blob: 6e5d22f43ec99c33e9efeccfa4c2a773a5da28ca [file] [log] [blame]
* Copyright 2014 Google, Inc.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* See the License for the specific language governing permissions and
* limitations under the License.
#include "internal_include/bt_target.h"
#define LOG_TAG "bt_osi_alarm"
#include "osi/include/alarm.h"
#include <base/cancelable_callback.h>
#include <base/logging.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <malloc.h>
#include <pthread.h>
#include <signal.h>
#include <string.h>
#include <time.h>
#include <hardware/bluetooth.h>
#include <mutex>
#include "osi/include/allocator.h"
#include "osi/include/fixed_queue.h"
#include "osi/include/list.h"
#include "osi/include/log.h"
#include "osi/include/osi.h"
#include "osi/include/semaphore.h"
#include "osi/include/thread.h"
#include "osi/include/wakelock.h"
#include "stack/include/btu.h"
using base::Bind;
using base::CancelableClosure;
// Callback and timer threads should run at RT priority in order to ensure they
// meet audio deadlines. Use this priority for all audio/timer related thread.
static const int THREAD_RT_PRIORITY = 1;
typedef struct {
size_t count;
uint64_t total_ms;
uint64_t max_ms;
} stat_t;
// Alarm-related information and statistics
typedef struct {
const char* name;
size_t scheduled_count;
size_t canceled_count;
size_t rescheduled_count;
size_t total_updates;
uint64_t last_update_ms;
stat_t overdue_scheduling;
stat_t premature_scheduling;
} alarm_stats_t;
/* Wrapper around CancellableClosure that let it be embedded in structs, without
* need to define copy operator. */
struct CancelableClosureInStruct {
base::CancelableClosure i;
CancelableClosureInStruct& operator=(const CancelableClosureInStruct& in) {
if (!in.i.callback().is_null()) i.Reset(in.i.callback());
return *this;
struct alarm_t {
// The mutex is held while the callback for this alarm is being executed.
// It allows us to release the coarse-grained monitor lock while a
// potentially long-running callback is executing. |alarm_cancel| uses this
// mutex to provide a guarantee to its caller that the callback will not be
// in progress when it returns.
std::shared_ptr<std::recursive_mutex> callback_mutex;
uint64_t creation_time_ms;
uint64_t period_ms;
uint64_t deadline_ms;
uint64_t prev_deadline_ms; // Previous deadline - used for accounting of
// periodic timers
bool is_periodic;
fixed_queue_t* queue; // The processing queue to add this alarm to
alarm_callback_t callback;
void* data;
alarm_stats_t stats;
bool for_msg_loop; // True, if the alarm should be processed on message loop
CancelableClosureInStruct closure; // posted to message loop for processing
// If the next wakeup time is less than this threshold, we should acquire
// a wakelock instead of setting a wake alarm so we're not bouncing in
// and out of suspend frequently. This value is externally visible to allow
// unit tests to run faster. It should not be modified by production code.
static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
// This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
// functions execute serially and not concurrently. As a result, this mutex
// also protects the |alarms| list.
static std::mutex alarms_mutex;
static list_t* alarms;
static timer_t timer;
static timer_t wakeup_timer;
static bool timer_set;
// All alarm callbacks are dispatched from |dispatcher_thread|
static thread_t* dispatcher_thread;
static bool dispatcher_thread_active;
static semaphore_t* alarm_expired;
// Default alarm callback thread and queue
static thread_t* default_callback_thread;
static fixed_queue_t* default_callback_queue;
static alarm_t* alarm_new_internal(const char* name, bool is_periodic);
static bool lazy_initialize(void);
static uint64_t now_ms(void);
static void alarm_set_internal(alarm_t* alarm, uint64_t period_ms,
alarm_callback_t cb, void* data,
fixed_queue_t* queue, bool for_msg_loop);
static void alarm_cancel_internal(alarm_t* alarm);
static void remove_pending_alarm(alarm_t* alarm);
static void schedule_next_instance(alarm_t* alarm);
static void reschedule_root_alarm(void);
static void alarm_queue_ready(fixed_queue_t* queue, void* context);
static void timer_callback(void* data);
static void callback_dispatch(void* context);
static bool timer_create_internal(const clockid_t clock_id, timer_t* timer);
static void update_scheduling_stats(alarm_stats_t* stats, uint64_t now_ms,
uint64_t deadline_ms);
// Registers |queue| for processing alarm callbacks on |thread|.
// |queue| may not be NULL. |thread| may not be NULL.
static void alarm_register_processing_queue(fixed_queue_t* queue,
thread_t* thread);
static void update_stat(stat_t* stat, uint64_t delta_ms) {
if (stat->max_ms < delta_ms) stat->max_ms = delta_ms;
stat->total_ms += delta_ms;
alarm_t* alarm_new(const char* name) { return alarm_new_internal(name, false); }
alarm_t* alarm_new_periodic(const char* name) {
return alarm_new_internal(name, true);
static alarm_t* alarm_new_internal(const char* name, bool is_periodic) {
// Make sure we have a list we can insert alarms into.
if (!alarms && !lazy_initialize()) {
CHECK(false); // if initialization failed, we should not continue
return NULL;
alarm_t* ret = static_cast<alarm_t*>(osi_calloc(sizeof(alarm_t)));
std::shared_ptr<std::recursive_mutex> ptr(new std::recursive_mutex());
ret->callback_mutex = ptr;
ret->is_periodic = is_periodic;
ret-> = osi_strdup(name);
ret->for_msg_loop = false;
// placement new
new (&ret->closure) CancelableClosureInStruct();
// NOTE: The stats were reset by osi_calloc() above
return ret;
void alarm_free(alarm_t* alarm) {
if (!alarm) return;
uint64_t alarm_get_remaining_ms(const alarm_t* alarm) {
CHECK(alarm != NULL);
uint64_t remaining_ms = 0;
uint64_t just_now_ms = now_ms();
std::lock_guard<std::mutex> lock(alarms_mutex);
if (alarm->deadline_ms > just_now_ms)
remaining_ms = alarm->deadline_ms - just_now_ms;
return remaining_ms;
void alarm_set(alarm_t* alarm, uint64_t interval_ms, alarm_callback_t cb,
void* data) {
alarm_set_internal(alarm, interval_ms, cb, data, default_callback_queue,
void alarm_set_on_mloop(alarm_t* alarm, uint64_t interval_ms,
alarm_callback_t cb, void* data) {
alarm_set_internal(alarm, interval_ms, cb, data, NULL, true);
// Runs in exclusion with alarm_cancel and timer_callback.
static void alarm_set_internal(alarm_t* alarm, uint64_t period_ms,
alarm_callback_t cb, void* data,
fixed_queue_t* queue, bool for_msg_loop) {
CHECK(alarms != NULL);
CHECK(alarm != NULL);
CHECK(cb != NULL);
std::lock_guard<std::mutex> lock(alarms_mutex);
alarm->creation_time_ms = now_ms();
alarm->period_ms = period_ms;
alarm->queue = queue;
alarm->callback = cb;
alarm->data = data;
alarm->for_msg_loop = for_msg_loop;
void alarm_cancel(alarm_t* alarm) {
CHECK(alarms != NULL);
if (!alarm) return;
std::shared_ptr<std::recursive_mutex> local_mutex_ref;
std::lock_guard<std::mutex> lock(alarms_mutex);
local_mutex_ref = alarm->callback_mutex;
// If the callback for |alarm| is in progress, wait here until it completes.
std::lock_guard<std::recursive_mutex> lock(*local_mutex_ref);
// Internal implementation of canceling an alarm.
// The caller must hold the |alarms_mutex|
static void alarm_cancel_internal(alarm_t* alarm) {
bool needs_reschedule =
(!list_is_empty(alarms) && list_front(alarms) == alarm);
alarm->deadline_ms = 0;
alarm->prev_deadline_ms = 0;
alarm->callback = NULL;
alarm->data = NULL;
alarm->queue = NULL;
if (needs_reschedule) reschedule_root_alarm();
bool alarm_is_scheduled(const alarm_t* alarm) {
if ((alarms == NULL) || (alarm == NULL)) return false;
return (alarm->callback != NULL);
void alarm_cleanup(void) {
// If lazy_initialize never ran there is nothing else to do
if (!alarms) return;
dispatcher_thread_active = false;
dispatcher_thread = NULL;
std::lock_guard<std::mutex> lock(alarms_mutex);
fixed_queue_free(default_callback_queue, NULL);
default_callback_queue = NULL;
default_callback_thread = NULL;
alarm_expired = NULL;
alarms = NULL;
static bool lazy_initialize(void) {
CHECK(alarms == NULL);
// timer_t doesn't have an invalid value so we must track whether
// the |timer| variable is valid ourselves.
bool timer_initialized = false;
bool wakeup_timer_initialized = false;
std::lock_guard<std::mutex> lock(alarms_mutex);
alarms = list_new(NULL);
if (!alarms) {
LOG_ERROR("%s unable to allocate alarm list.", __func__);
goto error;
if (!timer_create_internal(CLOCK_ID, &timer)) goto error;
timer_initialized = true;
if (!timer_create_internal(CLOCK_BOOTTIME_ALARM, &wakeup_timer)) {
if (!timer_create_internal(CLOCK_BOOTTIME, &wakeup_timer)) {
goto error;
wakeup_timer_initialized = true;
alarm_expired = semaphore_new(0);
if (!alarm_expired) {
LOG_ERROR("%s unable to create alarm expired semaphore", __func__);
goto error;
default_callback_thread =
thread_new_sized("alarm_default_callbacks", SIZE_MAX);
if (default_callback_thread == NULL) {
LOG_ERROR("%s unable to create default alarm callbacks thread.", __func__);
goto error;
thread_set_rt_priority(default_callback_thread, THREAD_RT_PRIORITY);
default_callback_queue = fixed_queue_new(SIZE_MAX);
if (default_callback_queue == NULL) {
LOG_ERROR("%s unable to create default alarm callbacks queue.", __func__);
goto error;
dispatcher_thread_active = true;
dispatcher_thread = thread_new("alarm_dispatcher");
if (!dispatcher_thread) {
LOG_ERROR("%s unable to create alarm callback thread.", __func__);
goto error;
thread_set_rt_priority(dispatcher_thread, THREAD_RT_PRIORITY);
thread_post(dispatcher_thread, callback_dispatch, NULL);
return true;
fixed_queue_free(default_callback_queue, NULL);
default_callback_queue = NULL;
default_callback_thread = NULL;
dispatcher_thread = NULL;
dispatcher_thread_active = false;
alarm_expired = NULL;
if (wakeup_timer_initialized) timer_delete(wakeup_timer);
if (timer_initialized) timer_delete(timer);
alarms = NULL;
return false;
static uint64_t now_ms(void) {
CHECK(alarms != NULL);
struct timespec ts;
if (clock_gettime(CLOCK_ID, &ts) == -1) {
LOG_ERROR("%s unable to get current time: %s", __func__, strerror(errno));
return 0;
return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
// Remove alarm from internal alarm list and the processing queue
// The caller must hold the |alarms_mutex|
static void remove_pending_alarm(alarm_t* alarm) {
list_remove(alarms, alarm);
if (alarm->for_msg_loop) {
} else {
while (fixed_queue_try_remove_from_queue(alarm->queue, alarm) != NULL) {
// Remove all repeated alarm instances from the queue.
// NOTE: We are defensive here - we shouldn't have repeated alarm
// instances
// Must be called with |alarms_mutex| held
static void schedule_next_instance(alarm_t* alarm) {
// If the alarm is currently set and it's at the start of the list,
// we'll need to re-schedule since we've adjusted the earliest deadline.
bool needs_reschedule =
(!list_is_empty(alarms) && list_front(alarms) == alarm);
if (alarm->callback) remove_pending_alarm(alarm);
// Calculate the next deadline for this alarm
uint64_t just_now_ms = now_ms();
uint64_t ms_into_period = 0;
if ((alarm->is_periodic) && (alarm->period_ms != 0))
ms_into_period =
((just_now_ms - alarm->creation_time_ms) % alarm->period_ms);
alarm->deadline_ms = just_now_ms + (alarm->period_ms - ms_into_period);
// Add it into the timer list sorted by deadline (earliest deadline first).
if (list_is_empty(alarms) ||
((alarm_t*)list_front(alarms))->deadline_ms > alarm->deadline_ms) {
list_prepend(alarms, alarm);
} else {
for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
node = list_next(node)) {
list_node_t* next = list_next(node);
if (next == list_end(alarms) ||
((alarm_t*)list_node(next))->deadline_ms > alarm->deadline_ms) {
list_insert_after(alarms, node, alarm);
// If the new alarm has the earliest deadline, we need to re-evaluate our
// schedule.
if (needs_reschedule ||
(!list_is_empty(alarms) && list_front(alarms) == alarm)) {
// NOTE: must be called with |alarms_mutex| held
static void reschedule_root_alarm(void) {
CHECK(alarms != NULL);
const bool timer_was_set = timer_set;
alarm_t* next;
int64_t next_expiration;
// If used in a zeroed state, disarms the timer.
struct itimerspec timer_time;
memset(&timer_time, 0, sizeof(timer_time));
if (list_is_empty(alarms)) goto done;
next = static_cast<alarm_t*>(list_front(alarms));
next_expiration = next->deadline_ms - now_ms();
if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
if (!timer_set) {
if (!wakelock_acquire()) {
LOG_ERROR("%s unable to acquire wake lock", __func__);
goto done;
timer_time.it_value.tv_sec = (next->deadline_ms / 1000);
timer_time.it_value.tv_nsec = (next->deadline_ms % 1000) * 1000000LL;
// It is entirely unsafe to call timer_settime(2) with a zeroed timerspec
// for timers with *_ALARM clock IDs. Although the man page states that the
// timer would be canceled, the current behavior (as of Linux kernel 3.17)
// is that the callback is issued immediately. The only way to cancel an
// *_ALARM timer is to delete the timer. But unfortunately, deleting and
// re-creating a timer is rather expensive; every timer_create(2) spawns a
// new thread. So we simply set the timer to fire at the largest possible
// time.
// If we've reached this code path, we're going to grab a wake lock and
// wait for the next timer to fire. In that case, there's no reason to
// have a pending wakeup timer so we simply cancel it.
struct itimerspec end_of_time;
memset(&end_of_time, 0, sizeof(end_of_time));
end_of_time.it_value.tv_sec = (time_t)(1LL << (sizeof(time_t) * 8 - 2));
timer_settime(wakeup_timer, TIMER_ABSTIME, &end_of_time, NULL);
} else {
// WARNING: do not attempt to use relative timers with *_ALARM clock IDs
// in kernels before 3.17 unless you have the following patch:
struct itimerspec wakeup_time;
memset(&wakeup_time, 0, sizeof(wakeup_time));
wakeup_time.it_value.tv_sec = (next->deadline_ms / 1000);
wakeup_time.it_value.tv_nsec = (next->deadline_ms % 1000) * 1000000LL;
if (timer_settime(wakeup_timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1)
LOG_ERROR("%s unable to set wakeup timer: %s", __func__, strerror(errno));
timer_set =
timer_time.it_value.tv_sec != 0 || timer_time.it_value.tv_nsec != 0;
if (timer_was_set && !timer_set) {
if (timer_settime(timer, TIMER_ABSTIME, &timer_time, NULL) == -1)
LOG_ERROR("%s unable to set timer: %s", __func__, strerror(errno));
// If next expiration was in the past (e.g. short timer that got context
// switched) then the timer might have diarmed itself. Detect this case and
// work around it by manually signalling the |alarm_expired| semaphore.
// It is possible that the timer was actually super short (a few
// milliseconds) and the timer expired normally before we called
// |timer_gettime|. Worst case, |alarm_expired| is signaled twice for that
// alarm. Nothing bad should happen in that case though since the callback
// dispatch function checks to make sure the timer at the head of the list
// actually expired.
if (timer_set) {
struct itimerspec time_to_expire;
timer_gettime(timer, &time_to_expire);
if (time_to_expire.it_value.tv_sec == 0 &&
time_to_expire.it_value.tv_nsec == 0) {
"%s alarm expiration too close for posix timers, switching to guns",
static void alarm_register_processing_queue(fixed_queue_t* queue,
thread_t* thread) {
CHECK(queue != NULL);
CHECK(thread != NULL);
fixed_queue_register_dequeue(queue, thread_get_reactor(thread),
alarm_queue_ready, NULL);
static void alarm_ready_generic(alarm_t* alarm,
std::unique_lock<std::mutex>& lock) {
if (alarm == NULL) {
return; // The alarm was probably canceled
// If the alarm is not periodic, we've fully serviced it now, and can reset
// some of its internal state. This is useful to distinguish between expired
// alarms and active ones.
if (!alarm->callback) {
LOG(FATAL) << __func__
<< ": timer callback is NULL! Name=" << alarm->;
alarm_callback_t callback = alarm->callback;
void* data = alarm->data;
uint64_t deadline_ms = alarm->deadline_ms;
if (alarm->is_periodic) {
// The periodic alarm has been rescheduled and alarm->deadline has been
// updated, hence we need to use the previous deadline.
deadline_ms = alarm->prev_deadline_ms;
} else {
alarm->deadline_ms = 0;
alarm->callback = NULL;
alarm->data = NULL;
alarm->queue = NULL;
// Increment the reference count of the mutex so it doesn't get freed
// before the callback gets finished executing.
std::shared_ptr<std::recursive_mutex> local_mutex_ref = alarm->callback_mutex;
std::lock_guard<std::recursive_mutex> cb_lock(*local_mutex_ref);
// Update the statistics
update_scheduling_stats(&alarm->stats, now_ms(), deadline_ms);
// NOTE: Do NOT access "alarm" after the callback, as a safety precaution
// in case the callback itself deleted the alarm.
static void alarm_ready_mloop(alarm_t* alarm) {
std::unique_lock<std::mutex> lock(alarms_mutex);
alarm_ready_generic(alarm, lock);
static void alarm_queue_ready(fixed_queue_t* queue, UNUSED_ATTR void* context) {
CHECK(queue != NULL);
std::unique_lock<std::mutex> lock(alarms_mutex);
alarm_t* alarm = (alarm_t*)fixed_queue_try_dequeue(queue);
alarm_ready_generic(alarm, lock);
// Callback function for wake alarms and our posix timer
static void timer_callback(UNUSED_ATTR void* ptr) {
// Function running on |dispatcher_thread| that performs the following:
// (1) Receives a signal using |alarm_exired| that the alarm has expired
// (2) Dispatches the alarm callback for processing by the corresponding
// thread for that alarm.
static void callback_dispatch(UNUSED_ATTR void* context) {
while (true) {
if (!dispatcher_thread_active) break;
std::lock_guard<std::mutex> lock(alarms_mutex);
alarm_t* alarm;
// Take into account that the alarm may get cancelled before we get to it.
// We're done here if there are no alarms or the alarm at the front is in
// the future. Exit right away since there's nothing left to do.
if (list_is_empty(alarms) ||
(alarm = static_cast<alarm_t*>(list_front(alarms)))->deadline_ms >
now_ms()) {
list_remove(alarms, alarm);
if (alarm->is_periodic) {
alarm->prev_deadline_ms = alarm->deadline_ms;
// Enqueue the alarm for processing
if (alarm->for_msg_loop) {
if (!get_main_thread()) {
LOG_ERROR("%s: message loop already NULL. Alarm: %s", __func__,
alarm->closure.i.Reset(Bind(alarm_ready_mloop, alarm));
get_main_thread()->DoInThread(FROM_HERE, alarm->closure.i.callback());
} else {
fixed_queue_enqueue(alarm->queue, alarm);
LOG_INFO("%s Callback thread exited", __func__);
static bool timer_create_internal(const clockid_t clock_id, timer_t* timer) {
CHECK(timer != NULL);
struct sigevent sigevent;
// create timer with RT priority thread
pthread_attr_t thread_attr;
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
struct sched_param param;
param.sched_priority = THREAD_RT_PRIORITY;
pthread_attr_setschedparam(&thread_attr, &param);
memset(&sigevent, 0, sizeof(sigevent));
sigevent.sigev_notify = SIGEV_THREAD;
sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;
sigevent.sigev_notify_attributes = &thread_attr;
if (timer_create(clock_id, &sigevent, timer) == -1) {
LOG_ERROR("%s unable to create timer with clock %d: %s", __func__, clock_id,
if (clock_id == CLOCK_BOOTTIME_ALARM) {
"The kernel might not have support for "
"timer_create(CLOCK_BOOTTIME_ALARM): "
"See following patches: "
return false;
return true;
static void update_scheduling_stats(alarm_stats_t* stats, uint64_t now_ms,
uint64_t deadline_ms) {
stats->last_update_ms = now_ms;
if (deadline_ms < now_ms) {
// Overdue scheduling
uint64_t delta_ms = now_ms - deadline_ms;
update_stat(&stats->overdue_scheduling, delta_ms);
} else if (deadline_ms > now_ms) {
// Premature scheduling
uint64_t delta_ms = deadline_ms - now_ms;
update_stat(&stats->premature_scheduling, delta_ms);
static void dump_stat(int fd, stat_t* stat, const char* description) {
uint64_t average_time_ms = 0;
if (stat->count != 0) average_time_ms = stat->total_ms / stat->count;
dprintf(fd, "%-51s: %llu / %llu / %llu\n", description,
(unsigned long long)stat->total_ms, (unsigned long long)stat->max_ms,
(unsigned long long)average_time_ms);
void alarm_debug_dump(int fd) {
dprintf(fd, "\nBluetooth Alarms Statistics:\n");
std::lock_guard<std::mutex> lock(alarms_mutex);
if (alarms == NULL) {
dprintf(fd, " None\n");
uint64_t just_now_ms = now_ms();
dprintf(fd, " Total Alarms: %zu\n\n", list_length(alarms));
// Dump info for each alarm
for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
node = list_next(node)) {
alarm_t* alarm = (alarm_t*)list_node(node);
alarm_stats_t* stats = &alarm->stats;
dprintf(fd, " Alarm : %s (%s)\n", stats->name,
(alarm->is_periodic) ? "PERIODIC" : "SINGLE");
dprintf(fd, "%-51s: %zu / %zu / %zu / %zu\n",
" Action counts (sched/resched/exec/cancel)",
stats->scheduled_count, stats->rescheduled_count,
stats->total_updates, stats->canceled_count);
dprintf(fd, "%-51s: %zu / %zu\n",
" Deviation counts (overdue/premature)",
stats->overdue_scheduling.count, stats->premature_scheduling.count);
dprintf(fd, "%-51s: %llu / %llu / %lld\n",
" Time in ms (since creation/interval/remaining)",
(unsigned long long)(just_now_ms - alarm->creation_time_ms),
(unsigned long long)alarm->period_ms,
(long long)(alarm->deadline_ms - just_now_ms));
dump_stat(fd, &stats->overdue_scheduling,
" Overdue scheduling time in ms (total/max/avg)");
dump_stat(fd, &stats->premature_scheduling,
" Premature scheduling time in ms (total/max/avg)");
dprintf(fd, "\n");