blob: 3fbafb21f8b50c21241e76e2882f7e603f08567d [file] [log] [blame]
/******************************************************************************
*
* Copyright 1999-2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/******************************************************************************
*
* This file contains SDP utility functions
*
******************************************************************************/
#include <stdio.h>
#include <string.h>
#include <utility>
#include <vector>
#include "bt_common.h"
#include "bt_types.h"
#include "btif_config.h"
#include "avrc_defs.h"
#include "sdp_api.h"
#include "sdpint.h"
#include "stack/include/stack_metrics_logging.h"
using bluetooth::Uuid;
static const uint8_t sdp_base_uuid[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x10, 0x00, 0x80, 0x00, 0x00, 0x80,
0x5F, 0x9B, 0x34, 0xFB};
template <typename T>
static std::array<char, sizeof(T)> to_little_endian_array(T x) {
static_assert(std::is_integral<T>::value,
"to_little_endian_array parameter must be integral.");
std::array<char, sizeof(T)> array = {};
for (size_t i = 0; i < array.size(); i++) {
array[i] = static_cast<char>((x >> (8 * i)) & 0xFF);
}
return array;
}
/**
* Find the list of profile versions from Bluetooth Profile Descriptor list
* attribute in a SDP record
*
* @param p_rec SDP record to search
* @return a vector of <UUID, VERSION> pairs, empty if not found
*/
static std::vector<std::pair<uint16_t, uint16_t>> sdpu_find_profile_version(
tSDP_DISC_REC* p_rec) {
std::vector<std::pair<uint16_t, uint16_t>> result;
for (tSDP_DISC_ATTR* p_attr = p_rec->p_first_attr; p_attr != nullptr;
p_attr = p_attr->p_next_attr) {
// Find the profile descriptor list */
if (p_attr->attr_id != ATTR_ID_BT_PROFILE_DESC_LIST ||
SDP_DISC_ATTR_TYPE(p_attr->attr_len_type) != DATA_ELE_SEQ_DESC_TYPE) {
continue;
}
// Walk through the protocol descriptor list
for (tSDP_DISC_ATTR* p_sattr = p_attr->attr_value.v.p_sub_attr;
p_sattr != nullptr; p_sattr = p_sattr->p_next_attr) {
// Safety check - each entry should itself be a sequence
if (SDP_DISC_ATTR_TYPE(p_sattr->attr_len_type) !=
DATA_ELE_SEQ_DESC_TYPE) {
LOG(WARNING) << __func__ << ": Descriptor type is not sequence: "
<< loghex(SDP_DISC_ATTR_TYPE(p_sattr->attr_len_type));
return std::vector<std::pair<uint16_t, uint16_t>>();
}
// Now, see if the entry contains the profile UUID we are interested in
for (tSDP_DISC_ATTR* p_ssattr = p_sattr->attr_value.v.p_sub_attr;
p_ssattr != nullptr; p_ssattr = p_ssattr->p_next_attr) {
if (SDP_DISC_ATTR_TYPE(p_ssattr->attr_len_type) != UUID_DESC_TYPE ||
SDP_DISC_ATTR_LEN(p_ssattr->attr_len_type) != 2) {
continue;
}
uint16_t uuid = p_ssattr->attr_value.v.u16;
// Next attribute should be the version attribute
tSDP_DISC_ATTR* version_attr = p_ssattr->p_next_attr;
if (SDP_DISC_ATTR_TYPE(version_attr->attr_len_type) != UINT_DESC_TYPE ||
SDP_DISC_ATTR_LEN(version_attr->attr_len_type) != 2) {
LOG(WARNING) << __func__ << ": Bad version type "
<< loghex(
SDP_DISC_ATTR_TYPE(version_attr->attr_len_type))
<< ", or length "
<< SDP_DISC_ATTR_LEN(version_attr->attr_len_type);
return std::vector<std::pair<uint16_t, uint16_t>>();
}
// High order 8 bits is the major number, low order is the
// minor number (big endian)
uint16_t version = version_attr->attr_value.v.u16;
result.emplace_back(uuid, version);
}
}
}
return result;
}
/**
* Find the most specific 16-bit service uuid represented by a SDP record
*
* @param p_rec pointer to a SDP record
* @return most specific 16-bit service uuid, 0 if not found
*/
static uint16_t sdpu_find_most_specific_service_uuid(tSDP_DISC_REC* p_rec) {
for (tSDP_DISC_ATTR* p_attr = p_rec->p_first_attr; p_attr != nullptr;
p_attr = p_attr->p_next_attr) {
if (p_attr->attr_id == ATTR_ID_SERVICE_CLASS_ID_LIST &&
SDP_DISC_ATTR_TYPE(p_attr->attr_len_type) == DATA_ELE_SEQ_DESC_TYPE) {
tSDP_DISC_ATTR* p_first_attr = p_attr->attr_value.v.p_sub_attr;
if (SDP_DISC_ATTR_TYPE(p_first_attr->attr_len_type) == UUID_DESC_TYPE &&
SDP_DISC_ATTR_LEN(p_first_attr->attr_len_type) == 2) {
return p_first_attr->attr_value.v.u16;
} else if (SDP_DISC_ATTR_TYPE(p_first_attr->attr_len_type) ==
DATA_ELE_SEQ_DESC_TYPE) {
// Workaround for Toyota G Block car kit:
// It incorrectly puts an extra data element sequence in this attribute
for (tSDP_DISC_ATTR* p_extra_sattr =
p_first_attr->attr_value.v.p_sub_attr;
p_extra_sattr != nullptr;
p_extra_sattr = p_extra_sattr->p_next_attr) {
// Return the first UUID data element
if (SDP_DISC_ATTR_TYPE(p_extra_sattr->attr_len_type) ==
UUID_DESC_TYPE &&
SDP_DISC_ATTR_LEN(p_extra_sattr->attr_len_type) == 2) {
return p_extra_sattr->attr_value.v.u16;
}
}
} else {
LOG(WARNING) << __func__ << ": Bad Service Class ID list attribute";
return 0;
}
} else if (p_attr->attr_id == ATTR_ID_SERVICE_ID) {
if (SDP_DISC_ATTR_TYPE(p_attr->attr_len_type) == UUID_DESC_TYPE &&
SDP_DISC_ATTR_LEN(p_attr->attr_len_type) == 2) {
return p_attr->attr_value.v.u16;
}
}
}
return 0;
}
void sdpu_log_attribute_metrics(const RawAddress& bda,
tSDP_DISCOVERY_DB* p_db) {
CHECK_NE(p_db, nullptr);
bool has_di_record = false;
for (tSDP_DISC_REC* p_rec = p_db->p_first_rec; p_rec != nullptr;
p_rec = p_rec->p_next_rec) {
uint16_t service_uuid = sdpu_find_most_specific_service_uuid(p_rec);
if (service_uuid == 0) {
LOG(INFO) << __func__ << ": skipping record without service uuid " << bda;
continue;
}
// Log the existence of a profile role
// This can be different from Bluetooth Profile Descriptor List
log_sdp_attribute(bda, service_uuid, 0, 0, nullptr);
// Log profile version from Bluetooth Profile Descriptor List
auto uuid_version_array = sdpu_find_profile_version(p_rec);
for (const auto& uuid_version_pair : uuid_version_array) {
uint16_t profile_uuid = uuid_version_pair.first;
uint16_t version = uuid_version_pair.second;
auto version_array = to_little_endian_array(version);
log_sdp_attribute(bda, profile_uuid, ATTR_ID_BT_PROFILE_DESC_LIST,
version_array.size(), version_array.data());
}
// Log protocol version from Protocol Descriptor List
uint16_t protocol_uuid = 0;
switch (service_uuid) {
case UUID_SERVCLASS_AUDIO_SOURCE:
case UUID_SERVCLASS_AUDIO_SINK:
protocol_uuid = UUID_PROTOCOL_AVDTP;
break;
case UUID_SERVCLASS_AV_REMOTE_CONTROL:
case UUID_SERVCLASS_AV_REM_CTRL_CONTROL:
case UUID_SERVCLASS_AV_REM_CTRL_TARGET:
protocol_uuid = UUID_PROTOCOL_AVCTP;
break;
case UUID_SERVCLASS_PANU:
case UUID_SERVCLASS_GN:
protocol_uuid = UUID_PROTOCOL_BNEP;
break;
}
if (protocol_uuid != 0) {
tSDP_PROTOCOL_ELEM protocol_elements = {};
if (SDP_FindProtocolListElemInRec(p_rec, protocol_uuid,
&protocol_elements)) {
if (protocol_elements.num_params >= 1) {
uint16_t version = protocol_elements.params[0];
auto version_array = to_little_endian_array(version);
log_sdp_attribute(bda, protocol_uuid, ATTR_ID_PROTOCOL_DESC_LIST,
version_array.size(), version_array.data());
}
}
}
// Log profile supported features from various supported feature attributes
switch (service_uuid) {
case UUID_SERVCLASS_AG_HANDSFREE:
case UUID_SERVCLASS_HF_HANDSFREE:
case UUID_SERVCLASS_AV_REMOTE_CONTROL:
case UUID_SERVCLASS_AV_REM_CTRL_CONTROL:
case UUID_SERVCLASS_AV_REM_CTRL_TARGET:
case UUID_SERVCLASS_AUDIO_SOURCE:
case UUID_SERVCLASS_AUDIO_SINK: {
tSDP_DISC_ATTR* p_attr =
SDP_FindAttributeInRec(p_rec, ATTR_ID_SUPPORTED_FEATURES);
if (p_attr == nullptr) {
break;
}
uint16_t supported_features = p_attr->attr_value.v.u16;
auto version_array = to_little_endian_array(supported_features);
log_sdp_attribute(bda, service_uuid, ATTR_ID_SUPPORTED_FEATURES,
version_array.size(), version_array.data());
break;
}
case UUID_SERVCLASS_MESSAGE_NOTIFICATION:
case UUID_SERVCLASS_MESSAGE_ACCESS: {
tSDP_DISC_ATTR* p_attr =
SDP_FindAttributeInRec(p_rec, ATTR_ID_MAP_SUPPORTED_FEATURES);
if (p_attr == nullptr) {
break;
}
uint32_t map_supported_features = p_attr->attr_value.v.u32;
auto features_array = to_little_endian_array(map_supported_features);
log_sdp_attribute(bda, service_uuid, ATTR_ID_MAP_SUPPORTED_FEATURES,
features_array.size(), features_array.data());
break;
}
case UUID_SERVCLASS_PBAP_PCE:
case UUID_SERVCLASS_PBAP_PSE: {
tSDP_DISC_ATTR* p_attr =
SDP_FindAttributeInRec(p_rec, ATTR_ID_PBAP_SUPPORTED_FEATURES);
if (p_attr == nullptr) {
break;
}
uint32_t pbap_supported_features = p_attr->attr_value.v.u32;
auto features_array = to_little_endian_array(pbap_supported_features);
log_sdp_attribute(bda, service_uuid, ATTR_ID_PBAP_SUPPORTED_FEATURES,
features_array.size(), features_array.data());
break;
}
}
if (service_uuid == UUID_SERVCLASS_PNP_INFORMATION) {
has_di_record = true;
}
}
// Log the first DI record if there is one
if (has_di_record) {
tSDP_DI_GET_RECORD di_record = {};
if (SDP_GetDiRecord(1, &di_record, p_db) == SDP_SUCCESS) {
auto version_array = to_little_endian_array(di_record.spec_id);
log_sdp_attribute(bda, UUID_SERVCLASS_PNP_INFORMATION,
ATTR_ID_SPECIFICATION_ID, version_array.size(),
version_array.data());
std::stringstream ss;
// [N - native]::SDP::[DIP - Device ID Profile]
ss << "N:SDP::DIP::" << loghex(di_record.rec.vendor_id_source);
log_manufacturer_info(
bda, android::bluetooth::DeviceInfoSrcEnum::DEVICE_INFO_INTERNAL,
ss.str(), loghex(di_record.rec.vendor), loghex(di_record.rec.product),
loghex(di_record.rec.version), "");
std::string bda_string = bda.ToString();
// write manufacturer, model, HW version to config
btif_config_set_int(bda_string, BT_CONFIG_KEY_SDP_DI_MANUFACTURER,
di_record.rec.vendor);
btif_config_set_int(bda_string, BT_CONFIG_KEY_SDP_DI_MODEL,
di_record.rec.product);
btif_config_set_int(bda_string, BT_CONFIG_KEY_SDP_DI_HW_VERSION,
di_record.rec.version);
btif_config_set_int(bda_string, BT_CONFIG_KEY_SDP_DI_VENDOR_ID_SRC,
di_record.rec.vendor_id_source);
}
}
}
/*******************************************************************************
*
* Function sdpu_find_ccb_by_cid
*
* Description This function searches the CCB table for an entry with the
* passed CID.
*
* Returns the CCB address, or NULL if not found.
*
******************************************************************************/
tCONN_CB* sdpu_find_ccb_by_cid(uint16_t cid) {
uint16_t xx;
tCONN_CB* p_ccb;
/* Look through each connection control block */
for (xx = 0, p_ccb = sdp_cb.ccb; xx < SDP_MAX_CONNECTIONS; xx++, p_ccb++) {
if ((p_ccb->con_state != SDP_STATE_IDLE) && (p_ccb->connection_id == cid))
return (p_ccb);
}
/* If here, not found */
return (NULL);
}
/*******************************************************************************
*
* Function sdpu_find_ccb_by_db
*
* Description This function searches the CCB table for an entry with the
* passed discovery db.
*
* Returns the CCB address, or NULL if not found.
*
******************************************************************************/
tCONN_CB* sdpu_find_ccb_by_db(tSDP_DISCOVERY_DB* p_db) {
uint16_t xx;
tCONN_CB* p_ccb;
if (p_db) {
/* Look through each connection control block */
for (xx = 0, p_ccb = sdp_cb.ccb; xx < SDP_MAX_CONNECTIONS; xx++, p_ccb++) {
if ((p_ccb->con_state != SDP_STATE_IDLE) && (p_ccb->p_db == p_db))
return (p_ccb);
}
}
/* If here, not found */
return (NULL);
}
/*******************************************************************************
*
* Function sdpu_allocate_ccb
*
* Description This function allocates a new CCB.
*
* Returns CCB address, or NULL if none available.
*
******************************************************************************/
tCONN_CB* sdpu_allocate_ccb(void) {
uint16_t xx;
tCONN_CB* p_ccb;
/* Look through each connection control block for a free one */
for (xx = 0, p_ccb = sdp_cb.ccb; xx < SDP_MAX_CONNECTIONS; xx++, p_ccb++) {
if (p_ccb->con_state == SDP_STATE_IDLE) {
alarm_t* alarm = p_ccb->sdp_conn_timer;
memset(p_ccb, 0, sizeof(tCONN_CB));
p_ccb->sdp_conn_timer = alarm;
return (p_ccb);
}
}
/* If here, no free CCB found */
return (NULL);
}
/*******************************************************************************
*
* Function sdpu_release_ccb
*
* Description This function releases a CCB.
*
* Returns void
*
******************************************************************************/
void sdpu_release_ccb(tCONN_CB* p_ccb) {
/* Ensure timer is stopped */
alarm_cancel(p_ccb->sdp_conn_timer);
/* Drop any response pointer we may be holding */
p_ccb->con_state = SDP_STATE_IDLE;
p_ccb->is_attr_search = false;
/* Free the response buffer */
if (p_ccb->rsp_list) SDP_TRACE_DEBUG("releasing SDP rsp_list");
osi_free_and_reset((void**)&p_ccb->rsp_list);
}
/*******************************************************************************
*
* Function sdpu_build_attrib_seq
*
* Description This function builds an attribute sequence from the list of
* passed attributes. It is also passed the address of the
* output buffer.
*
* Returns Pointer to next byte in the output buffer.
*
******************************************************************************/
uint8_t* sdpu_build_attrib_seq(uint8_t* p_out, uint16_t* p_attr,
uint16_t num_attrs) {
uint16_t xx;
/* First thing is the data element header. See if the length fits 1 byte */
/* If no attributes, assume a 4-byte wildcard */
if (!p_attr)
xx = 5;
else
xx = num_attrs * 3;
if (xx > 255) {
UINT8_TO_BE_STREAM(p_out,
(DATA_ELE_SEQ_DESC_TYPE << 3) | SIZE_IN_NEXT_WORD);
UINT16_TO_BE_STREAM(p_out, xx);
} else {
UINT8_TO_BE_STREAM(p_out,
(DATA_ELE_SEQ_DESC_TYPE << 3) | SIZE_IN_NEXT_BYTE);
UINT8_TO_BE_STREAM(p_out, xx);
}
/* If there are no attributes specified, assume caller wants wildcard */
if (!p_attr) {
UINT8_TO_BE_STREAM(p_out, (UINT_DESC_TYPE << 3) | SIZE_FOUR_BYTES);
UINT16_TO_BE_STREAM(p_out, 0);
UINT16_TO_BE_STREAM(p_out, 0xFFFF);
} else {
/* Loop through and put in all the attributes(s) */
for (xx = 0; xx < num_attrs; xx++, p_attr++) {
UINT8_TO_BE_STREAM(p_out, (UINT_DESC_TYPE << 3) | SIZE_TWO_BYTES);
UINT16_TO_BE_STREAM(p_out, *p_attr);
}
}
return (p_out);
}
/*******************************************************************************
*
* Function sdpu_build_attrib_entry
*
* Description This function builds an attribute entry from the passed
* attribute record. It is also passed the address of the
* output buffer.
*
* Returns Pointer to next byte in the output buffer.
*
******************************************************************************/
uint8_t* sdpu_build_attrib_entry(uint8_t* p_out, tSDP_ATTRIBUTE* p_attr) {
/* First, store the attribute ID. Goes as a UINT */
UINT8_TO_BE_STREAM(p_out, (UINT_DESC_TYPE << 3) | SIZE_TWO_BYTES);
UINT16_TO_BE_STREAM(p_out, p_attr->id);
/* the attribute is in the db record.
* assuming the attribute len is less than SDP_MAX_ATTR_LEN */
switch (p_attr->type) {
case TEXT_STR_DESC_TYPE: /* 4 */
case DATA_ELE_SEQ_DESC_TYPE: /* 6 */
case DATA_ELE_ALT_DESC_TYPE: /* 7 */
case URL_DESC_TYPE: /* 8 */
#if (SDP_MAX_ATTR_LEN > 0xFFFF)
if (p_attr->len > 0xFFFF) {
UINT8_TO_BE_STREAM(p_out, (p_attr->type << 3) | SIZE_IN_NEXT_LONG);
UINT32_TO_BE_STREAM(p_out, p_attr->len);
} else
#endif /* 0xFFFF - 0xFF */
#if (SDP_MAX_ATTR_LEN > 0xFF)
if (p_attr->len > 0xFF) {
UINT8_TO_BE_STREAM(p_out, (p_attr->type << 3) | SIZE_IN_NEXT_WORD);
UINT16_TO_BE_STREAM(p_out, p_attr->len);
} else
#endif /* 0xFF and less*/
{
UINT8_TO_BE_STREAM(p_out, (p_attr->type << 3) | SIZE_IN_NEXT_BYTE);
UINT8_TO_BE_STREAM(p_out, p_attr->len);
}
if (p_attr->value_ptr != NULL) {
ARRAY_TO_BE_STREAM(p_out, p_attr->value_ptr, (int)p_attr->len);
}
return (p_out);
}
/* Now, store the attribute value */
switch (p_attr->len) {
case 1:
UINT8_TO_BE_STREAM(p_out, (p_attr->type << 3) | SIZE_ONE_BYTE);
break;
case 2:
UINT8_TO_BE_STREAM(p_out, (p_attr->type << 3) | SIZE_TWO_BYTES);
break;
case 4:
UINT8_TO_BE_STREAM(p_out, (p_attr->type << 3) | SIZE_FOUR_BYTES);
break;
case 8:
UINT8_TO_BE_STREAM(p_out, (p_attr->type << 3) | SIZE_EIGHT_BYTES);
break;
case 16:
UINT8_TO_BE_STREAM(p_out, (p_attr->type << 3) | SIZE_SIXTEEN_BYTES);
break;
default:
UINT8_TO_BE_STREAM(p_out, (p_attr->type << 3) | SIZE_IN_NEXT_BYTE);
UINT8_TO_BE_STREAM(p_out, p_attr->len);
break;
}
if (p_attr->value_ptr != NULL) {
ARRAY_TO_BE_STREAM(p_out, p_attr->value_ptr, (int)p_attr->len);
}
return (p_out);
}
/*******************************************************************************
*
* Function sdpu_build_n_send_error
*
* Description This function builds and sends an error packet.
*
* Returns void
*
******************************************************************************/
void sdpu_build_n_send_error(tCONN_CB* p_ccb, uint16_t trans_num,
uint16_t error_code, char* p_error_text) {
uint8_t *p_rsp, *p_rsp_start, *p_rsp_param_len;
uint16_t rsp_param_len;
BT_HDR* p_buf = (BT_HDR*)osi_malloc(SDP_DATA_BUF_SIZE);
SDP_TRACE_WARNING("SDP - sdpu_build_n_send_error code: 0x%x CID: 0x%x",
error_code, p_ccb->connection_id);
/* Send the packet to L2CAP */
p_buf->offset = L2CAP_MIN_OFFSET;
p_rsp = p_rsp_start = (uint8_t*)(p_buf + 1) + L2CAP_MIN_OFFSET;
UINT8_TO_BE_STREAM(p_rsp, SDP_PDU_ERROR_RESPONSE);
UINT16_TO_BE_STREAM(p_rsp, trans_num);
/* Skip the parameter length, we need to add it at the end */
p_rsp_param_len = p_rsp;
p_rsp += 2;
UINT16_TO_BE_STREAM(p_rsp, error_code);
/* Unplugfest example traces do not have any error text */
if (p_error_text)
ARRAY_TO_BE_STREAM(p_rsp, p_error_text, (int)strlen(p_error_text));
/* Go back and put the parameter length into the buffer */
rsp_param_len = p_rsp - p_rsp_param_len - 2;
UINT16_TO_BE_STREAM(p_rsp_param_len, rsp_param_len);
/* Set the length of the SDP data in the buffer */
p_buf->len = p_rsp - p_rsp_start;
/* Send the buffer through L2CAP */
L2CA_DataWrite(p_ccb->connection_id, p_buf);
}
/*******************************************************************************
*
* Function sdpu_extract_uid_seq
*
* Description This function extracts a UUID sequence from the passed input
* buffer, and puts it into the passed output list.
*
* Returns Pointer to next byte in the input buffer after the sequence.
*
******************************************************************************/
uint8_t* sdpu_extract_uid_seq(uint8_t* p, uint16_t param_len,
tSDP_UUID_SEQ* p_seq) {
uint8_t* p_seq_end;
uint8_t descr, type, size;
uint32_t seq_len, uuid_len;
/* Assume none found */
p_seq->num_uids = 0;
/* A UID sequence is composed of a bunch of UIDs. */
if (sizeof(descr) > param_len) return (NULL);
param_len -= sizeof(descr);
BE_STREAM_TO_UINT8(descr, p);
type = descr >> 3;
size = descr & 7;
if (type != DATA_ELE_SEQ_DESC_TYPE) return (NULL);
switch (size) {
case SIZE_TWO_BYTES:
seq_len = 2;
break;
case SIZE_FOUR_BYTES:
seq_len = 4;
break;
case SIZE_SIXTEEN_BYTES:
seq_len = 16;
break;
case SIZE_IN_NEXT_BYTE:
if (sizeof(uint8_t) > param_len) return (NULL);
param_len -= sizeof(uint8_t);
BE_STREAM_TO_UINT8(seq_len, p);
break;
case SIZE_IN_NEXT_WORD:
if (sizeof(uint16_t) > param_len) return (NULL);
param_len -= sizeof(uint16_t);
BE_STREAM_TO_UINT16(seq_len, p);
break;
case SIZE_IN_NEXT_LONG:
if (sizeof(uint32_t) > param_len) return (NULL);
param_len -= sizeof(uint32_t);
BE_STREAM_TO_UINT32(seq_len, p);
break;
default:
return (NULL);
}
if (seq_len > param_len) return (NULL);
p_seq_end = p + seq_len;
/* Loop through, extracting the UIDs */
for (; p < p_seq_end;) {
BE_STREAM_TO_UINT8(descr, p);
type = descr >> 3;
size = descr & 7;
if (type != UUID_DESC_TYPE) return (NULL);
switch (size) {
case SIZE_TWO_BYTES:
uuid_len = 2;
break;
case SIZE_FOUR_BYTES:
uuid_len = 4;
break;
case SIZE_SIXTEEN_BYTES:
uuid_len = 16;
break;
case SIZE_IN_NEXT_BYTE:
if (p + sizeof(uint8_t) > p_seq_end) return NULL;
BE_STREAM_TO_UINT8(uuid_len, p);
break;
case SIZE_IN_NEXT_WORD:
if (p + sizeof(uint16_t) > p_seq_end) return NULL;
BE_STREAM_TO_UINT16(uuid_len, p);
break;
case SIZE_IN_NEXT_LONG:
if (p + sizeof(uint32_t) > p_seq_end) return NULL;
BE_STREAM_TO_UINT32(uuid_len, p);
break;
default:
return (NULL);
}
/* If UUID length is valid, copy it across */
if (((uuid_len == 2) || (uuid_len == 4) || (uuid_len == 16)) &&
(p + uuid_len <= p_seq_end)) {
p_seq->uuid_entry[p_seq->num_uids].len = (uint16_t)uuid_len;
BE_STREAM_TO_ARRAY(p, p_seq->uuid_entry[p_seq->num_uids].value,
(int)uuid_len);
p_seq->num_uids++;
} else
return (NULL);
/* We can only do so many */
if (p_seq->num_uids >= MAX_UUIDS_PER_SEQ) return (NULL);
}
if (p != p_seq_end) return (NULL);
return (p);
}
/*******************************************************************************
*
* Function sdpu_extract_attr_seq
*
* Description This function extracts an attribute sequence from the passed
* input buffer, and puts it into the passed output list.
*
* Returns Pointer to next byte in the input buffer after the sequence.
*
******************************************************************************/
uint8_t* sdpu_extract_attr_seq(uint8_t* p, uint16_t param_len,
tSDP_ATTR_SEQ* p_seq) {
uint8_t* p_end_list;
uint8_t descr, type, size;
uint32_t list_len, attr_len;
/* Assume none found */
p_seq->num_attr = 0;
/* Get attribute sequence info */
if (param_len < sizeof(descr)) return NULL;
param_len -= sizeof(descr);
BE_STREAM_TO_UINT8(descr, p);
type = descr >> 3;
size = descr & 7;
if (type != DATA_ELE_SEQ_DESC_TYPE) return NULL;
switch (size) {
case SIZE_IN_NEXT_BYTE:
if (param_len < sizeof(uint8_t)) return NULL;
param_len -= sizeof(uint8_t);
BE_STREAM_TO_UINT8(list_len, p);
break;
case SIZE_IN_NEXT_WORD:
if (param_len < sizeof(uint16_t)) return NULL;
param_len -= sizeof(uint16_t);
BE_STREAM_TO_UINT16(list_len, p);
break;
case SIZE_IN_NEXT_LONG:
if (param_len < sizeof(uint32_t)) return NULL;
param_len -= sizeof(uint32_t);
BE_STREAM_TO_UINT32(list_len, p);
break;
default:
return NULL;
}
if (list_len > param_len) return NULL;
p_end_list = p + list_len;
/* Loop through, extracting the attribute IDs */
for (; p < p_end_list;) {
BE_STREAM_TO_UINT8(descr, p);
type = descr >> 3;
size = descr & 7;
if (type != UINT_DESC_TYPE) return NULL;
switch (size) {
case SIZE_TWO_BYTES:
attr_len = 2;
break;
case SIZE_FOUR_BYTES:
attr_len = 4;
break;
case SIZE_IN_NEXT_BYTE:
if (p + sizeof(uint8_t) > p_end_list) return NULL;
BE_STREAM_TO_UINT8(attr_len, p);
break;
case SIZE_IN_NEXT_WORD:
if (p + sizeof(uint16_t) > p_end_list) return NULL;
BE_STREAM_TO_UINT16(attr_len, p);
break;
case SIZE_IN_NEXT_LONG:
if (p + sizeof(uint32_t) > p_end_list) return NULL;
BE_STREAM_TO_UINT32(attr_len, p);
break;
default:
return NULL;
break;
}
/* Attribute length must be 2-bytes or 4-bytes for a paired entry. */
if (p + attr_len > p_end_list) return NULL;
if (attr_len == 2) {
BE_STREAM_TO_UINT16(p_seq->attr_entry[p_seq->num_attr].start, p);
p_seq->attr_entry[p_seq->num_attr].end =
p_seq->attr_entry[p_seq->num_attr].start;
} else if (attr_len == 4) {
BE_STREAM_TO_UINT16(p_seq->attr_entry[p_seq->num_attr].start, p);
BE_STREAM_TO_UINT16(p_seq->attr_entry[p_seq->num_attr].end, p);
} else
return (NULL);
/* We can only do so many */
if (++p_seq->num_attr >= MAX_ATTR_PER_SEQ) return (NULL);
}
return (p);
}
/*******************************************************************************
*
* Function sdpu_get_len_from_type
*
* Description This function gets the length
*
* Returns void
*
******************************************************************************/
uint8_t* sdpu_get_len_from_type(uint8_t* p, uint8_t* p_end, uint8_t type,
uint32_t* p_len) {
uint8_t u8;
uint16_t u16;
uint32_t u32;
switch (type & 7) {
case SIZE_ONE_BYTE:
*p_len = 1;
break;
case SIZE_TWO_BYTES:
*p_len = 2;
break;
case SIZE_FOUR_BYTES:
*p_len = 4;
break;
case SIZE_EIGHT_BYTES:
*p_len = 8;
break;
case SIZE_SIXTEEN_BYTES:
*p_len = 16;
break;
case SIZE_IN_NEXT_BYTE:
if (p + 1 > p_end) {
*p_len = 0;
return NULL;
}
BE_STREAM_TO_UINT8(u8, p);
*p_len = u8;
break;
case SIZE_IN_NEXT_WORD:
if (p + 2 > p_end) {
*p_len = 0;
return NULL;
}
BE_STREAM_TO_UINT16(u16, p);
*p_len = u16;
break;
case SIZE_IN_NEXT_LONG:
if (p + 4 > p_end) {
*p_len = 0;
return NULL;
}
BE_STREAM_TO_UINT32(u32, p);
*p_len = (uint16_t)u32;
break;
}
return (p);
}
/*******************************************************************************
*
* Function sdpu_is_base_uuid
*
* Description This function checks a 128-bit UUID with the base to see if
* it matches. Only the last 12 bytes are compared.
*
* Returns true if matched, else false
*
******************************************************************************/
bool sdpu_is_base_uuid(uint8_t* p_uuid) {
uint16_t xx;
for (xx = 4; xx < Uuid::kNumBytes128; xx++)
if (p_uuid[xx] != sdp_base_uuid[xx]) return (false);
/* If here, matched */
return (true);
}
/*******************************************************************************
*
* Function sdpu_compare_uuid_arrays
*
* Description This function compares 2 BE UUIDs. If needed, they are
* expanded to 128-bit UUIDs, then compared.
*
* NOTE it is assumed that the arrays are in Big Endian format
*
* Returns true if matched, else false
*
******************************************************************************/
bool sdpu_compare_uuid_arrays(uint8_t* p_uuid1, uint32_t len1, uint8_t* p_uuid2,
uint16_t len2) {
uint8_t nu1[Uuid::kNumBytes128];
uint8_t nu2[Uuid::kNumBytes128];
if (((len1 != 2) && (len1 != 4) && (len1 != 16)) ||
((len2 != 2) && (len2 != 4) && (len2 != 16))) {
SDP_TRACE_ERROR("%s: invalid length", __func__);
return false;
}
/* If lengths match, do a straight compare */
if (len1 == len2) {
if (len1 == 2)
return ((p_uuid1[0] == p_uuid2[0]) && (p_uuid1[1] == p_uuid2[1]));
if (len1 == 4)
return ((p_uuid1[0] == p_uuid2[0]) && (p_uuid1[1] == p_uuid2[1]) &&
(p_uuid1[2] == p_uuid2[2]) && (p_uuid1[3] == p_uuid2[3]));
else
return (memcmp(p_uuid1, p_uuid2, (size_t)len1) == 0);
} else if (len1 > len2) {
/* If the len1 was 4-byte, (so len2 is 2-byte), compare on the fly */
if (len1 == 4) {
return ((p_uuid1[0] == 0) && (p_uuid1[1] == 0) &&
(p_uuid1[2] == p_uuid2[0]) && (p_uuid1[3] == p_uuid2[1]));
} else {
/* Normalize UUIDs to 16-byte form, then compare. Len1 must be 16 */
memcpy(nu1, p_uuid1, Uuid::kNumBytes128);
memcpy(nu2, sdp_base_uuid, Uuid::kNumBytes128);
if (len2 == 4)
memcpy(nu2, p_uuid2, len2);
else if (len2 == 2)
memcpy(nu2 + 2, p_uuid2, len2);
return (memcmp(nu1, nu2, Uuid::kNumBytes128) == 0);
}
} else {
/* len2 is greater than len1 */
/* If the len2 was 4-byte, (so len1 is 2-byte), compare on the fly */
if (len2 == 4) {
return ((p_uuid2[0] == 0) && (p_uuid2[1] == 0) &&
(p_uuid2[2] == p_uuid1[0]) && (p_uuid2[3] == p_uuid1[1]));
} else {
/* Normalize UUIDs to 16-byte form, then compare. Len1 must be 16 */
memcpy(nu2, p_uuid2, Uuid::kNumBytes128);
memcpy(nu1, sdp_base_uuid, Uuid::kNumBytes128);
if (len1 == 4)
memcpy(nu1, p_uuid1, (size_t)len1);
else if (len1 == 2)
memcpy(nu1 + 2, p_uuid1, (size_t)len1);
return (memcmp(nu1, nu2, Uuid::kNumBytes128) == 0);
}
}
}
/*******************************************************************************
*
* Function sdpu_compare_uuid_with_attr
*
* Description This function compares a BT UUID structure with the UUID in
* an SDP attribute record. If needed, they are expanded to
* 128-bit UUIDs, then compared.
*
* NOTE - it is assumed that BT UUID structures are compressed to the
* smallest possible UUIDs (by removing the base SDP UUID).
* - it is also assumed that the discovery atribute is compressed
* to the smallest possible
*
* Returns true if matched, else false
*
******************************************************************************/
bool sdpu_compare_uuid_with_attr(const Uuid& uuid, tSDP_DISC_ATTR* p_attr) {
int len = uuid.GetShortestRepresentationSize();
if (len == 2) return uuid.As16Bit() == p_attr->attr_value.v.u16;
if (len == 4) return uuid.As32Bit() == p_attr->attr_value.v.u32;
if (memcmp(uuid.To128BitBE().data(), (void*)p_attr->attr_value.v.array,
Uuid::kNumBytes128) == 0)
return (true);
return (false);
}
/*******************************************************************************
*
* Function sdpu_sort_attr_list
*
* Description sorts a list of attributes in numeric order from lowest to
* highest to conform to SDP specification
*
* Returns void
*
******************************************************************************/
void sdpu_sort_attr_list(uint16_t num_attr, tSDP_DISCOVERY_DB* p_db) {
uint16_t i;
uint16_t x;
/* Done if no attributes to sort */
if (num_attr <= 1) {
return;
} else if (num_attr > SDP_MAX_ATTR_FILTERS) {
num_attr = SDP_MAX_ATTR_FILTERS;
}
num_attr--; /* for the for-loop */
for (i = 0; i < num_attr;) {
if (p_db->attr_filters[i] > p_db->attr_filters[i + 1]) {
/* swap the attribute IDs and start from the beginning */
x = p_db->attr_filters[i];
p_db->attr_filters[i] = p_db->attr_filters[i + 1];
p_db->attr_filters[i + 1] = x;
i = 0;
} else
i++;
}
}
/*******************************************************************************
*
* Function sdpu_get_list_len
*
* Description gets the total list length in the sdp database for a given
* uid sequence and attr sequence
*
* Returns void
*
******************************************************************************/
uint16_t sdpu_get_list_len(tSDP_UUID_SEQ* uid_seq, tSDP_ATTR_SEQ* attr_seq) {
tSDP_RECORD* p_rec;
uint16_t len = 0;
uint16_t len1;
for (p_rec = sdp_db_service_search(NULL, uid_seq); p_rec;
p_rec = sdp_db_service_search(p_rec, uid_seq)) {
len += 3;
len1 = sdpu_get_attrib_seq_len(p_rec, attr_seq);
if (len1 != 0)
len += len1;
else
len -= 3;
}
return len;
}
/*******************************************************************************
*
* Function sdpu_get_attrib_seq_len
*
* Description gets the length of the specific attributes in a given
* sdp record
*
* Returns void
*
******************************************************************************/
uint16_t sdpu_get_attrib_seq_len(tSDP_RECORD* p_rec, tSDP_ATTR_SEQ* attr_seq) {
tSDP_ATTRIBUTE* p_attr;
uint16_t len1 = 0;
uint16_t xx;
bool is_range = false;
uint16_t start_id = 0, end_id = 0;
for (xx = 0; xx < attr_seq->num_attr; xx++) {
if (!is_range) {
start_id = attr_seq->attr_entry[xx].start;
end_id = attr_seq->attr_entry[xx].end;
}
p_attr = sdp_db_find_attr_in_rec(p_rec, start_id, end_id);
if (p_attr) {
len1 += sdpu_get_attrib_entry_len(p_attr);
/* If doing a range, stick with this one till no more attributes found */
if (start_id != end_id) {
/* Update for next time through */
start_id = p_attr->id + 1;
xx--;
is_range = true;
} else
is_range = false;
} else
is_range = false;
}
return len1;
}
/*******************************************************************************
*
* Function sdpu_get_attrib_entry_len
*
* Description gets the length of a specific attribute
*
* Returns void
*
******************************************************************************/
uint16_t sdpu_get_attrib_entry_len(tSDP_ATTRIBUTE* p_attr) {
uint16_t len = 3;
/* the attribute is in the db record.
* assuming the attribute len is less than SDP_MAX_ATTR_LEN */
switch (p_attr->type) {
case TEXT_STR_DESC_TYPE: /* 4 */
case DATA_ELE_SEQ_DESC_TYPE: /* 6 */
case DATA_ELE_ALT_DESC_TYPE: /* 7 */
case URL_DESC_TYPE: /* 8 */
#if (SDP_MAX_ATTR_LEN > 0xFFFF)
if (p_attr->len > 0xFFFF) {
len += 5;
} else
#endif /* 0xFFFF - 0xFF */
#if (SDP_MAX_ATTR_LEN > 0xFF)
if (p_attr->len > 0xFF) {
len += 3;
} else
#endif /* 0xFF and less*/
{
len += 2;
}
len += p_attr->len;
return len;
}
/* Now, the attribute value */
switch (p_attr->len) {
case 1:
case 2:
case 4:
case 8:
case 16:
len += 1;
break;
default:
len += 2;
break;
}
len += p_attr->len;
return len;
}
/*******************************************************************************
*
* Function sdpu_build_partial_attrib_entry
*
* Description This function fills a buffer with partial attribute. It is
* assumed that the maximum size of any attribute is 256 bytes.
*
* p_out: output buffer
* p_attr: attribute to be copied partially into p_out
* rem_len: num bytes to copy into p_out
* offset: current start offset within the attr that needs to
* be copied
*
* Returns Pointer to next byte in the output buffer.
* offset is also updated
*
******************************************************************************/
uint8_t* sdpu_build_partial_attrib_entry(uint8_t* p_out, tSDP_ATTRIBUTE* p_attr,
uint16_t len, uint16_t* offset) {
uint8_t* p_attr_buff =
(uint8_t*)osi_malloc(sizeof(uint8_t) * SDP_MAX_ATTR_LEN);
sdpu_build_attrib_entry(p_attr_buff, p_attr);
uint16_t attr_len = sdpu_get_attrib_entry_len(p_attr);
if (len > SDP_MAX_ATTR_LEN) {
SDP_TRACE_ERROR("%s len %d exceeds SDP_MAX_ATTR_LEN", __func__, len);
len = SDP_MAX_ATTR_LEN;
}
size_t len_to_copy =
((attr_len - *offset) < len) ? (attr_len - *offset) : len;
memcpy(p_out, &p_attr_buff[*offset], len_to_copy);
p_out = &p_out[len_to_copy];
*offset += len_to_copy;
osi_free(p_attr_buff);
return p_out;
}
/*******************************************************************************
*
* Function sdpu_is_avrcp_profile_description_list
*
* Description This function is to check if attirbute contain AVRCP profile
* description list
*
* p_attr: attibute to be check
*
* Returns AVRCP profile version if matched, else 0
*
******************************************************************************/
uint16_t sdpu_is_avrcp_profile_description_list(tSDP_ATTRIBUTE* p_attr) {
if (p_attr->id != ATTR_ID_BT_PROFILE_DESC_LIST || p_attr->len != 8) {
return 0;
}
uint8_t* p_uuid = p_attr->value_ptr + 3;
// Check if AVRCP profile UUID
if (p_uuid[0] != 0x11 || p_uuid[1] != 0xe) {
return 0;
}
uint8_t p_version = *(p_uuid + 4);
switch (p_version) {
case 0x0:
return AVRC_REV_1_0;
case 0x3:
return AVRC_REV_1_3;
case 0x4:
return AVRC_REV_1_4;
case 0x5:
return AVRC_REV_1_5;
case 0x6:
return AVRC_REV_1_6;
default:
return 0;
}
}