blob: 8c4cf55b8d3346414627cf9c588f268202347f69 [file] [log] [blame]
// The functions are complex with many branches, and explicit
// `return`s makes it clear where function exit points are
#![allow(clippy::needless_return)]
use crate::float::Float;
use crate::int::{CastInto, DInt, HInt, Int};
fn div32<F: Float>(a: F, b: F) -> F
where
u32: CastInto<F::Int>,
F::Int: CastInto<u32>,
i32: CastInto<F::Int>,
F::Int: CastInto<i32>,
F::Int: HInt,
<F as Float>::Int: core::ops::Mul,
{
const NUMBER_OF_HALF_ITERATIONS: usize = 0;
const NUMBER_OF_FULL_ITERATIONS: usize = 3;
const USE_NATIVE_FULL_ITERATIONS: bool = true;
let one = F::Int::ONE;
let zero = F::Int::ZERO;
let hw = F::BITS / 2;
let lo_mask = u32::MAX >> hw;
let significand_bits = F::SIGNIFICAND_BITS;
let max_exponent = F::EXPONENT_MAX;
let exponent_bias = F::EXPONENT_BIAS;
let implicit_bit = F::IMPLICIT_BIT;
let significand_mask = F::SIGNIFICAND_MASK;
let sign_bit = F::SIGN_MASK as F::Int;
let abs_mask = sign_bit - one;
let exponent_mask = F::EXPONENT_MASK;
let inf_rep = exponent_mask;
let quiet_bit = implicit_bit >> 1;
let qnan_rep = exponent_mask | quiet_bit;
#[inline(always)]
fn negate_u32(a: u32) -> u32 {
(<i32>::wrapping_neg(a as i32)) as u32
}
let a_rep = a.repr();
let b_rep = b.repr();
let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
let quotient_sign = (a_rep ^ b_rep) & sign_bit;
let mut a_significand = a_rep & significand_mask;
let mut b_significand = b_rep & significand_mask;
let mut scale = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
|| b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
{
let a_abs = a_rep & abs_mask;
let b_abs = b_rep & abs_mask;
// NaN / anything = qNaN
if a_abs > inf_rep {
return F::from_repr(a_rep | quiet_bit);
}
// anything / NaN = qNaN
if b_abs > inf_rep {
return F::from_repr(b_rep | quiet_bit);
}
if a_abs == inf_rep {
if b_abs == inf_rep {
// infinity / infinity = NaN
return F::from_repr(qnan_rep);
} else {
// infinity / anything else = +/- infinity
return F::from_repr(a_abs | quotient_sign);
}
}
// anything else / infinity = +/- 0
if b_abs == inf_rep {
return F::from_repr(quotient_sign);
}
if a_abs == zero {
if b_abs == zero {
// zero / zero = NaN
return F::from_repr(qnan_rep);
} else {
// zero / anything else = +/- zero
return F::from_repr(quotient_sign);
}
}
// anything else / zero = +/- infinity
if b_abs == zero {
return F::from_repr(inf_rep | quotient_sign);
}
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if a_abs < implicit_bit {
let (exponent, significand) = F::normalize(a_significand);
scale += exponent;
a_significand = significand;
}
if b_abs < implicit_bit {
let (exponent, significand) = F::normalize(b_significand);
scale -= exponent;
b_significand = significand;
}
}
// Set the implicit significand bit. If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.
a_significand |= implicit_bit;
b_significand |= implicit_bit;
let written_exponent: i32 = CastInto::<u32>::cast(
a_exponent
.wrapping_sub(b_exponent)
.wrapping_add(scale.cast()),
)
.wrapping_add(exponent_bias) as i32;
let b_uq1 = b_significand << (F::BITS - significand_bits - 1);
// Align the significand of b as a UQ1.(n-1) fixed-point number in the range
// [1.0, 2.0) and get a UQ0.n approximate reciprocal using a small minimax
// polynomial approximation: x0 = 3/4 + 1/sqrt(2) - b/2.
// The max error for this approximation is achieved at endpoints, so
// abs(x0(b) - 1/b) <= abs(x0(1) - 1/1) = 3/4 - 1/sqrt(2) = 0.04289...,
// which is about 4.5 bits.
// The initial approximation is between x0(1.0) = 0.9571... and x0(2.0) = 0.4571...
// Then, refine the reciprocal estimate using a quadratically converging
// Newton-Raphson iteration:
// x_{n+1} = x_n * (2 - x_n * b)
//
// Let b be the original divisor considered "in infinite precision" and
// obtained from IEEE754 representation of function argument (with the
// implicit bit set). Corresponds to rep_t-sized b_UQ1 represented in
// UQ1.(W-1).
//
// Let b_hw be an infinitely precise number obtained from the highest (HW-1)
// bits of divisor significand (with the implicit bit set). Corresponds to
// half_rep_t-sized b_UQ1_hw represented in UQ1.(HW-1) that is a **truncated**
// version of b_UQ1.
//
// Let e_n := x_n - 1/b_hw
// E_n := x_n - 1/b
// abs(E_n) <= abs(e_n) + (1/b_hw - 1/b)
// = abs(e_n) + (b - b_hw) / (b*b_hw)
// <= abs(e_n) + 2 * 2^-HW
// rep_t-sized iterations may be slower than the corresponding half-width
// variant depending on the handware and whether single/double/quad precision
// is selected.
// NB: Using half-width iterations increases computation errors due to
// rounding, so error estimations have to be computed taking the selected
// mode into account!
#[allow(clippy::absurd_extreme_comparisons)]
let mut x_uq0 = if NUMBER_OF_HALF_ITERATIONS > 0 {
// Starting with (n-1) half-width iterations
let b_uq1_hw: u16 =
(CastInto::<u32>::cast(b_significand) >> (significand_bits + 1 - hw)) as u16;
// C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW
// with W0 being either 16 or 32 and W0 <= HW.
// That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from which
// b/2 is subtracted to obtain x0) wrapped to [0, 1) range.
// HW is at least 32. Shifting into the highest bits if needed.
let c_hw = (0x7504_u32 as u16).wrapping_shl(hw.wrapping_sub(32));
// b >= 1, thus an upper bound for 3/4 + 1/sqrt(2) - b/2 is about 0.9572,
// so x0 fits to UQ0.HW without wrapping.
let x_uq0_hw: u16 = {
let mut x_uq0_hw: u16 = c_hw.wrapping_sub(b_uq1_hw /* exact b_hw/2 as UQ0.HW */);
// An e_0 error is comprised of errors due to
// * x0 being an inherently imprecise first approximation of 1/b_hw
// * C_hw being some (irrational) number **truncated** to W0 bits
// Please note that e_0 is calculated against the infinitely precise
// reciprocal of b_hw (that is, **truncated** version of b).
//
// e_0 <= 3/4 - 1/sqrt(2) + 2^-W0
// By construction, 1 <= b < 2
// f(x) = x * (2 - b*x) = 2*x - b*x^2
// f'(x) = 2 * (1 - b*x)
//
// On the [0, 1] interval, f(0) = 0,
// then it increses until f(1/b) = 1 / b, maximum on (0, 1),
// then it decreses to f(1) = 2 - b
//
// Let g(x) = x - f(x) = b*x^2 - x.
// On (0, 1/b), g(x) < 0 <=> f(x) > x
// On (1/b, 1], g(x) > 0 <=> f(x) < x
//
// For half-width iterations, b_hw is used instead of b.
#[allow(clippy::reversed_empty_ranges)]
for _ in 0..NUMBER_OF_HALF_ITERATIONS {
// corr_UQ1_hw can be **larger** than 2 - b_hw*x by at most 1*Ulp
// of corr_UQ1_hw.
// "0.0 - (...)" is equivalent to "2.0 - (...)" in UQ1.(HW-1).
// On the other hand, corr_UQ1_hw should not overflow from 2.0 to 0.0 provided
// no overflow occurred earlier: ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW) is
// expected to be strictly positive because b_UQ1_hw has its highest bit set
// and x_UQ0_hw should be rather large (it converges to 1/2 < 1/b_hw <= 1).
let corr_uq1_hw: u16 =
0.wrapping_sub((x_uq0_hw as u32).wrapping_mul(b_uq1_hw.cast()) >> hw) as u16;
// Now, we should multiply UQ0.HW and UQ1.(HW-1) numbers, naturally
// obtaining an UQ1.(HW-1) number and proving its highest bit could be
// considered to be 0 to be able to represent it in UQ0.HW.
// From the above analysis of f(x), if corr_UQ1_hw would be represented
// without any intermediate loss of precision (that is, in twice_rep_t)
// x_UQ0_hw could be at most [1.]000... if b_hw is exactly 1.0 and strictly
// less otherwise. On the other hand, to obtain [1.]000..., one have to pass
// 1/b_hw == 1.0 to f(x), so this cannot occur at all without overflow (due
// to 1.0 being not representable as UQ0.HW).
// The fact corr_UQ1_hw was virtually round up (due to result of
// multiplication being **first** truncated, then negated - to improve
// error estimations) can increase x_UQ0_hw by up to 2*Ulp of x_UQ0_hw.
x_uq0_hw = ((x_uq0_hw as u32).wrapping_mul(corr_uq1_hw as u32) >> (hw - 1)) as u16;
// Now, either no overflow occurred or x_UQ0_hw is 0 or 1 in its half_rep_t
// representation. In the latter case, x_UQ0_hw will be either 0 or 1 after
// any number of iterations, so just subtract 2 from the reciprocal
// approximation after last iteration.
// In infinite precision, with 0 <= eps1, eps2 <= U = 2^-HW:
// corr_UQ1_hw = 2 - (1/b_hw + e_n) * b_hw + 2*eps1
// = 1 - e_n * b_hw + 2*eps1
// x_UQ0_hw = (1/b_hw + e_n) * (1 - e_n*b_hw + 2*eps1) - eps2
// = 1/b_hw - e_n + 2*eps1/b_hw + e_n - e_n^2*b_hw + 2*e_n*eps1 - eps2
// = 1/b_hw + 2*eps1/b_hw - e_n^2*b_hw + 2*e_n*eps1 - eps2
// e_{n+1} = -e_n^2*b_hw + 2*eps1/b_hw + 2*e_n*eps1 - eps2
// = 2*e_n*eps1 - (e_n^2*b_hw + eps2) + 2*eps1/b_hw
// \------ >0 -------/ \-- >0 ---/
// abs(e_{n+1}) <= 2*abs(e_n)*U + max(2*e_n^2 + U, 2 * U)
}
// For initial half-width iterations, U = 2^-HW
// Let abs(e_n) <= u_n * U,
// then abs(e_{n+1}) <= 2 * u_n * U^2 + max(2 * u_n^2 * U^2 + U, 2 * U)
// u_{n+1} <= 2 * u_n * U + max(2 * u_n^2 * U + 1, 2)
// Account for possible overflow (see above). For an overflow to occur for the
// first time, for "ideal" corr_UQ1_hw (that is, without intermediate
// truncation), the result of x_UQ0_hw * corr_UQ1_hw should be either maximum
// value representable in UQ0.HW or less by 1. This means that 1/b_hw have to
// be not below that value (see g(x) above), so it is safe to decrement just
// once after the final iteration. On the other hand, an effective value of
// divisor changes after this point (from b_hw to b), so adjust here.
x_uq0_hw.wrapping_sub(1_u16)
};
// Error estimations for full-precision iterations are calculated just
// as above, but with U := 2^-W and taking extra decrementing into account.
// We need at least one such iteration.
// Simulating operations on a twice_rep_t to perform a single final full-width
// iteration. Using ad-hoc multiplication implementations to take advantage
// of particular structure of operands.
let blo: u32 = (CastInto::<u32>::cast(b_uq1)) & lo_mask;
// x_UQ0 = x_UQ0_hw * 2^HW - 1
// x_UQ0 * b_UQ1 = (x_UQ0_hw * 2^HW) * (b_UQ1_hw * 2^HW + blo) - b_UQ1
//
// <--- higher half ---><--- lower half --->
// [x_UQ0_hw * b_UQ1_hw]
// + [ x_UQ0_hw * blo ]
// - [ b_UQ1 ]
// = [ result ][.... discarded ...]
let corr_uq1 = negate_u32(
(x_uq0_hw as u32) * (b_uq1_hw as u32) + (((x_uq0_hw as u32) * (blo)) >> hw) - 1,
); // account for *possible* carry
let lo_corr = corr_uq1 & lo_mask;
let hi_corr = corr_uq1 >> hw;
// x_UQ0 * corr_UQ1 = (x_UQ0_hw * 2^HW) * (hi_corr * 2^HW + lo_corr) - corr_UQ1
let mut x_uq0: <F as Float>::Int = ((((x_uq0_hw as u32) * hi_corr) << 1)
.wrapping_add(((x_uq0_hw as u32) * lo_corr) >> (hw - 1))
.wrapping_sub(2))
.cast(); // 1 to account for the highest bit of corr_UQ1 can be 1
// 1 to account for possible carry
// Just like the case of half-width iterations but with possibility
// of overflowing by one extra Ulp of x_UQ0.
x_uq0 -= one;
// ... and then traditional fixup by 2 should work
// On error estimation:
// abs(E_{N-1}) <= (u_{N-1} + 2 /* due to conversion e_n -> E_n */) * 2^-HW
// + (2^-HW + 2^-W))
// abs(E_{N-1}) <= (u_{N-1} + 3.01) * 2^-HW
// Then like for the half-width iterations:
// With 0 <= eps1, eps2 < 2^-W
// E_N = 4 * E_{N-1} * eps1 - (E_{N-1}^2 * b + 4 * eps2) + 4 * eps1 / b
// abs(E_N) <= 2^-W * [ 4 * abs(E_{N-1}) + max(2 * abs(E_{N-1})^2 * 2^W + 4, 8)) ]
// abs(E_N) <= 2^-W * [ 4 * (u_{N-1} + 3.01) * 2^-HW + max(4 + 2 * (u_{N-1} + 3.01)^2, 8) ]
x_uq0
} else {
// C is (3/4 + 1/sqrt(2)) - 1 truncated to 32 fractional bits as UQ0.n
let c: <F as Float>::Int = (0x7504F333 << (F::BITS - 32)).cast();
let x_uq0: <F as Float>::Int = c.wrapping_sub(b_uq1);
// E_0 <= 3/4 - 1/sqrt(2) + 2 * 2^-32
x_uq0
};
let mut x_uq0 = if USE_NATIVE_FULL_ITERATIONS {
for _ in 0..NUMBER_OF_FULL_ITERATIONS {
let corr_uq1: u32 = 0.wrapping_sub(
((CastInto::<u32>::cast(x_uq0) as u64) * (CastInto::<u32>::cast(b_uq1) as u64))
>> F::BITS,
) as u32;
x_uq0 = ((((CastInto::<u32>::cast(x_uq0) as u64) * (corr_uq1 as u64)) >> (F::BITS - 1))
as u32)
.cast();
}
x_uq0
} else {
// not using native full iterations
x_uq0
};
// Finally, account for possible overflow, as explained above.
x_uq0 = x_uq0.wrapping_sub(2.cast());
// u_n for different precisions (with N-1 half-width iterations):
// W0 is the precision of C
// u_0 = (3/4 - 1/sqrt(2) + 2^-W0) * 2^HW
// Estimated with bc:
// define half1(un) { return 2.0 * (un + un^2) / 2.0^hw + 1.0; }
// define half2(un) { return 2.0 * un / 2.0^hw + 2.0; }
// define full1(un) { return 4.0 * (un + 3.01) / 2.0^hw + 2.0 * (un + 3.01)^2 + 4.0; }
// define full2(un) { return 4.0 * (un + 3.01) / 2.0^hw + 8.0; }
// | f32 (0 + 3) | f32 (2 + 1) | f64 (3 + 1) | f128 (4 + 1)
// u_0 | < 184224974 | < 2812.1 | < 184224974 | < 791240234244348797
// u_1 | < 15804007 | < 242.7 | < 15804007 | < 67877681371350440
// u_2 | < 116308 | < 2.81 | < 116308 | < 499533100252317
// u_3 | < 7.31 | | < 7.31 | < 27054456580
// u_4 | | | | < 80.4
// Final (U_N) | same as u_3 | < 72 | < 218 | < 13920
// Add 2 to U_N due to final decrement.
let reciprocal_precision: <F as Float>::Int = 10.cast();
// Suppose 1/b - P * 2^-W < x < 1/b + P * 2^-W
let x_uq0 = x_uq0 - reciprocal_precision;
// Now 1/b - (2*P) * 2^-W < x < 1/b
// FIXME Is x_UQ0 still >= 0.5?
let mut quotient: <F as Float>::Int = x_uq0.widen_mul(a_significand << 1).hi();
// Now, a/b - 4*P * 2^-W < q < a/b for q=<quotient_UQ1:dummy> in UQ1.(SB+1+W).
// quotient_UQ1 is in [0.5, 2.0) as UQ1.(SB+1),
// adjust it to be in [1.0, 2.0) as UQ1.SB.
let (mut residual, written_exponent) = if quotient < (implicit_bit << 1) {
// Highest bit is 0, so just reinterpret quotient_UQ1 as UQ1.SB,
// effectively doubling its value as well as its error estimation.
let residual_lo = (a_significand << (significand_bits + 1)).wrapping_sub(
(CastInto::<u32>::cast(quotient).wrapping_mul(CastInto::<u32>::cast(b_significand)))
.cast(),
);
a_significand <<= 1;
(residual_lo, written_exponent.wrapping_sub(1))
} else {
// Highest bit is 1 (the UQ1.(SB+1) value is in [1, 2)), convert it
// to UQ1.SB by right shifting by 1. Least significant bit is omitted.
quotient >>= 1;
let residual_lo = (a_significand << significand_bits).wrapping_sub(
(CastInto::<u32>::cast(quotient).wrapping_mul(CastInto::<u32>::cast(b_significand)))
.cast(),
);
(residual_lo, written_exponent)
};
//drop mutability
let quotient = quotient;
// NB: residualLo is calculated above for the normal result case.
// It is re-computed on denormal path that is expected to be not so
// performance-sensitive.
// Now, q cannot be greater than a/b and can differ by at most 8*P * 2^-W + 2^-SB
// Each NextAfter() increments the floating point value by at least 2^-SB
// (more, if exponent was incremented).
// Different cases (<---> is of 2^-SB length, * = a/b that is shown as a midpoint):
// q
// | | * | | | | |
// <---> 2^t
// | | | | | * | |
// q
// To require at most one NextAfter(), an error should be less than 1.5 * 2^-SB.
// (8*P) * 2^-W + 2^-SB < 1.5 * 2^-SB
// (8*P) * 2^-W < 0.5 * 2^-SB
// P < 2^(W-4-SB)
// Generally, for at most R NextAfter() to be enough,
// P < (2*R - 1) * 2^(W-4-SB)
// For f32 (0+3): 10 < 32 (OK)
// For f32 (2+1): 32 < 74 < 32 * 3, so two NextAfter() are required
// For f64: 220 < 256 (OK)
// For f128: 4096 * 3 < 13922 < 4096 * 5 (three NextAfter() are required)
// If we have overflowed the exponent, return infinity
if written_exponent >= max_exponent as i32 {
return F::from_repr(inf_rep | quotient_sign);
}
// Now, quotient <= the correctly-rounded result
// and may need taking NextAfter() up to 3 times (see error estimates above)
// r = a - b * q
let abs_result = if written_exponent > 0 {
let mut ret = quotient & significand_mask;
ret |= ((written_exponent as u32) << significand_bits).cast();
residual <<= 1;
ret
} else {
if (significand_bits as i32 + written_exponent) < 0 {
return F::from_repr(quotient_sign);
}
let ret = quotient.wrapping_shr(negate_u32(CastInto::<u32>::cast(written_exponent)) + 1);
residual = (CastInto::<u32>::cast(
a_significand.wrapping_shl(
significand_bits.wrapping_add(CastInto::<u32>::cast(written_exponent)),
),
)
.wrapping_sub(
(CastInto::<u32>::cast(ret).wrapping_mul(CastInto::<u32>::cast(b_significand))) << 1,
))
.cast();
ret
};
// Round
let abs_result = {
residual += abs_result & one; // tie to even
// The above line conditionally turns the below LT comparison into LTE
if residual > b_significand {
abs_result + one
} else {
abs_result
}
};
F::from_repr(abs_result | quotient_sign)
}
fn div64<F: Float>(a: F, b: F) -> F
where
u32: CastInto<F::Int>,
F::Int: CastInto<u32>,
i32: CastInto<F::Int>,
F::Int: CastInto<i32>,
u64: CastInto<F::Int>,
F::Int: CastInto<u64>,
i64: CastInto<F::Int>,
F::Int: CastInto<i64>,
F::Int: HInt,
{
const NUMBER_OF_HALF_ITERATIONS: usize = 3;
const NUMBER_OF_FULL_ITERATIONS: usize = 1;
const USE_NATIVE_FULL_ITERATIONS: bool = false;
let one = F::Int::ONE;
let zero = F::Int::ZERO;
let hw = F::BITS / 2;
let lo_mask = u64::MAX >> hw;
let significand_bits = F::SIGNIFICAND_BITS;
let max_exponent = F::EXPONENT_MAX;
let exponent_bias = F::EXPONENT_BIAS;
let implicit_bit = F::IMPLICIT_BIT;
let significand_mask = F::SIGNIFICAND_MASK;
let sign_bit = F::SIGN_MASK as F::Int;
let abs_mask = sign_bit - one;
let exponent_mask = F::EXPONENT_MASK;
let inf_rep = exponent_mask;
let quiet_bit = implicit_bit >> 1;
let qnan_rep = exponent_mask | quiet_bit;
#[inline(always)]
fn negate_u64(a: u64) -> u64 {
(<i64>::wrapping_neg(a as i64)) as u64
}
let a_rep = a.repr();
let b_rep = b.repr();
let a_exponent = (a_rep >> significand_bits) & max_exponent.cast();
let b_exponent = (b_rep >> significand_bits) & max_exponent.cast();
let quotient_sign = (a_rep ^ b_rep) & sign_bit;
let mut a_significand = a_rep & significand_mask;
let mut b_significand = b_rep & significand_mask;
let mut scale = 0;
// Detect if a or b is zero, denormal, infinity, or NaN.
if a_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
|| b_exponent.wrapping_sub(one) >= (max_exponent - 1).cast()
{
let a_abs = a_rep & abs_mask;
let b_abs = b_rep & abs_mask;
// NaN / anything = qNaN
if a_abs > inf_rep {
return F::from_repr(a_rep | quiet_bit);
}
// anything / NaN = qNaN
if b_abs > inf_rep {
return F::from_repr(b_rep | quiet_bit);
}
if a_abs == inf_rep {
if b_abs == inf_rep {
// infinity / infinity = NaN
return F::from_repr(qnan_rep);
} else {
// infinity / anything else = +/- infinity
return F::from_repr(a_abs | quotient_sign);
}
}
// anything else / infinity = +/- 0
if b_abs == inf_rep {
return F::from_repr(quotient_sign);
}
if a_abs == zero {
if b_abs == zero {
// zero / zero = NaN
return F::from_repr(qnan_rep);
} else {
// zero / anything else = +/- zero
return F::from_repr(quotient_sign);
}
}
// anything else / zero = +/- infinity
if b_abs == zero {
return F::from_repr(inf_rep | quotient_sign);
}
// one or both of a or b is denormal, the other (if applicable) is a
// normal number. Renormalize one or both of a and b, and set scale to
// include the necessary exponent adjustment.
if a_abs < implicit_bit {
let (exponent, significand) = F::normalize(a_significand);
scale += exponent;
a_significand = significand;
}
if b_abs < implicit_bit {
let (exponent, significand) = F::normalize(b_significand);
scale -= exponent;
b_significand = significand;
}
}
// Set the implicit significand bit. If we fell through from the
// denormal path it was already set by normalize( ), but setting it twice
// won't hurt anything.
a_significand |= implicit_bit;
b_significand |= implicit_bit;
let written_exponent: i64 = CastInto::<u64>::cast(
a_exponent
.wrapping_sub(b_exponent)
.wrapping_add(scale.cast()),
)
.wrapping_add(exponent_bias as u64) as i64;
let b_uq1 = b_significand << (F::BITS - significand_bits - 1);
// Align the significand of b as a UQ1.(n-1) fixed-point number in the range
// [1.0, 2.0) and get a UQ0.n approximate reciprocal using a small minimax
// polynomial approximation: x0 = 3/4 + 1/sqrt(2) - b/2.
// The max error for this approximation is achieved at endpoints, so
// abs(x0(b) - 1/b) <= abs(x0(1) - 1/1) = 3/4 - 1/sqrt(2) = 0.04289...,
// which is about 4.5 bits.
// The initial approximation is between x0(1.0) = 0.9571... and x0(2.0) = 0.4571...
// Then, refine the reciprocal estimate using a quadratically converging
// Newton-Raphson iteration:
// x_{n+1} = x_n * (2 - x_n * b)
//
// Let b be the original divisor considered "in infinite precision" and
// obtained from IEEE754 representation of function argument (with the
// implicit bit set). Corresponds to rep_t-sized b_UQ1 represented in
// UQ1.(W-1).
//
// Let b_hw be an infinitely precise number obtained from the highest (HW-1)
// bits of divisor significand (with the implicit bit set). Corresponds to
// half_rep_t-sized b_UQ1_hw represented in UQ1.(HW-1) that is a **truncated**
// version of b_UQ1.
//
// Let e_n := x_n - 1/b_hw
// E_n := x_n - 1/b
// abs(E_n) <= abs(e_n) + (1/b_hw - 1/b)
// = abs(e_n) + (b - b_hw) / (b*b_hw)
// <= abs(e_n) + 2 * 2^-HW
// rep_t-sized iterations may be slower than the corresponding half-width
// variant depending on the handware and whether single/double/quad precision
// is selected.
// NB: Using half-width iterations increases computation errors due to
// rounding, so error estimations have to be computed taking the selected
// mode into account!
let mut x_uq0 = if NUMBER_OF_HALF_ITERATIONS > 0 {
// Starting with (n-1) half-width iterations
let b_uq1_hw: u32 =
(CastInto::<u64>::cast(b_significand) >> (significand_bits + 1 - hw)) as u32;
// C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW
// with W0 being either 16 or 32 and W0 <= HW.
// That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from which
// b/2 is subtracted to obtain x0) wrapped to [0, 1) range.
// HW is at least 32. Shifting into the highest bits if needed.
let c_hw = (0x7504F333_u64 as u32).wrapping_shl(hw.wrapping_sub(32));
// b >= 1, thus an upper bound for 3/4 + 1/sqrt(2) - b/2 is about 0.9572,
// so x0 fits to UQ0.HW without wrapping.
let x_uq0_hw: u32 = {
let mut x_uq0_hw: u32 = c_hw.wrapping_sub(b_uq1_hw /* exact b_hw/2 as UQ0.HW */);
// dbg!(x_uq0_hw);
// An e_0 error is comprised of errors due to
// * x0 being an inherently imprecise first approximation of 1/b_hw
// * C_hw being some (irrational) number **truncated** to W0 bits
// Please note that e_0 is calculated against the infinitely precise
// reciprocal of b_hw (that is, **truncated** version of b).
//
// e_0 <= 3/4 - 1/sqrt(2) + 2^-W0
// By construction, 1 <= b < 2
// f(x) = x * (2 - b*x) = 2*x - b*x^2
// f'(x) = 2 * (1 - b*x)
//
// On the [0, 1] interval, f(0) = 0,
// then it increses until f(1/b) = 1 / b, maximum on (0, 1),
// then it decreses to f(1) = 2 - b
//
// Let g(x) = x - f(x) = b*x^2 - x.
// On (0, 1/b), g(x) < 0 <=> f(x) > x
// On (1/b, 1], g(x) > 0 <=> f(x) < x
//
// For half-width iterations, b_hw is used instead of b.
for _ in 0..NUMBER_OF_HALF_ITERATIONS {
// corr_UQ1_hw can be **larger** than 2 - b_hw*x by at most 1*Ulp
// of corr_UQ1_hw.
// "0.0 - (...)" is equivalent to "2.0 - (...)" in UQ1.(HW-1).
// On the other hand, corr_UQ1_hw should not overflow from 2.0 to 0.0 provided
// no overflow occurred earlier: ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW) is
// expected to be strictly positive because b_UQ1_hw has its highest bit set
// and x_UQ0_hw should be rather large (it converges to 1/2 < 1/b_hw <= 1).
let corr_uq1_hw: u32 =
0.wrapping_sub(((x_uq0_hw as u64).wrapping_mul(b_uq1_hw as u64)) >> hw) as u32;
// dbg!(corr_uq1_hw);
// Now, we should multiply UQ0.HW and UQ1.(HW-1) numbers, naturally
// obtaining an UQ1.(HW-1) number and proving its highest bit could be
// considered to be 0 to be able to represent it in UQ0.HW.
// From the above analysis of f(x), if corr_UQ1_hw would be represented
// without any intermediate loss of precision (that is, in twice_rep_t)
// x_UQ0_hw could be at most [1.]000... if b_hw is exactly 1.0 and strictly
// less otherwise. On the other hand, to obtain [1.]000..., one have to pass
// 1/b_hw == 1.0 to f(x), so this cannot occur at all without overflow (due
// to 1.0 being not representable as UQ0.HW).
// The fact corr_UQ1_hw was virtually round up (due to result of
// multiplication being **first** truncated, then negated - to improve
// error estimations) can increase x_UQ0_hw by up to 2*Ulp of x_UQ0_hw.
x_uq0_hw = ((x_uq0_hw as u64).wrapping_mul(corr_uq1_hw as u64) >> (hw - 1)) as u32;
// dbg!(x_uq0_hw);
// Now, either no overflow occurred or x_UQ0_hw is 0 or 1 in its half_rep_t
// representation. In the latter case, x_UQ0_hw will be either 0 or 1 after
// any number of iterations, so just subtract 2 from the reciprocal
// approximation after last iteration.
// In infinite precision, with 0 <= eps1, eps2 <= U = 2^-HW:
// corr_UQ1_hw = 2 - (1/b_hw + e_n) * b_hw + 2*eps1
// = 1 - e_n * b_hw + 2*eps1
// x_UQ0_hw = (1/b_hw + e_n) * (1 - e_n*b_hw + 2*eps1) - eps2
// = 1/b_hw - e_n + 2*eps1/b_hw + e_n - e_n^2*b_hw + 2*e_n*eps1 - eps2
// = 1/b_hw + 2*eps1/b_hw - e_n^2*b_hw + 2*e_n*eps1 - eps2
// e_{n+1} = -e_n^2*b_hw + 2*eps1/b_hw + 2*e_n*eps1 - eps2
// = 2*e_n*eps1 - (e_n^2*b_hw + eps2) + 2*eps1/b_hw
// \------ >0 -------/ \-- >0 ---/
// abs(e_{n+1}) <= 2*abs(e_n)*U + max(2*e_n^2 + U, 2 * U)
}
// For initial half-width iterations, U = 2^-HW
// Let abs(e_n) <= u_n * U,
// then abs(e_{n+1}) <= 2 * u_n * U^2 + max(2 * u_n^2 * U^2 + U, 2 * U)
// u_{n+1} <= 2 * u_n * U + max(2 * u_n^2 * U + 1, 2)
// Account for possible overflow (see above). For an overflow to occur for the
// first time, for "ideal" corr_UQ1_hw (that is, without intermediate
// truncation), the result of x_UQ0_hw * corr_UQ1_hw should be either maximum
// value representable in UQ0.HW or less by 1. This means that 1/b_hw have to
// be not below that value (see g(x) above), so it is safe to decrement just
// once after the final iteration. On the other hand, an effective value of
// divisor changes after this point (from b_hw to b), so adjust here.
x_uq0_hw.wrapping_sub(1_u32)
};
// Error estimations for full-precision iterations are calculated just
// as above, but with U := 2^-W and taking extra decrementing into account.
// We need at least one such iteration.
// Simulating operations on a twice_rep_t to perform a single final full-width
// iteration. Using ad-hoc multiplication implementations to take advantage
// of particular structure of operands.
let blo: u64 = (CastInto::<u64>::cast(b_uq1)) & lo_mask;
// x_UQ0 = x_UQ0_hw * 2^HW - 1
// x_UQ0 * b_UQ1 = (x_UQ0_hw * 2^HW) * (b_UQ1_hw * 2^HW + blo) - b_UQ1
//
// <--- higher half ---><--- lower half --->
// [x_UQ0_hw * b_UQ1_hw]
// + [ x_UQ0_hw * blo ]
// - [ b_UQ1 ]
// = [ result ][.... discarded ...]
let corr_uq1 = negate_u64(
(x_uq0_hw as u64) * (b_uq1_hw as u64) + (((x_uq0_hw as u64) * (blo)) >> hw) - 1,
); // account for *possible* carry
let lo_corr = corr_uq1 & lo_mask;
let hi_corr = corr_uq1 >> hw;
// x_UQ0 * corr_UQ1 = (x_UQ0_hw * 2^HW) * (hi_corr * 2^HW + lo_corr) - corr_UQ1
let mut x_uq0: <F as Float>::Int = ((((x_uq0_hw as u64) * hi_corr) << 1)
.wrapping_add(((x_uq0_hw as u64) * lo_corr) >> (hw - 1))
.wrapping_sub(2))
.cast(); // 1 to account for the highest bit of corr_UQ1 can be 1
// 1 to account for possible carry
// Just like the case of half-width iterations but with possibility
// of overflowing by one extra Ulp of x_UQ0.
x_uq0 -= one;
// ... and then traditional fixup by 2 should work
// On error estimation:
// abs(E_{N-1}) <= (u_{N-1} + 2 /* due to conversion e_n -> E_n */) * 2^-HW
// + (2^-HW + 2^-W))
// abs(E_{N-1}) <= (u_{N-1} + 3.01) * 2^-HW
// Then like for the half-width iterations:
// With 0 <= eps1, eps2 < 2^-W
// E_N = 4 * E_{N-1} * eps1 - (E_{N-1}^2 * b + 4 * eps2) + 4 * eps1 / b
// abs(E_N) <= 2^-W * [ 4 * abs(E_{N-1}) + max(2 * abs(E_{N-1})^2 * 2^W + 4, 8)) ]
// abs(E_N) <= 2^-W * [ 4 * (u_{N-1} + 3.01) * 2^-HW + max(4 + 2 * (u_{N-1} + 3.01)^2, 8) ]
x_uq0
} else {
// C is (3/4 + 1/sqrt(2)) - 1 truncated to 64 fractional bits as UQ0.n
let c: <F as Float>::Int = (0x7504F333 << (F::BITS - 32)).cast();
let x_uq0: <F as Float>::Int = c.wrapping_sub(b_uq1);
// E_0 <= 3/4 - 1/sqrt(2) + 2 * 2^-64
x_uq0
};
let mut x_uq0 = if USE_NATIVE_FULL_ITERATIONS {
for _ in 0..NUMBER_OF_FULL_ITERATIONS {
let corr_uq1: u64 = 0.wrapping_sub(
(CastInto::<u64>::cast(x_uq0) * (CastInto::<u64>::cast(b_uq1))) >> F::BITS,
);
x_uq0 = ((((CastInto::<u64>::cast(x_uq0) as u128) * (corr_uq1 as u128))
>> (F::BITS - 1)) as u64)
.cast();
}
x_uq0
} else {
// not using native full iterations
x_uq0
};
// Finally, account for possible overflow, as explained above.
x_uq0 = x_uq0.wrapping_sub(2.cast());
// u_n for different precisions (with N-1 half-width iterations):
// W0 is the precision of C
// u_0 = (3/4 - 1/sqrt(2) + 2^-W0) * 2^HW
// Estimated with bc:
// define half1(un) { return 2.0 * (un + un^2) / 2.0^hw + 1.0; }
// define half2(un) { return 2.0 * un / 2.0^hw + 2.0; }
// define full1(un) { return 4.0 * (un + 3.01) / 2.0^hw + 2.0 * (un + 3.01)^2 + 4.0; }
// define full2(un) { return 4.0 * (un + 3.01) / 2.0^hw + 8.0; }
// | f32 (0 + 3) | f32 (2 + 1) | f64 (3 + 1) | f128 (4 + 1)
// u_0 | < 184224974 | < 2812.1 | < 184224974 | < 791240234244348797
// u_1 | < 15804007 | < 242.7 | < 15804007 | < 67877681371350440
// u_2 | < 116308 | < 2.81 | < 116308 | < 499533100252317
// u_3 | < 7.31 | | < 7.31 | < 27054456580
// u_4 | | | | < 80.4
// Final (U_N) | same as u_3 | < 72 | < 218 | < 13920
// Add 2 to U_N due to final decrement.
let reciprocal_precision: <F as Float>::Int = 220.cast();
// Suppose 1/b - P * 2^-W < x < 1/b + P * 2^-W
let x_uq0 = x_uq0 - reciprocal_precision;
// Now 1/b - (2*P) * 2^-W < x < 1/b
// FIXME Is x_UQ0 still >= 0.5?
let mut quotient: <F as Float>::Int = x_uq0.widen_mul(a_significand << 1).hi();
// Now, a/b - 4*P * 2^-W < q < a/b for q=<quotient_UQ1:dummy> in UQ1.(SB+1+W).
// quotient_UQ1 is in [0.5, 2.0) as UQ1.(SB+1),
// adjust it to be in [1.0, 2.0) as UQ1.SB.
let (mut residual, written_exponent) = if quotient < (implicit_bit << 1) {
// Highest bit is 0, so just reinterpret quotient_UQ1 as UQ1.SB,
// effectively doubling its value as well as its error estimation.
let residual_lo = (a_significand << (significand_bits + 1)).wrapping_sub(
(CastInto::<u64>::cast(quotient).wrapping_mul(CastInto::<u64>::cast(b_significand)))
.cast(),
);
a_significand <<= 1;
(residual_lo, written_exponent.wrapping_sub(1))
} else {
// Highest bit is 1 (the UQ1.(SB+1) value is in [1, 2)), convert it
// to UQ1.SB by right shifting by 1. Least significant bit is omitted.
quotient >>= 1;
let residual_lo = (a_significand << significand_bits).wrapping_sub(
(CastInto::<u64>::cast(quotient).wrapping_mul(CastInto::<u64>::cast(b_significand)))
.cast(),
);
(residual_lo, written_exponent)
};
//drop mutability
let quotient = quotient;
// NB: residualLo is calculated above for the normal result case.
// It is re-computed on denormal path that is expected to be not so
// performance-sensitive.
// Now, q cannot be greater than a/b and can differ by at most 8*P * 2^-W + 2^-SB
// Each NextAfter() increments the floating point value by at least 2^-SB
// (more, if exponent was incremented).
// Different cases (<---> is of 2^-SB length, * = a/b that is shown as a midpoint):
// q
// | | * | | | | |
// <---> 2^t
// | | | | | * | |
// q
// To require at most one NextAfter(), an error should be less than 1.5 * 2^-SB.
// (8*P) * 2^-W + 2^-SB < 1.5 * 2^-SB
// (8*P) * 2^-W < 0.5 * 2^-SB
// P < 2^(W-4-SB)
// Generally, for at most R NextAfter() to be enough,
// P < (2*R - 1) * 2^(W-4-SB)
// For f32 (0+3): 10 < 32 (OK)
// For f32 (2+1): 32 < 74 < 32 * 3, so two NextAfter() are required
// For f64: 220 < 256 (OK)
// For f128: 4096 * 3 < 13922 < 4096 * 5 (three NextAfter() are required)
// If we have overflowed the exponent, return infinity
if written_exponent >= max_exponent as i64 {
return F::from_repr(inf_rep | quotient_sign);
}
// Now, quotient <= the correctly-rounded result
// and may need taking NextAfter() up to 3 times (see error estimates above)
// r = a - b * q
let abs_result = if written_exponent > 0 {
let mut ret = quotient & significand_mask;
ret |= ((written_exponent as u64) << significand_bits).cast();
residual <<= 1;
ret
} else {
if (significand_bits as i64 + written_exponent) < 0 {
return F::from_repr(quotient_sign);
}
let ret =
quotient.wrapping_shr((negate_u64(CastInto::<u64>::cast(written_exponent)) + 1) as u32);
residual = (CastInto::<u64>::cast(
a_significand.wrapping_shl(
significand_bits.wrapping_add(CastInto::<u32>::cast(written_exponent)),
),
)
.wrapping_sub(
(CastInto::<u64>::cast(ret).wrapping_mul(CastInto::<u64>::cast(b_significand))) << 1,
))
.cast();
ret
};
// Round
let abs_result = {
residual += abs_result & one; // tie to even
// conditionally turns the below LT comparison into LTE
if residual > b_significand {
abs_result + one
} else {
abs_result
}
};
F::from_repr(abs_result | quotient_sign)
}
intrinsics! {
#[arm_aeabi_alias = __aeabi_fdiv]
pub extern "C" fn __divsf3(a: f32, b: f32) -> f32 {
div32(a, b)
}
#[arm_aeabi_alias = __aeabi_ddiv]
pub extern "C" fn __divdf3(a: f64, b: f64) -> f64 {
div64(a, b)
}
#[cfg(target_arch = "arm")]
pub extern "C" fn __divsf3vfp(a: f32, b: f32) -> f32 {
a / b
}
#[cfg(target_arch = "arm")]
pub extern "C" fn __divdf3vfp(a: f64, b: f64) -> f64 {
a / b
}
}