blob: 912585414b825fe849cd18186827bd221146fcac [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Don't edit this file! It is auto-generated by frameworks/rs/api/generate.sh.
/*
* rs_math.rsh: Mathematical Constants and Functions
*
* The mathematical functions below can be applied to scalars and vectors. When applied
* to vectors, the returned value is a vector of the function applied to each entry of the input.
*
* For example:
* float3 a, b;
* // The following call sets
* // a.x to sin(b.x),
* // a.y to sin(b.y), and
* // a.z to sin(b.z).
* a = sin(b);
*
*
* See Vector Math Functions for functions like distance() and length() that interpret
* instead the input as a single vector in n-dimensional space.
*
* The precision of the mathematical operations on 32 bit floats is affected by the pragmas
* rs_fp_relaxed and rs_fp_full. Under rs_fp_relaxed, subnormal values may be flushed to zero and
* rounding may be done towards zero. In comparison, rs_fp_full requires correct handling of
* subnormal values, i.e. smaller than 1.17549435e-38f. rs_fp_rull also requires round to nearest
* with ties to even.
*
* Different precision/speed tradeoffs can be achieved by using variants of the common math
* functions. Functions with a name starting with
* - native_: May have custom hardware implementations with weaker precision. Additionally,
* subnormal values may be flushed to zero, rounding towards zero may be used, and NaN and
* infinity input may not be handled correctly.
* - half_: May perform internal computations using 16 bit floats. Additionally, subnormal
* values may be flushed to zero, and rounding towards zero may be used.
*
*/
#ifndef RENDERSCRIPT_RS_MATH_RSH
#define RENDERSCRIPT_RS_MATH_RSH
/*
* M_1_PI: 1 / pi, as a 32 bit float
*
* The inverse of pi, as a 32 bit float.
*/
#define M_1_PI 0.318309886183790671537767526745028724f
/*
* M_2_PI: 2 / pi, as a 32 bit float
*
* 2 divided by pi, as a 32 bit float.
*/
#define M_2_PI 0.636619772367581343075535053490057448f
/*
* M_2_PIl: 2 / pi, as a 32 bit float
*
* DEPRECATED. Do not use.
*
* 2 divided by pi, as a 32 bit float.
*/
#define M_2_PIl 0.636619772367581343075535053490057448f
/*
* M_2_SQRTPI: 2 / sqrt(pi), as a 32 bit float
*
* 2 divided by the square root of pi, as a 32 bit float.
*/
#define M_2_SQRTPI 1.128379167095512573896158903121545172f
/*
* M_E: e, as a 32 bit float
*
* The number e, the base of the natural logarithm, as a 32 bit float.
*/
#define M_E 2.718281828459045235360287471352662498f
/*
* M_LN10: log_e(10), as a 32 bit float
*
* The natural logarithm of 10, as a 32 bit float.
*/
#define M_LN10 2.302585092994045684017991454684364208f
/*
* M_LN2: log_e(2), as a 32 bit float
*
* The natural logarithm of 2, as a 32 bit float.
*/
#define M_LN2 0.693147180559945309417232121458176568f
/*
* M_LOG10E: log_10(e), as a 32 bit float
*
* The logarithm base 10 of e, as a 32 bit float.
*/
#define M_LOG10E 0.434294481903251827651128918916605082f
/*
* M_LOG2E: log_2(e), as a 32 bit float
*
* The logarithm base 2 of e, as a 32 bit float.
*/
#define M_LOG2E 1.442695040888963407359924681001892137f
/*
* M_PI: pi, as a 32 bit float
*
* The constant pi, as a 32 bit float.
*/
#define M_PI 3.141592653589793238462643383279502884f
/*
* M_PI_2: pi / 2, as a 32 bit float
*
* Pi divided by 2, as a 32 bit float.
*/
#define M_PI_2 1.570796326794896619231321691639751442f
/*
* M_PI_4: pi / 4, as a 32 bit float
*
* Pi divided by 4, as a 32 bit float.
*/
#define M_PI_4 0.785398163397448309615660845819875721f
/*
* M_SQRT1_2: 1 / sqrt(2), as a 32 bit float
*
* The inverse of the square root of 2, as a 32 bit float.
*/
#define M_SQRT1_2 0.707106781186547524400844362104849039f
/*
* M_SQRT2: sqrt(2), as a 32 bit float
*
* The square root of 2, as a 32 bit float.
*/
#define M_SQRT2 1.414213562373095048801688724209698079f
/*
* abs: Absolute value of an integer
*
* Returns the absolute value of an integer.
*
* For floats, use fabs().
*/
extern uchar __attribute__((const, overloadable))
abs(char v);
extern uchar2 __attribute__((const, overloadable))
abs(char2 v);
extern uchar3 __attribute__((const, overloadable))
abs(char3 v);
extern uchar4 __attribute__((const, overloadable))
abs(char4 v);
extern ushort __attribute__((const, overloadable))
abs(short v);
extern ushort2 __attribute__((const, overloadable))
abs(short2 v);
extern ushort3 __attribute__((const, overloadable))
abs(short3 v);
extern ushort4 __attribute__((const, overloadable))
abs(short4 v);
extern uint __attribute__((const, overloadable))
abs(int v);
extern uint2 __attribute__((const, overloadable))
abs(int2 v);
extern uint3 __attribute__((const, overloadable))
abs(int3 v);
extern uint4 __attribute__((const, overloadable))
abs(int4 v);
/*
* acos: Inverse cosine
*
* Returns the inverse cosine, in radians.
*
* See also native_acos().
*/
extern float __attribute__((const, overloadable))
acos(float v);
extern float2 __attribute__((const, overloadable))
acos(float2 v);
extern float3 __attribute__((const, overloadable))
acos(float3 v);
extern float4 __attribute__((const, overloadable))
acos(float4 v);
/*
* acosh: Inverse hyperbolic cosine
*
* Returns the inverse hyperbolic cosine, in radians.
*
* See also native_acosh().
*/
extern float __attribute__((const, overloadable))
acosh(float v);
extern float2 __attribute__((const, overloadable))
acosh(float2 v);
extern float3 __attribute__((const, overloadable))
acosh(float3 v);
extern float4 __attribute__((const, overloadable))
acosh(float4 v);
/*
* acospi: Inverse cosine divided by pi
*
* Returns the inverse cosine in radians, divided by pi.
*
* To get an inverse cosine measured in degrees, use acospi(a) * 180.f.
*
* See also native_acospi().
*/
extern float __attribute__((const, overloadable))
acospi(float v);
extern float2 __attribute__((const, overloadable))
acospi(float2 v);
extern float3 __attribute__((const, overloadable))
acospi(float3 v);
extern float4 __attribute__((const, overloadable))
acospi(float4 v);
/*
* asin: Inverse sine
*
* Returns the inverse sine, in radians.
*
* See also native_asin().
*/
extern float __attribute__((const, overloadable))
asin(float v);
extern float2 __attribute__((const, overloadable))
asin(float2 v);
extern float3 __attribute__((const, overloadable))
asin(float3 v);
extern float4 __attribute__((const, overloadable))
asin(float4 v);
/*
* asinh: Inverse hyperbolic sine
*
* Returns the inverse hyperbolic sine, in radians.
*
* See also native_asinh().
*/
extern float __attribute__((const, overloadable))
asinh(float v);
extern float2 __attribute__((const, overloadable))
asinh(float2 v);
extern float3 __attribute__((const, overloadable))
asinh(float3 v);
extern float4 __attribute__((const, overloadable))
asinh(float4 v);
/*
* asinpi: Inverse sine divided by pi
*
* Returns the inverse sine in radians, divided by pi.
*
* To get an inverse sine measured in degrees, use asinpi(a) * 180.f.
*
* See also native_asinpi().
*/
extern float __attribute__((const, overloadable))
asinpi(float v);
extern float2 __attribute__((const, overloadable))
asinpi(float2 v);
extern float3 __attribute__((const, overloadable))
asinpi(float3 v);
extern float4 __attribute__((const, overloadable))
asinpi(float4 v);
/*
* atan: Inverse tangent
*
* Returns the inverse tangent, in radians.
*
* See also native_atan().
*/
extern float __attribute__((const, overloadable))
atan(float v);
extern float2 __attribute__((const, overloadable))
atan(float2 v);
extern float3 __attribute__((const, overloadable))
atan(float3 v);
extern float4 __attribute__((const, overloadable))
atan(float4 v);
/*
* atan2: Inverse tangent of a ratio
*
* Returns the inverse tangent of (numerator / denominator), in radians.
*
* See also native_atan2().
*
* Parameters:
* numerator: Numerator.
* denominator: Denominator. Can be 0.
*/
extern float __attribute__((const, overloadable))
atan2(float numerator, float denominator);
extern float2 __attribute__((const, overloadable))
atan2(float2 numerator, float2 denominator);
extern float3 __attribute__((const, overloadable))
atan2(float3 numerator, float3 denominator);
extern float4 __attribute__((const, overloadable))
atan2(float4 numerator, float4 denominator);
/*
* atan2pi: Inverse tangent of a ratio, divided by pi
*
* Returns the inverse tangent of (numerator / denominator), in radians, divided by pi.
*
* To get an inverse tangent measured in degrees, use atan2pi(n, d) * 180.f.
*
* See also native_atan2pi().
*
* Parameters:
* numerator: Numerator.
* denominator: Denominator. Can be 0.
*/
extern float __attribute__((const, overloadable))
atan2pi(float numerator, float denominator);
extern float2 __attribute__((const, overloadable))
atan2pi(float2 numerator, float2 denominator);
extern float3 __attribute__((const, overloadable))
atan2pi(float3 numerator, float3 denominator);
extern float4 __attribute__((const, overloadable))
atan2pi(float4 numerator, float4 denominator);
/*
* atanh: Inverse hyperbolic tangent
*
* Returns the inverse hyperbolic tangent, in radians.
*
* See also native_atanh().
*/
extern float __attribute__((const, overloadable))
atanh(float v);
extern float2 __attribute__((const, overloadable))
atanh(float2 v);
extern float3 __attribute__((const, overloadable))
atanh(float3 v);
extern float4 __attribute__((const, overloadable))
atanh(float4 v);
/*
* atanpi: Inverse tangent divided by pi
*
* Returns the inverse tangent in radians, divided by pi.
*
* To get an inverse tangent measured in degrees, use atanpi(a) * 180.f.
*
* See also native_atanpi().
*/
extern float __attribute__((const, overloadable))
atanpi(float v);
extern float2 __attribute__((const, overloadable))
atanpi(float2 v);
extern float3 __attribute__((const, overloadable))
atanpi(float3 v);
extern float4 __attribute__((const, overloadable))
atanpi(float4 v);
/*
* cbrt: Cube root
*
* Returns the cube root.
*
* See also native_cbrt().
*/
extern float __attribute__((const, overloadable))
cbrt(float v);
extern float2 __attribute__((const, overloadable))
cbrt(float2 v);
extern float3 __attribute__((const, overloadable))
cbrt(float3 v);
extern float4 __attribute__((const, overloadable))
cbrt(float4 v);
/*
* ceil: Smallest integer not less than a value
*
* Returns the smallest integer not less than a value.
*
* For example, ceil(1.2f) returns 2.f, and ceil(-1.2f) returns -1.f.
*
* See also floor().
*/
extern float __attribute__((const, overloadable))
ceil(float v);
extern float2 __attribute__((const, overloadable))
ceil(float2 v);
extern float3 __attribute__((const, overloadable))
ceil(float3 v);
extern float4 __attribute__((const, overloadable))
ceil(float4 v);
/*
* clamp: Restrain a value to a range
*
* Clamps a value to a specified high and low bound. clamp() returns min_value
* if value < min_value, max_value if value > max_value, otherwise value.
*
* There are two variants of clamp: one where the min and max are scalars applied
* to all entries of the value, the other where the min and max are also vectors.
*
* If min_value is greater than max_value, the results are undefined.
*
* Parameters:
* value: Value to be clamped.
* min_value: Lower bound, a scalar or matching vector.
* max_value: High bound, must match the type of low.
*/
extern float __attribute__((const, overloadable))
clamp(float value, float min_value, float max_value);
extern float2 __attribute__((const, overloadable))
clamp(float2 value, float2 min_value, float2 max_value);
extern float3 __attribute__((const, overloadable))
clamp(float3 value, float3 min_value, float3 max_value);
extern float4 __attribute__((const, overloadable))
clamp(float4 value, float4 min_value, float4 max_value);
extern float2 __attribute__((const, overloadable))
clamp(float2 value, float min_value, float max_value);
extern float3 __attribute__((const, overloadable))
clamp(float3 value, float min_value, float max_value);
extern float4 __attribute__((const, overloadable))
clamp(float4 value, float min_value, float max_value);
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern char __attribute__((const, overloadable))
clamp(char value, char min_value, char max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern char2 __attribute__((const, overloadable))
clamp(char2 value, char2 min_value, char2 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern char3 __attribute__((const, overloadable))
clamp(char3 value, char3 min_value, char3 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern char4 __attribute__((const, overloadable))
clamp(char4 value, char4 min_value, char4 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uchar __attribute__((const, overloadable))
clamp(uchar value, uchar min_value, uchar max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uchar2 __attribute__((const, overloadable))
clamp(uchar2 value, uchar2 min_value, uchar2 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uchar3 __attribute__((const, overloadable))
clamp(uchar3 value, uchar3 min_value, uchar3 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uchar4 __attribute__((const, overloadable))
clamp(uchar4 value, uchar4 min_value, uchar4 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern short __attribute__((const, overloadable))
clamp(short value, short min_value, short max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern short2 __attribute__((const, overloadable))
clamp(short2 value, short2 min_value, short2 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern short3 __attribute__((const, overloadable))
clamp(short3 value, short3 min_value, short3 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern short4 __attribute__((const, overloadable))
clamp(short4 value, short4 min_value, short4 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ushort __attribute__((const, overloadable))
clamp(ushort value, ushort min_value, ushort max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ushort2 __attribute__((const, overloadable))
clamp(ushort2 value, ushort2 min_value, ushort2 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ushort3 __attribute__((const, overloadable))
clamp(ushort3 value, ushort3 min_value, ushort3 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ushort4 __attribute__((const, overloadable))
clamp(ushort4 value, ushort4 min_value, ushort4 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern int __attribute__((const, overloadable))
clamp(int value, int min_value, int max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern int2 __attribute__((const, overloadable))
clamp(int2 value, int2 min_value, int2 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern int3 __attribute__((const, overloadable))
clamp(int3 value, int3 min_value, int3 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern int4 __attribute__((const, overloadable))
clamp(int4 value, int4 min_value, int4 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uint __attribute__((const, overloadable))
clamp(uint value, uint min_value, uint max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uint2 __attribute__((const, overloadable))
clamp(uint2 value, uint2 min_value, uint2 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uint3 __attribute__((const, overloadable))
clamp(uint3 value, uint3 min_value, uint3 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uint4 __attribute__((const, overloadable))
clamp(uint4 value, uint4 min_value, uint4 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern long __attribute__((const, overloadable))
clamp(long value, long min_value, long max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern long2 __attribute__((const, overloadable))
clamp(long2 value, long2 min_value, long2 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern long3 __attribute__((const, overloadable))
clamp(long3 value, long3 min_value, long3 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern long4 __attribute__((const, overloadable))
clamp(long4 value, long4 min_value, long4 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ulong __attribute__((const, overloadable))
clamp(ulong value, ulong min_value, ulong max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ulong2 __attribute__((const, overloadable))
clamp(ulong2 value, ulong2 min_value, ulong2 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ulong3 __attribute__((const, overloadable))
clamp(ulong3 value, ulong3 min_value, ulong3 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ulong4 __attribute__((const, overloadable))
clamp(ulong4 value, ulong4 min_value, ulong4 max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern char2 __attribute__((const, overloadable))
clamp(char2 value, char min_value, char max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern char3 __attribute__((const, overloadable))
clamp(char3 value, char min_value, char max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern char4 __attribute__((const, overloadable))
clamp(char4 value, char min_value, char max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uchar2 __attribute__((const, overloadable))
clamp(uchar2 value, uchar min_value, uchar max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uchar3 __attribute__((const, overloadable))
clamp(uchar3 value, uchar min_value, uchar max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uchar4 __attribute__((const, overloadable))
clamp(uchar4 value, uchar min_value, uchar max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern short2 __attribute__((const, overloadable))
clamp(short2 value, short min_value, short max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern short3 __attribute__((const, overloadable))
clamp(short3 value, short min_value, short max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern short4 __attribute__((const, overloadable))
clamp(short4 value, short min_value, short max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ushort2 __attribute__((const, overloadable))
clamp(ushort2 value, ushort min_value, ushort max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ushort3 __attribute__((const, overloadable))
clamp(ushort3 value, ushort min_value, ushort max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ushort4 __attribute__((const, overloadable))
clamp(ushort4 value, ushort min_value, ushort max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern int2 __attribute__((const, overloadable))
clamp(int2 value, int min_value, int max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern int3 __attribute__((const, overloadable))
clamp(int3 value, int min_value, int max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern int4 __attribute__((const, overloadable))
clamp(int4 value, int min_value, int max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uint2 __attribute__((const, overloadable))
clamp(uint2 value, uint min_value, uint max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uint3 __attribute__((const, overloadable))
clamp(uint3 value, uint min_value, uint max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern uint4 __attribute__((const, overloadable))
clamp(uint4 value, uint min_value, uint max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern long2 __attribute__((const, overloadable))
clamp(long2 value, long min_value, long max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern long3 __attribute__((const, overloadable))
clamp(long3 value, long min_value, long max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern long4 __attribute__((const, overloadable))
clamp(long4 value, long min_value, long max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ulong2 __attribute__((const, overloadable))
clamp(ulong2 value, ulong min_value, ulong max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ulong3 __attribute__((const, overloadable))
clamp(ulong3 value, ulong min_value, ulong max_value);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 19))
extern ulong4 __attribute__((const, overloadable))
clamp(ulong4 value, ulong min_value, ulong max_value);
#endif
/*
* clz: Number of leading 0 bits
*
* Returns the number of leading 0-bits in a value.
*
* For example, clz((char)0x03) returns 6.
*/
extern char __attribute__((const, overloadable))
clz(char value);
extern char2 __attribute__((const, overloadable))
clz(char2 value);
extern char3 __attribute__((const, overloadable))
clz(char3 value);
extern char4 __attribute__((const, overloadable))
clz(char4 value);
extern uchar __attribute__((const, overloadable))
clz(uchar value);
extern uchar2 __attribute__((const, overloadable))
clz(uchar2 value);
extern uchar3 __attribute__((const, overloadable))
clz(uchar3 value);
extern uchar4 __attribute__((const, overloadable))
clz(uchar4 value);
extern short __attribute__((const, overloadable))
clz(short value);
extern short2 __attribute__((const, overloadable))
clz(short2 value);
extern short3 __attribute__((const, overloadable))
clz(short3 value);
extern short4 __attribute__((const, overloadable))
clz(short4 value);
extern ushort __attribute__((const, overloadable))
clz(ushort value);
extern ushort2 __attribute__((const, overloadable))
clz(ushort2 value);
extern ushort3 __attribute__((const, overloadable))
clz(ushort3 value);
extern ushort4 __attribute__((const, overloadable))
clz(ushort4 value);
extern int __attribute__((const, overloadable))
clz(int value);
extern int2 __attribute__((const, overloadable))
clz(int2 value);
extern int3 __attribute__((const, overloadable))
clz(int3 value);
extern int4 __attribute__((const, overloadable))
clz(int4 value);
extern uint __attribute__((const, overloadable))
clz(uint value);
extern uint2 __attribute__((const, overloadable))
clz(uint2 value);
extern uint3 __attribute__((const, overloadable))
clz(uint3 value);
extern uint4 __attribute__((const, overloadable))
clz(uint4 value);
/*
* copysign: Copies the sign of a number to another
*
* Copies the sign from sign_value to magnitude_value.
*
* The value returned is either magnitude_value or -magnitude_value.
*
* For example, copysign(4.0f, -2.7f) returns -4.0f and copysign(-4.0f, 2.7f) returns 4.0f.
*/
extern float __attribute__((const, overloadable))
copysign(float magnitude_value, float sign_value);
extern float2 __attribute__((const, overloadable))
copysign(float2 magnitude_value, float2 sign_value);
extern float3 __attribute__((const, overloadable))
copysign(float3 magnitude_value, float3 sign_value);
extern float4 __attribute__((const, overloadable))
copysign(float4 magnitude_value, float4 sign_value);
/*
* cos: Cosine
*
* Returns the cosine of an angle measured in radians.
*
* See also native_cos().
*/
extern float __attribute__((const, overloadable))
cos(float v);
extern float2 __attribute__((const, overloadable))
cos(float2 v);
extern float3 __attribute__((const, overloadable))
cos(float3 v);
extern float4 __attribute__((const, overloadable))
cos(float4 v);
/*
* cosh: Hypebolic cosine
*
* Returns the hypebolic cosine of v, where v is measured in radians.
*
* See also native_cosh().
*/
extern float __attribute__((const, overloadable))
cosh(float v);
extern float2 __attribute__((const, overloadable))
cosh(float2 v);
extern float3 __attribute__((const, overloadable))
cosh(float3 v);
extern float4 __attribute__((const, overloadable))
cosh(float4 v);
/*
* cospi: Cosine of a number multiplied by pi
*
* Returns the cosine of (v * pi), where (v * pi) is measured in radians.
*
* To get the cosine of a value measured in degrees, call cospi(v / 180.f).
*
* See also native_cospi().
*/
extern float __attribute__((const, overloadable))
cospi(float v);
extern float2 __attribute__((const, overloadable))
cospi(float2 v);
extern float3 __attribute__((const, overloadable))
cospi(float3 v);
extern float4 __attribute__((const, overloadable))
cospi(float4 v);
/*
* degrees: Converts radians into degrees
*
* Converts from radians to degrees.
*/
extern float __attribute__((const, overloadable))
degrees(float v);
extern float2 __attribute__((const, overloadable))
degrees(float2 v);
extern float3 __attribute__((const, overloadable))
degrees(float3 v);
extern float4 __attribute__((const, overloadable))
degrees(float4 v);
/*
* erf: Mathematical error function
*
* Returns the error function.
*/
extern float __attribute__((const, overloadable))
erf(float v);
extern float2 __attribute__((const, overloadable))
erf(float2 v);
extern float3 __attribute__((const, overloadable))
erf(float3 v);
extern float4 __attribute__((const, overloadable))
erf(float4 v);
/*
* erfc: Mathematical complementary error function
*
* Returns the complementary error function.
*/
extern float __attribute__((const, overloadable))
erfc(float v);
extern float2 __attribute__((const, overloadable))
erfc(float2 v);
extern float3 __attribute__((const, overloadable))
erfc(float3 v);
extern float4 __attribute__((const, overloadable))
erfc(float4 v);
/*
* exp: e raised to a number
*
* Returns e raised to v, i.e. e ^ v.
*
* See also native_exp().
*/
extern float __attribute__((const, overloadable))
exp(float v);
extern float2 __attribute__((const, overloadable))
exp(float2 v);
extern float3 __attribute__((const, overloadable))
exp(float3 v);
extern float4 __attribute__((const, overloadable))
exp(float4 v);
/*
* exp10: 10 raised to a number
*
* Returns 10 raised to v, i.e. 10.f ^ v.
*
* See also native_exp10().
*/
extern float __attribute__((const, overloadable))
exp10(float v);
extern float2 __attribute__((const, overloadable))
exp10(float2 v);
extern float3 __attribute__((const, overloadable))
exp10(float3 v);
extern float4 __attribute__((const, overloadable))
exp10(float4 v);
/*
* exp2: 2 raised to a number
*
* Returns 2 raised to v, i.e. 2.f ^ v.
*
* See also native_exp2().
*/
extern float __attribute__((const, overloadable))
exp2(float v);
extern float2 __attribute__((const, overloadable))
exp2(float2 v);
extern float3 __attribute__((const, overloadable))
exp2(float3 v);
extern float4 __attribute__((const, overloadable))
exp2(float4 v);
/*
* expm1: e raised to a number minus one
*
* Returns e raised to v minus 1, i.e. (e ^ v) - 1.
*
* See also native_expm1().
*/
extern float __attribute__((const, overloadable))
expm1(float v);
extern float2 __attribute__((const, overloadable))
expm1(float2 v);
extern float3 __attribute__((const, overloadable))
expm1(float3 v);
extern float4 __attribute__((const, overloadable))
expm1(float4 v);
/*
* fabs: Absolute value of a float
*
* Returns the absolute value of the float v.
*
* For integers, use abs().
*/
extern float __attribute__((const, overloadable))
fabs(float v);
extern float2 __attribute__((const, overloadable))
fabs(float2 v);
extern float3 __attribute__((const, overloadable))
fabs(float3 v);
extern float4 __attribute__((const, overloadable))
fabs(float4 v);
/*
* fdim: Positive difference between two values
*
* Returns the positive difference between two values.
*
* If a > b, returns (a - b) otherwise returns 0f.
*/
extern float __attribute__((const, overloadable))
fdim(float a, float b);
extern float2 __attribute__((const, overloadable))
fdim(float2 a, float2 b);
extern float3 __attribute__((const, overloadable))
fdim(float3 a, float3 b);
extern float4 __attribute__((const, overloadable))
fdim(float4 a, float4 b);
/*
* floor: Smallest integer not greater than a value
*
* Returns the smallest integer not greater than a value.
*
* For example, floor(1.2f) returns 1.f, and floor(-1.2f) returns -2.f.
*
* See also ceil().
*/
extern float __attribute__((const, overloadable))
floor(float v);
extern float2 __attribute__((const, overloadable))
floor(float2 v);
extern float3 __attribute__((const, overloadable))
floor(float3 v);
extern float4 __attribute__((const, overloadable))
floor(float4 v);
/*
* fma: Multiply and add
*
* Multiply and add. Returns (multiplicand1 * multiplicand2) + offset.
*
* This function is similar to mad(). fma() retains full precision of the multiplied result
* and rounds only after the addition. mad() rounds after the multiplication and the addition.
* This extra precision is not guaranteed in rs_fp_relaxed mode.
*/
extern float __attribute__((const, overloadable))
fma(float multiplicand1, float multiplicand2, float offset);
extern float2 __attribute__((const, overloadable))
fma(float2 multiplicand1, float2 multiplicand2, float2 offset);
extern float3 __attribute__((const, overloadable))
fma(float3 multiplicand1, float3 multiplicand2, float3 offset);
extern float4 __attribute__((const, overloadable))
fma(float4 multiplicand1, float4 multiplicand2, float4 offset);
/*
* fmax: Maximum of two floats
*
* Returns the maximum of a and b, i.e. (a < b ? b : a).
*
* The max() function returns identical results but can be applied to more data types.
*/
extern float __attribute__((const, overloadable))
fmax(float a, float b);
extern float2 __attribute__((const, overloadable))
fmax(float2 a, float2 b);
extern float3 __attribute__((const, overloadable))
fmax(float3 a, float3 b);
extern float4 __attribute__((const, overloadable))
fmax(float4 a, float4 b);
extern float2 __attribute__((const, overloadable))
fmax(float2 a, float b);
extern float3 __attribute__((const, overloadable))
fmax(float3 a, float b);
extern float4 __attribute__((const, overloadable))
fmax(float4 a, float b);
/*
* fmin: Minimum of two floats
*
* Returns the minimum of a and b, i.e. (a > b ? b : a).
*
* The min() function returns identical results but can be applied to more data types.
*/
extern float __attribute__((const, overloadable))
fmin(float a, float b);
extern float2 __attribute__((const, overloadable))
fmin(float2 a, float2 b);
extern float3 __attribute__((const, overloadable))
fmin(float3 a, float3 b);
extern float4 __attribute__((const, overloadable))
fmin(float4 a, float4 b);
extern float2 __attribute__((const, overloadable))
fmin(float2 a, float b);
extern float3 __attribute__((const, overloadable))
fmin(float3 a, float b);
extern float4 __attribute__((const, overloadable))
fmin(float4 a, float b);
/*
* fmod: Modulo
*
* Returns the remainder of (numerator / denominator), where the quotient is rounded towards zero.
*
* The function remainder() is similar but rounds toward the closest interger.
* For example, fmod(-3.8f, 2.f) returns -1.8f (-3.8f - -1.f * 2.f)
* while remainder(-3.8f, 2.f) returns 0.2f (-3.8f - -2.f * 2.f).
*/
extern float __attribute__((const, overloadable))
fmod(float numerator, float denominator);
extern float2 __attribute__((const, overloadable))
fmod(float2 numerator, float2 denominator);
extern float3 __attribute__((const, overloadable))
fmod(float3 numerator, float3 denominator);
extern float4 __attribute__((const, overloadable))
fmod(float4 numerator, float4 denominator);
/*
* fract: Positive fractional part
*
* Returns the positive fractional part of v, i.e. v - floor(v).
*
* For example, fract(1.3f, &val) returns 0.3f and sets val to 1.f.
* fract(-1.3f, &val) returns 0.7f and sets val to -2.f.
*
* Parameters:
* v: Input value.
* floor: If floor is not null, *floor will be set to the floor of v.
*/
extern float __attribute__((overloadable))
fract(float v, float* floor);
extern float2 __attribute__((overloadable))
fract(float2 v, float2* floor);
extern float3 __attribute__((overloadable))
fract(float3 v, float3* floor);
extern float4 __attribute__((overloadable))
fract(float4 v, float4* floor);
static inline float __attribute__((const, overloadable))
fract(float v) {
float unused;
return fract(v, &unused);
}
static inline float2 __attribute__((const, overloadable))
fract(float2 v) {
float2 unused;
return fract(v, &unused);
}
static inline float3 __attribute__((const, overloadable))
fract(float3 v) {
float3 unused;
return fract(v, &unused);
}
static inline float4 __attribute__((const, overloadable))
fract(float4 v) {
float4 unused;
return fract(v, &unused);
}
/*
* frexp: Binary mantissa and exponent
*
* Returns the binary mantissa and exponent of v, i.e. v == mantissa * 2 ^ exponent.
*
* The mantissa is always between 0.5 (inclusive) and 1.0 (exclusive).
*
* See ldexp() for the reverse operation. See also logb() and ilogb().
*
* Parameters:
* v: Input value.
* exponent: If exponent is not null, *exponent will be set to the exponent of v.
*/
extern float __attribute__((overloadable))
frexp(float v, int* exponent);
extern float2 __attribute__((overloadable))
frexp(float2 v, int2* exponent);
extern float3 __attribute__((overloadable))
frexp(float3 v, int3* exponent);
extern float4 __attribute__((overloadable))
frexp(float4 v, int4* exponent);
/*
* half_recip: Reciprocal computed to 16 bit precision
*
* Returns the approximate reciprocal of a value.
*
* The precision is that of a 16 bit floating point value.
*
* See also native_recip().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 17))
extern float __attribute__((const, overloadable))
half_recip(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 17))
extern float2 __attribute__((const, overloadable))
half_recip(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 17))
extern float3 __attribute__((const, overloadable))
half_recip(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 17))
extern float4 __attribute__((const, overloadable))
half_recip(float4 v);
#endif
/*
* half_rsqrt: Reciprocal of a square root computed to 16 bit precision
*
* Returns the approximate value of (1.f / sqrt(value)).
*
* The precision is that of a 16 bit floating point value.
*
* See also rsqrt(), native_rsqrt().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 17))
extern float __attribute__((const, overloadable))
half_rsqrt(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 17))
extern float2 __attribute__((const, overloadable))
half_rsqrt(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 17))
extern float3 __attribute__((const, overloadable))
half_rsqrt(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 17))
extern float4 __attribute__((const, overloadable))
half_rsqrt(float4 v);
#endif
/*
* half_sqrt: Square root computed to 16 bit precision
*
* Returns the approximate square root of a value.
*
* The precision is that of a 16 bit floating point value.
*
* See also sqrt(), native_sqrt().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 17))
extern float __attribute__((const, overloadable))
half_sqrt(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 17))
extern float2 __attribute__((const, overloadable))
half_sqrt(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 17))
extern float3 __attribute__((const, overloadable))
half_sqrt(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 17))
extern float4 __attribute__((const, overloadable))
half_sqrt(float4 v);
#endif
/*
* hypot: Hypotenuse
*
* Returns the hypotenuse, i.e. sqrt(a * a + b * b).
*
* See also native_hypot().
*/
extern float __attribute__((const, overloadable))
hypot(float a, float b);
extern float2 __attribute__((const, overloadable))
hypot(float2 a, float2 b);
extern float3 __attribute__((const, overloadable))
hypot(float3 a, float3 b);
extern float4 __attribute__((const, overloadable))
hypot(float4 a, float4 b);
/*
* ilogb: Base two exponent
*
* Returns the base two exponent of a value, where the mantissa is between
* 1.f (inclusive) and 2.f (exclusive).
*
* For example, ilogb(8.5f) returns 3.
*
* Because of the difference in mantissa, this number is one less than is returned by frexp().
*
* logb() is similar but returns a float.
*/
extern int __attribute__((const, overloadable))
ilogb(float v);
extern int2 __attribute__((const, overloadable))
ilogb(float2 v);
extern int3 __attribute__((const, overloadable))
ilogb(float3 v);
extern int4 __attribute__((const, overloadable))
ilogb(float4 v);
/*
* ldexp: Creates a floating point from mantissa and exponent
*
* Returns the floating point created from the mantissa and exponent,
* i.e. (mantissa * 2 ^ exponent).
*
* See frexp() for the reverse operation.
*
* Parameters:
* mantissa: Mantissa.
* exponent: Exponent, a single component or matching vector.
*/
extern float __attribute__((const, overloadable))
ldexp(float mantissa, int exponent);
extern float2 __attribute__((const, overloadable))
ldexp(float2 mantissa, int2 exponent);
extern float3 __attribute__((const, overloadable))
ldexp(float3 mantissa, int3 exponent);
extern float4 __attribute__((const, overloadable))
ldexp(float4 mantissa, int4 exponent);
extern float2 __attribute__((const, overloadable))
ldexp(float2 mantissa, int exponent);
extern float3 __attribute__((const, overloadable))
ldexp(float3 mantissa, int exponent);
extern float4 __attribute__((const, overloadable))
ldexp(float4 mantissa, int exponent);
/*
* lgamma: Natural logarithm of the gamma function
*
* Returns the natural logarithm of the absolute value of the gamma function,
* i.e. log(fabs(tgamma(v))).
*
* See also tgamma().
*
* Parameters:
* sign_of_gamma: If sign_of_gamma is not null, *sign_of_gamma will be set to -1.f if the gamma of v is negative, otherwise to 1.f.
*/
extern float __attribute__((const, overloadable))
lgamma(float v);
extern float2 __attribute__((const, overloadable))
lgamma(float2 v);
extern float3 __attribute__((const, overloadable))
lgamma(float3 v);
extern float4 __attribute__((const, overloadable))
lgamma(float4 v);
extern float __attribute__((overloadable))
lgamma(float v, int* sign_of_gamma);
extern float2 __attribute__((overloadable))
lgamma(float2 v, int2* sign_of_gamma);
extern float3 __attribute__((overloadable))
lgamma(float3 v, int3* sign_of_gamma);
extern float4 __attribute__((overloadable))
lgamma(float4 v, int4* sign_of_gamma);
/*
* log: Natural logarithm
*
* Returns the natural logarithm.
*
* See also native_log().
*/
extern float __attribute__((const, overloadable))
log(float v);
extern float2 __attribute__((const, overloadable))
log(float2 v);
extern float3 __attribute__((const, overloadable))
log(float3 v);
extern float4 __attribute__((const, overloadable))
log(float4 v);
/*
* log10: Base 10 logarithm
*
* Returns the base 10 logarithm.
*
* See also native_log10().
*/
extern float __attribute__((const, overloadable))
log10(float v);
extern float2 __attribute__((const, overloadable))
log10(float2 v);
extern float3 __attribute__((const, overloadable))
log10(float3 v);
extern float4 __attribute__((const, overloadable))
log10(float4 v);
/*
* log1p: Natural logarithm of a value plus 1
*
* Returns the natural logarithm of (v + 1.f).
*
* See also native_log1p().
*/
extern float __attribute__((const, overloadable))
log1p(float v);
extern float2 __attribute__((const, overloadable))
log1p(float2 v);
extern float3 __attribute__((const, overloadable))
log1p(float3 v);
extern float4 __attribute__((const, overloadable))
log1p(float4 v);
/*
* log2: Base 2 logarithm
*
* Returns the base 2 logarithm.
*
* See also native_log2().
*/
extern float __attribute__((const, overloadable))
log2(float v);
extern float2 __attribute__((const, overloadable))
log2(float2 v);
extern float3 __attribute__((const, overloadable))
log2(float3 v);
extern float4 __attribute__((const, overloadable))
log2(float4 v);
/*
* logb: Base two exponent
*
* Returns the base two exponent of a value, where the mantissa is between
* 1.f (inclusive) and 2.f (exclusive).
*
* For example, logb(8.5f) returns 3.f.
*
* Because of the difference in mantissa, this number is one less than is returned by frexp().
*
* ilogb() is similar but returns an integer.
*/
extern float __attribute__((const, overloadable))
logb(float v);
extern float2 __attribute__((const, overloadable))
logb(float2 v);
extern float3 __attribute__((const, overloadable))
logb(float3 v);
extern float4 __attribute__((const, overloadable))
logb(float4 v);
/*
* mad: Multiply and add
*
* Multiply and add. Returns (multiplicand1 * multiplicand2) + offset.
*
* This function is similar to fma(). fma() retains full precision of the multiplied result
* and rounds only after the addition. mad() rounds after the multiplication and the addition.
* In rs_fp_relaxed mode, mad() may not do the rounding after multiplicaiton.
*/
extern float __attribute__((const, overloadable))
mad(float multiplicand1, float multiplicand2, float offset);
extern float2 __attribute__((const, overloadable))
mad(float2 multiplicand1, float2 multiplicand2, float2 offset);
extern float3 __attribute__((const, overloadable))
mad(float3 multiplicand1, float3 multiplicand2, float3 offset);
extern float4 __attribute__((const, overloadable))
mad(float4 multiplicand1, float4 multiplicand2, float4 offset);
/*
* max: Maximum
*
* Returns the maximum value of two arguments.
*/
extern float __attribute__((const, overloadable))
max(float a, float b);
extern float2 __attribute__((const, overloadable))
max(float2 a, float2 b);
extern float3 __attribute__((const, overloadable))
max(float3 a, float3 b);
extern float4 __attribute__((const, overloadable))
max(float4 a, float4 b);
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline char __attribute__((const, overloadable))
max(char a, char b) {
return (a > b ? a : b);
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uchar __attribute__((const, overloadable))
max(uchar a, uchar b) {
return (a > b ? a : b);
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline short __attribute__((const, overloadable))
max(short a, short b) {
return (a > b ? a : b);
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline ushort __attribute__((const, overloadable))
max(ushort a, ushort b) {
return (a > b ? a : b);
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline int __attribute__((const, overloadable))
max(int a, int b) {
return (a > b ? a : b);
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uint __attribute__((const, overloadable))
max(uint a, uint b) {
return (a > b ? a : b);
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline char2 __attribute__((const, overloadable))
max(char2 a, char2 b) {
char2 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uchar2 __attribute__((const, overloadable))
max(uchar2 a, uchar2 b) {
uchar2 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline short2 __attribute__((const, overloadable))
max(short2 a, short2 b) {
short2 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline ushort2 __attribute__((const, overloadable))
max(ushort2 a, ushort2 b) {
ushort2 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline int2 __attribute__((const, overloadable))
max(int2 a, int2 b) {
int2 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uint2 __attribute__((const, overloadable))
max(uint2 a, uint2 b) {
uint2 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline char3 __attribute__((const, overloadable))
max(char3 a, char3 b) {
char3 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
tmp.z = (a.z > b.z ? a.z : b.z);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uchar3 __attribute__((const, overloadable))
max(uchar3 a, uchar3 b) {
uchar3 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
tmp.z = (a.z > b.z ? a.z : b.z);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline short3 __attribute__((const, overloadable))
max(short3 a, short3 b) {
short3 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
tmp.z = (a.z > b.z ? a.z : b.z);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline ushort3 __attribute__((const, overloadable))
max(ushort3 a, ushort3 b) {
ushort3 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
tmp.z = (a.z > b.z ? a.z : b.z);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline int3 __attribute__((const, overloadable))
max(int3 a, int3 b) {
int3 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
tmp.z = (a.z > b.z ? a.z : b.z);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uint3 __attribute__((const, overloadable))
max(uint3 a, uint3 b) {
uint3 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
tmp.z = (a.z > b.z ? a.z : b.z);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline char4 __attribute__((const, overloadable))
max(char4 a, char4 b) {
char4 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
tmp.z = (a.z > b.z ? a.z : b.z);
tmp.w = (a.w > b.w ? a.w : b.w);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uchar4 __attribute__((const, overloadable))
max(uchar4 a, uchar4 b) {
uchar4 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
tmp.z = (a.z > b.z ? a.z : b.z);
tmp.w = (a.w > b.w ? a.w : b.w);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline short4 __attribute__((const, overloadable))
max(short4 a, short4 b) {
short4 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
tmp.z = (a.z > b.z ? a.z : b.z);
tmp.w = (a.w > b.w ? a.w : b.w);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline ushort4 __attribute__((const, overloadable))
max(ushort4 a, ushort4 b) {
ushort4 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
tmp.z = (a.z > b.z ? a.z : b.z);
tmp.w = (a.w > b.w ? a.w : b.w);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline int4 __attribute__((const, overloadable))
max(int4 a, int4 b) {
int4 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
tmp.z = (a.z > b.z ? a.z : b.z);
tmp.w = (a.w > b.w ? a.w : b.w);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uint4 __attribute__((const, overloadable))
max(uint4 a, uint4 b) {
uint4 tmp;
tmp.x = (a.x > b.x ? a.x : b.x);
tmp.y = (a.y > b.y ? a.y : b.y);
tmp.z = (a.z > b.z ? a.z : b.z);
tmp.w = (a.w > b.w ? a.w : b.w);
return tmp;
}
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern char __attribute__((const, overloadable))
max(char a, char b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern char2 __attribute__((const, overloadable))
max(char2 a, char2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern char3 __attribute__((const, overloadable))
max(char3 a, char3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern char4 __attribute__((const, overloadable))
max(char4 a, char4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uchar __attribute__((const, overloadable))
max(uchar a, uchar b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uchar2 __attribute__((const, overloadable))
max(uchar2 a, uchar2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uchar3 __attribute__((const, overloadable))
max(uchar3 a, uchar3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uchar4 __attribute__((const, overloadable))
max(uchar4 a, uchar4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern short __attribute__((const, overloadable))
max(short a, short b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern short2 __attribute__((const, overloadable))
max(short2 a, short2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern short3 __attribute__((const, overloadable))
max(short3 a, short3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern short4 __attribute__((const, overloadable))
max(short4 a, short4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ushort __attribute__((const, overloadable))
max(ushort a, ushort b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ushort2 __attribute__((const, overloadable))
max(ushort2 a, ushort2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ushort3 __attribute__((const, overloadable))
max(ushort3 a, ushort3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ushort4 __attribute__((const, overloadable))
max(ushort4 a, ushort4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern int __attribute__((const, overloadable))
max(int a, int b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern int2 __attribute__((const, overloadable))
max(int2 a, int2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern int3 __attribute__((const, overloadable))
max(int3 a, int3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern int4 __attribute__((const, overloadable))
max(int4 a, int4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uint __attribute__((const, overloadable))
max(uint a, uint b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uint2 __attribute__((const, overloadable))
max(uint2 a, uint2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uint3 __attribute__((const, overloadable))
max(uint3 a, uint3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uint4 __attribute__((const, overloadable))
max(uint4 a, uint4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern long __attribute__((const, overloadable))
max(long a, long b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern long2 __attribute__((const, overloadable))
max(long2 a, long2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern long3 __attribute__((const, overloadable))
max(long3 a, long3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern long4 __attribute__((const, overloadable))
max(long4 a, long4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ulong __attribute__((const, overloadable))
max(ulong a, ulong b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ulong2 __attribute__((const, overloadable))
max(ulong2 a, ulong2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ulong3 __attribute__((const, overloadable))
max(ulong3 a, ulong3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ulong4 __attribute__((const, overloadable))
max(ulong4 a, ulong4 b);
#endif
/*
* min: Minimum
*
* Returns the minimum value of two arguments.
*/
extern float __attribute__((const, overloadable))
min(float a, float b);
extern float2 __attribute__((const, overloadable))
min(float2 a, float2 b);
extern float3 __attribute__((const, overloadable))
min(float3 a, float3 b);
extern float4 __attribute__((const, overloadable))
min(float4 a, float4 b);
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline char __attribute__((const, overloadable))
min(char a, char b) {
return (a < b ? a : b);
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uchar __attribute__((const, overloadable))
min(uchar a, uchar b) {
return (a < b ? a : b);
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline short __attribute__((const, overloadable))
min(short a, short b) {
return (a < b ? a : b);
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline ushort __attribute__((const, overloadable))
min(ushort a, ushort b) {
return (a < b ? a : b);
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline int __attribute__((const, overloadable))
min(int a, int b) {
return (a < b ? a : b);
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uint __attribute__((const, overloadable))
min(uint a, uint b) {
return (a < b ? a : b);
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline char2 __attribute__((const, overloadable))
min(char2 a, char2 b) {
char2 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uchar2 __attribute__((const, overloadable))
min(uchar2 a, uchar2 b) {
uchar2 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline short2 __attribute__((const, overloadable))
min(short2 a, short2 b) {
short2 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline ushort2 __attribute__((const, overloadable))
min(ushort2 a, ushort2 b) {
ushort2 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline int2 __attribute__((const, overloadable))
min(int2 a, int2 b) {
int2 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uint2 __attribute__((const, overloadable))
min(uint2 a, uint2 b) {
uint2 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline char3 __attribute__((const, overloadable))
min(char3 a, char3 b) {
char3 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
tmp.z = (a.z < b.z ? a.z : b.z);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uchar3 __attribute__((const, overloadable))
min(uchar3 a, uchar3 b) {
uchar3 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
tmp.z = (a.z < b.z ? a.z : b.z);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline short3 __attribute__((const, overloadable))
min(short3 a, short3 b) {
short3 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
tmp.z = (a.z < b.z ? a.z : b.z);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline ushort3 __attribute__((const, overloadable))
min(ushort3 a, ushort3 b) {
ushort3 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
tmp.z = (a.z < b.z ? a.z : b.z);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline int3 __attribute__((const, overloadable))
min(int3 a, int3 b) {
int3 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
tmp.z = (a.z < b.z ? a.z : b.z);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uint3 __attribute__((const, overloadable))
min(uint3 a, uint3 b) {
uint3 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
tmp.z = (a.z < b.z ? a.z : b.z);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline char4 __attribute__((const, overloadable))
min(char4 a, char4 b) {
char4 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
tmp.z = (a.z < b.z ? a.z : b.z);
tmp.w = (a.w < b.w ? a.w : b.w);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uchar4 __attribute__((const, overloadable))
min(uchar4 a, uchar4 b) {
uchar4 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
tmp.z = (a.z < b.z ? a.z : b.z);
tmp.w = (a.w < b.w ? a.w : b.w);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline short4 __attribute__((const, overloadable))
min(short4 a, short4 b) {
short4 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
tmp.z = (a.z < b.z ? a.z : b.z);
tmp.w = (a.w < b.w ? a.w : b.w);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline ushort4 __attribute__((const, overloadable))
min(ushort4 a, ushort4 b) {
ushort4 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
tmp.z = (a.z < b.z ? a.z : b.z);
tmp.w = (a.w < b.w ? a.w : b.w);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline int4 __attribute__((const, overloadable))
min(int4 a, int4 b) {
int4 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
tmp.z = (a.z < b.z ? a.z : b.z);
tmp.w = (a.w < b.w ? a.w : b.w);
return tmp;
}
#endif
#if !defined(RS_VERSION) || (RS_VERSION <= 20)
static inline uint4 __attribute__((const, overloadable))
min(uint4 a, uint4 b) {
uint4 tmp;
tmp.x = (a.x < b.x ? a.x : b.x);
tmp.y = (a.y < b.y ? a.y : b.y);
tmp.z = (a.z < b.z ? a.z : b.z);
tmp.w = (a.w < b.w ? a.w : b.w);
return tmp;
}
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern char __attribute__((const, overloadable))
min(char a, char b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern char2 __attribute__((const, overloadable))
min(char2 a, char2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern char3 __attribute__((const, overloadable))
min(char3 a, char3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern char4 __attribute__((const, overloadable))
min(char4 a, char4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uchar __attribute__((const, overloadable))
min(uchar a, uchar b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uchar2 __attribute__((const, overloadable))
min(uchar2 a, uchar2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uchar3 __attribute__((const, overloadable))
min(uchar3 a, uchar3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uchar4 __attribute__((const, overloadable))
min(uchar4 a, uchar4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern short __attribute__((const, overloadable))
min(short a, short b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern short2 __attribute__((const, overloadable))
min(short2 a, short2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern short3 __attribute__((const, overloadable))
min(short3 a, short3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern short4 __attribute__((const, overloadable))
min(short4 a, short4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ushort __attribute__((const, overloadable))
min(ushort a, ushort b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ushort2 __attribute__((const, overloadable))
min(ushort2 a, ushort2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ushort3 __attribute__((const, overloadable))
min(ushort3 a, ushort3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ushort4 __attribute__((const, overloadable))
min(ushort4 a, ushort4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern int __attribute__((const, overloadable))
min(int a, int b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern int2 __attribute__((const, overloadable))
min(int2 a, int2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern int3 __attribute__((const, overloadable))
min(int3 a, int3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern int4 __attribute__((const, overloadable))
min(int4 a, int4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uint __attribute__((const, overloadable))
min(uint a, uint b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uint2 __attribute__((const, overloadable))
min(uint2 a, uint2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uint3 __attribute__((const, overloadable))
min(uint3 a, uint3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern uint4 __attribute__((const, overloadable))
min(uint4 a, uint4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern long __attribute__((const, overloadable))
min(long a, long b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern long2 __attribute__((const, overloadable))
min(long2 a, long2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern long3 __attribute__((const, overloadable))
min(long3 a, long3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern long4 __attribute__((const, overloadable))
min(long4 a, long4 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ulong __attribute__((const, overloadable))
min(ulong a, ulong b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ulong2 __attribute__((const, overloadable))
min(ulong2 a, ulong2 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ulong3 __attribute__((const, overloadable))
min(ulong3 a, ulong3 b);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern ulong4 __attribute__((const, overloadable))
min(ulong4 a, ulong4 b);
#endif
/*
* mix: Mixes two values
*
* Returns start + ((stop - start) * fraction).
*
* This can be useful for mixing two values. For example, to create a new color that is
* 40% color1 and 60% color2, use mix(color1, color2, 0.6f).
*/
extern float __attribute__((const, overloadable))
mix(float start, float stop, float fraction);
extern float2 __attribute__((const, overloadable))
mix(float2 start, float2 stop, float2 fraction);
extern float3 __attribute__((const, overloadable))
mix(float3 start, float3 stop, float3 fraction);
extern float4 __attribute__((const, overloadable))
mix(float4 start, float4 stop, float4 fraction);
extern float2 __attribute__((const, overloadable))
mix(float2 start, float2 stop, float fraction);
extern float3 __attribute__((const, overloadable))
mix(float3 start, float3 stop, float fraction);
extern float4 __attribute__((const, overloadable))
mix(float4 start, float4 stop, float fraction);
/*
* modf: Integral and fractional components
*
* Returns the integral and fractional components of a number.
*
* Both components will have the same sign as x. For example, for an input of -3.72f,
* iret will be set to -3.f and .72f will be returned.
*
* Parameters:
* v: Source value.
* integral_part: *integral_part will be set to the integral portion of the number.
*
* Returns: Floating point portion of the value.
*/
extern float __attribute__((overloadable))
modf(float v, float* integral_part);
extern float2 __attribute__((overloadable))
modf(float2 v, float2* integral_part);
extern float3 __attribute__((overloadable))
modf(float3 v, float3* integral_part);
extern float4 __attribute__((overloadable))
modf(float4 v, float4* integral_part);
/*
* nan: Not a Number
*
* Returns a NaN value (Not a Number).
*
* Parameters:
* v: Not used.
*/
extern float __attribute__((const, overloadable))
nan(uint v);
/*
* native_acos: Approximate inverse cosine
*
* Returns the approximate inverse cosine, in radians.
*
* This function yields undefined results from input values less than -1 or greater than 1.
*
* See also acos().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_acos(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_acos(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_acos(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_acos(float4 v);
#endif
/*
* native_acosh: Approximate inverse hyperbolic cosine
*
* Returns the approximate inverse hyperbolic cosine, in radians.
*
* See also acosh().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_acosh(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_acosh(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_acosh(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_acosh(float4 v);
#endif
/*
* native_acospi: Approximate inverse cosine divided by pi
*
* Returns the approximate inverse cosine in radians, divided by pi.
*
* To get an inverse cosine measured in degrees, use acospi(a) * 180.f.
*
* This function yields undefined results from input values less than -1 or greater than 1.
*
* See also acospi().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_acospi(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_acospi(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_acospi(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_acospi(float4 v);
#endif
/*
* native_asin: Approximate inverse sine
*
* Returns the approximate inverse sine, in radians.
*
* This function yields undefined results from input values less than -1 or greater than 1.
*
* See also asin().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_asin(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_asin(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_asin(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_asin(float4 v);
#endif
/*
* native_asinh: Approximate inverse hyperbolic sine
*
* Returns the approximate inverse hyperbolic sine, in radians.
*
* See also asinh().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_asinh(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_asinh(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_asinh(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_asinh(float4 v);
#endif
/*
* native_asinpi: Approximate inverse sine divided by pi
*
* Returns the approximate inverse sine in radians, divided by pi.
*
* To get an inverse sine measured in degrees, use asinpi(a) * 180.f.
*
* This function yields undefined results from input values less than -1 or greater than 1.
*
* See also asinpi().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_asinpi(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_asinpi(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_asinpi(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_asinpi(float4 v);
#endif
/*
* native_atan: Approximate inverse tangent
*
* Returns the approximate inverse tangent, in radians.
*
* See also atan().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_atan(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_atan(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_atan(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_atan(float4 v);
#endif
/*
* native_atan2: Approximate inverse tangent of a ratio
*
* Returns the approximate inverse tangent of (numerator / denominator), in radians.
*
* See also atan2().
*
* Parameters:
* numerator: Numerator.
* denominator: Denominator. Can be 0.
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_atan2(float numerator, float denominator);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_atan2(float2 numerator, float2 denominator);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_atan2(float3 numerator, float3 denominator);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_atan2(float4 numerator, float4 denominator);
#endif
/*
* native_atan2pi: Approximate inverse tangent of a ratio, divided by pi
*
* Returns the approximate inverse tangent of (numerator / denominator),
* in radians, divided by pi.
*
* To get an inverse tangent measured in degrees, use atan2pi(n, d) * 180.f.
*
* See also atan2pi().
*
* Parameters:
* numerator: Numerator.
* denominator: Denominator. Can be 0.
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_atan2pi(float numerator, float denominator);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_atan2pi(float2 numerator, float2 denominator);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_atan2pi(float3 numerator, float3 denominator);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_atan2pi(float4 numerator, float4 denominator);
#endif
/*
* native_atanh: Approximate inverse hyperbolic tangent
*
* Returns the approximate inverse hyperbolic tangent, in radians.
*
* See also atanh().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_atanh(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_atanh(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_atanh(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_atanh(float4 v);
#endif
/*
* native_atanpi: Approximate inverse tangent divided by pi
*
* Returns the approximate inverse tangent in radians, divided by pi.
*
* To get an inverse tangent measured in degrees, use atanpi(a) * 180.f.
*
* See also atanpi().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_atanpi(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_atanpi(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_atanpi(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_atanpi(float4 v);
#endif
/*
* native_cbrt: Approximate cube root
*
* Returns the approximate cubic root.
*
* See also cbrt().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_cbrt(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_cbrt(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_cbrt(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_cbrt(float4 v);
#endif
/*
* native_cos: Approximate cosine
*
* Returns the approximate cosine of an angle measured in radians.
*
* See also cos().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_cos(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_cos(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_cos(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_cos(float4 v);
#endif
/*
* native_cosh: Approximate hypebolic cosine
*
* Returns the approximate hypebolic cosine.
*
* See also cosh().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_cosh(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_cosh(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_cosh(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_cosh(float4 v);
#endif
/*
* native_cospi: Approximate cosine of a number multiplied by pi
*
* Returns the approximate cosine of (v * pi), where (v * pi) is measured in radians.
*
* To get the cosine of a value measured in degrees, call cospi(v / 180.f).
*
* See also cospi().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_cospi(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_cospi(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_cospi(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_cospi(float4 v);
#endif
/*
* native_divide: Approximate division
*
* Computes the approximate division of two values.
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float __attribute__((const, overloadable))
native_divide(float left_vector, float right_vector);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float2 __attribute__((const, overloadable))
native_divide(float2 left_vector, float2 right_vector);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float3 __attribute__((const, overloadable))
native_divide(float3 left_vector, float3 right_vector);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 21))
extern float4 __attribute__((const, overloadable))
native_divide(float4 left_vector, float4 right_vector);
#endif
/*
* native_exp: Approximate e raised to a number
*
* Fast approximate exp.
*
* It is valid for inputs from -86.f to 86.f. The precision is no worse than what would be
* expected from using 16 bit floating point values.
*
* See also exp().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 18))
extern float __attribute__((const, overloadable))
native_exp(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 18))
extern float2 __attribute__((const, overloadable))
native_exp(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 18))
extern float3 __attribute__((const, overloadable))
native_exp(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 18))
extern float4 __attribute__((const, overloadable))
native_exp(float4 v);
#endif
/*
* native_exp10: Approximate 10 raised to a number
*
* Fast approximate exp10.
*
* It is valid for inputs from -37.f to 37.f. The precision is no worse than what would be
* expected from using 16 bit floating point values.
*
* See also exp10().
*/
#if (defined(RS_VERSION) && (RS_VERSION >= 18))
extern float __attribute__((const, overloadable))
native_exp10(float v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 18))
extern float2 __attribute__((const, overloadable))
native_exp10(float2 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 18))
extern float3 __attribute__((const, overloadable))
native_exp10(float3 v);
#endif
#if (defined(RS_VERSION) && (RS_VERSION >= 18))
extern float4 __attribute__