
LOGI("Successfully requested WiFi scan monitoring");
} else {
LOGE("Error requesting WiFi scan monitoring with %" PRIu8,
result->errorCode);
}
if (result->cookie != &kScanMonitoringCookie) {
LOGE("Scan monitoring request cookie mismatch");
}
} else if (result->requestType == CHRE_WIFI_REQUEST_TYPE_REQUEST_SCAN) {
uint64_t timeSinceRequest = chreGetTime() - gLastRequestTimeNs;
if (result->success) {
LOGI(
"Successfully requested an on-demand WiFi scan (response time "
"%" PRIu64 " ms)",
timeSinceRequest / kOneMillisecondInNanoseconds);
gPendingOnDemandScan = true;
} else {
LOGE("Error requesting an on-demand WiFi scan with %" PRIu8,
result->errorCode);
}
if (result->cookie != &kOnDemandScanCookie) {
LOGE("On-demand scan cookie mismatch");
}
requestDelayedWifiScan();
} else if (result->requestType == CHRE_WIFI_REQUEST_TYPE_RANGING) {
uint64_t timeSinceRequest = chreGetTime() - gLastRangingTimeNs;
if (result->success) {
LOGI("Successfully requested WiFi ranging (response time %" PRIu64 " ms)",
timeSinceRequest / kOneMillisecondInNanoseconds);
} else {
gPendingRanging = false;
LOGE("Error requesting a WiFi ranging with %" PRIu8, result->errorCode);
}
if (result->cookie != &kRangingCookie) {
LOGE("Ranging cookie mismatch");
}
} else {
LOGE("Received invalid async result");
}
}
void prepareRanging(const chreWifiScanEvent *event) {
if (gWifiCapabilities & CHRE_WIFI_CAPABILITIES_RTT_RANGING) {
// Collect the first CHRE_WIFI_RANGING_LIST_MAX_LEN AP's that support the
// capability.
for (uint8_t i = 0; i < event->resultCount; i++) {
if (gTargetCount < CHRE_WIFI_RANGING_LIST_MAX_LEN &&
(event->results[i].flags &
CHRE_WIFI_SCAN_RESULT_FLAGS_IS_FTM_RESPONDER)) {
chreWifiRangingTargetFromScanResult(&event->results[i],
&gTargetList[gTargetCount++]);
}
}
// Make ranging request only when all scan events are received.
if (!gPendingOnDemandScan) {
if (gTargetCount == 0 && event->resultCount == 0) {
LOGI("No AP to make ranging request to");
} else if (gTargetCount == 0) {
LOGI("No AP with RTT capability found");
// Adding one AP to exercise ranging API.
chreWifiRangingTargetFromScanResult(&event->results[0],
&gTargetList[gTargetCount++]);
}
if (gTargetCount > 0) {
struct chreWifiRangingParams params = {
.targetListLen = gTargetCount,
.targetList = &gTargetList[0],
};
gLastRangingTimeNs = chreGetTime();
if (!chreWifiRequestRangingAsync(&params, &kRangingCookie)) {
LOGE("Failed to request WiFi ranging");
} else {
gPendingRanging = true;
}
gTargetCount = 0;
}
}
}
}
/**
* Handles a WiFi scan event.
*
* @param event a pointer to the details of the WiFi scan event.
*/
void handleWifiScanEvent(const chreWifiScanEvent *event) {
LOGI("Received Wifi scan event of type %" PRIu8 " with %" PRIu8
" results at %" PRIu64 "ns",
event->scanType, event->resultCount, event->referenceTime);
if (gPendingOnDemandScan) {
uint64_t timeSinceRequest = chreGetTime() - gLastRequestTimeNs;
LOGI("Time since scan request = %" PRIu64 " ms",
timeSinceRequest / kOneMillisecondInNanoseconds);
if (event->scanType != gWifiScanParams.scanType) {
LOGE("Invalid scan event type (expected %" PRIu8 ", received %" PRIu8 ")",
gWifiScanParams.scanType, event->scanType);
}
gScanResultAcc += event->resultCount;
if (gScanResultAcc >= event->resultTotal) {
gPendingOnDemandScan = false;
gScanResultAcc = 0;
}
if (gEnableRanging) {
prepareRanging(event);
}
}
for (uint8_t i = 0; i < event->resultCount; i++) {
const chreWifiScanResult &result = event->results[i];
logChreWifiResult(result);
}
}
void handleWifiRangingEvent(const chreWifiRangingEvent *event) {
LOGI("Received Wifi ranging event with %" PRIu8 " results",
event->resultCount);
if (!gPendingRanging) {
LOGE("WiFi ranging event not expected");
} else {
gPendingRanging = false;
for (uint8_t i = 0; i < event->resultCount; i++) {
logChreRangingResult(event->results[i]);
}
}
}
/**
* Handles a timer event.
*
* @param eventData The cookie passed to the timer request.
*/
void handleTimerEvent(const void *eventData) {
const uint32_t *timerHandle = static_cast<const uint32_t *>(eventData);
if (*timerHandle == gWifiScanTimerHandle) {
gWifiScanParams.scanType = gWifiScanTypes[gScanTypeIndex];
gWifiScanParams.maxScanAgeMs = 5000; // 5 seconds
gWifiScanParams.frequencyListLen = 0;
gWifiScanParams.ssidListLen = 0;
gScanTypeIndex = (gScanTypeIndex + 1) % ARRAY_SIZE(gWifiScanTypes);
if (chreWifiRequestScanAsync(&gWifiScanParams, &kOnDemandScanCookie)) {
LOGI("Requested a WiFi scan successfully");
gLastRequestTimeNs = chreGetTime();
} else {
LOGE("Failed to request a WiFi scan");
}
} else {
LOGE("Received invalid timer handle");
}
}
} // namespace
bool nanoappStart() {
LOGI("App started as instance %" PRIu32, chreGetInstanceId());
gWifiCapabilities = chreWifiGetCapabilities();
LOGI("Detected WiFi support as: 0x%" PRIx32, gWifiCapabilities);
if (gWifiCapabilities & CHRE_WIFI_CAPABILITIES_SCAN_MONITORING) {
if (chreWifiConfigureScanMonitorAsync(true, &kScanMonitoringCookie)) {
LOGI("Scan monitor enable request successful");
} else {
LOGE("Error sending scan monitoring request");
}
}
requestDelayedWifiScan();
return true;
}
void nanoappHandleEvent(uint32_t senderInstanceId, uint16_t eventType,
const void *eventData) {
switch (eventType) {
case CHRE_EVENT_WIFI_ASYNC_RESULT:
handleWifiAsyncResult(static_cast<const chreAsyncResult *>(eventData));
break;
case CHRE_EVENT_WIFI_SCAN_RESULT:
handleWifiScanEvent(static_cast<const chreWifiScanEvent *>(eventData));
break;
case CHRE_EVENT_WIFI_RANGING_RESULT:
handleWifiRangingEvent(
static_cast<const chreWifiRangingEvent *>(eventData));
break;
case CHRE_EVENT_TIMER:
handleTimerEvent(eventData);
break;
default:
LOGW("Unhandled event type %" PRIu16, eventType);
}
}
void nanoappEnd() {
LOGI("Wifi world app stopped");
}
#ifdef CHRE_NANOAPP_INTERNAL
} // anonymous namespace
} // namespace chre
#include "chre/platform/static_nanoapp_init.h"
#include "chre/util/nanoapp/app_id.h"
CHRE_STATIC_NANOAPP_INIT(WifiWorld, chre::kWifiWorldAppId, 0);
#endif // CHRE_NANOAPP_INTERNAL