blob: a4b87966d9a757154e6e66c5c111a8af2e5285e1 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang.reflect;
/**
* {@code Proxy} provides static methods for creating dynamic proxy
* classes and instances, and it is also the superclass of all
* dynamic proxy classes created by those methods.
*
* <p>To create a proxy for some interface {@code Foo}:
* <pre>
* InvocationHandler handler = new MyInvocationHandler(...);
* Class&lt;?&gt; proxyClass = Proxy.getProxyClass(Foo.class.getClassLoader(), Foo.class);
* Foo f = (Foo) proxyClass.getConstructor(InvocationHandler.class).
* newInstance(handler);
* </pre>
* or more simply:
* <pre>
* Foo f = (Foo) Proxy.newProxyInstance(Foo.class.getClassLoader(),
* new Class&lt;?&gt;[] { Foo.class },
* handler);
* </pre>
*
* <p>A <i>dynamic proxy class</i> (simply referred to as a <i>proxy
* class</i> below) is a class that implements a list of interfaces
* specified at runtime when the class is created, with behavior as
* described below.
*
* A <i>proxy interface</i> is such an interface that is implemented
* by a proxy class.
*
* A <i>proxy instance</i> is an instance of a proxy class.
*
* Each proxy instance has an associated <i>invocation handler</i>
* object, which implements the interface {@link java.lang.reflect.InvocationHandler InvocationHandler}.
* A method invocation on a proxy instance through one of its proxy
* interfaces will be dispatched to the {@link java.lang.reflect.InvocationHandler#invoke InvocationHandler#invoke} method of the instance's invocation handler, passing the proxy
* instance, a {@code java.lang.reflect.Method} object identifying
* the method that was invoked, and an array of type {@code Object}
* containing the arguments. The invocation handler processes the
* encoded method invocation as appropriate and the result that it
* returns will be returned as the result of the method invocation on
* the proxy instance.
*
* <p>A proxy class has the following properties:
*
* <ul>
* <li>Proxy classes are <em>public, final, and not abstract</em> if
* all proxy interfaces are public.</li>
*
* <li>Proxy classes are <em>non-public, final, and not abstract</em> if
* any of the proxy interfaces is non-public.</li>
*
* <li>The unqualified name of a proxy class is unspecified. The space
* of class names that begin with the string {@code "$Proxy"}
* should be, however, reserved for proxy classes.
*
* <li>A proxy class extends {@code java.lang.reflect.Proxy}.
*
* <li>A proxy class implements exactly the interfaces specified at its
* creation, in the same order.
*
* <li>If a proxy class implements a non-public interface, then it will
* be defined in the same package as that interface. Otherwise, the
* package of a proxy class is also unspecified. Note that package
* sealing will not prevent a proxy class from being successfully defined
* in a particular package at runtime, and neither will classes already
* defined by the same class loader and the same package with particular
* signers.
*
* <li>Since a proxy class implements all of the interfaces specified at
* its creation, invoking {@code getInterfaces} on its
* {@code Class} object will return an array containing the same
* list of interfaces (in the order specified at its creation), invoking
* {@code getMethods} on its {@code Class} object will return
* an array of {@code Method} objects that include all of the
* methods in those interfaces, and invoking {@code getMethod} will
* find methods in the proxy interfaces as would be expected.
*
* <li>The {@link java.lang.reflect.Proxy#isProxyClass Proxy#isProxyClass} method will
* return true if it is passed a proxy class-- a class returned by
* {@code Proxy.getProxyClass} or the class of an object returned by
* {@code Proxy.newProxyInstance}-- and false otherwise.
*
* <li>The {@code java.security.ProtectionDomain} of a proxy class
* is the same as that of system classes loaded by the bootstrap class
* loader, such as {@code java.lang.Object}, because the code for a
* proxy class is generated by trusted system code. This protection
* domain will typically be granted
* {@code java.security.AllPermission}.
*
* <li>Each proxy class has one public constructor that takes one argument,
* an implementation of the interface {@link java.lang.reflect.InvocationHandler InvocationHandler}, to set
* the invocation handler for a proxy instance. Rather than having to use
* the reflection API to access the public constructor, a proxy instance
* can be also be created by calling the {@link java.lang.reflect.Proxy#newProxyInstance Proxy#newProxyInstance} method, which combines the actions of calling
* {@link java.lang.reflect.Proxy#getProxyClass Proxy#getProxyClass} with invoking the
* constructor with an invocation handler.
* </ul>
*
* <p>A proxy instance has the following properties:
*
* <ul>
* <li>Given a proxy instance {@code proxy} and one of the
* interfaces implemented by its proxy class {@code Foo}, the
* following expression will return true:
* <pre>
* {@code proxy instanceof Foo}
* </pre>
* and the following cast operation will succeed (rather than throwing
* a {@code ClassCastException}):
* <pre>
* {@code (Foo) proxy}
* </pre>
*
* <li>Each proxy instance has an associated invocation handler, the one
* that was passed to its constructor. The static
* {@link java.lang.reflect.Proxy#getInvocationHandler Proxy#getInvocationHandler} method
* will return the invocation handler associated with the proxy instance
* passed as its argument.
*
* <li>An interface method invocation on a proxy instance will be
* encoded and dispatched to the invocation handler's {@link java.lang.reflect.InvocationHandler#invoke InvocationHandler#invoke} method as described in the
* documentation for that method.
*
* <li>An invocation of the {@code hashCode},
* {@code equals}, or {@code toString} methods declared in
* {@code java.lang.Object} on a proxy instance will be encoded and
* dispatched to the invocation handler's {@code invoke} method in
* the same manner as interface method invocations are encoded and
* dispatched, as described above. The declaring class of the
* {@code Method} object passed to {@code invoke} will be
* {@code java.lang.Object}. Other public methods of a proxy
* instance inherited from {@code java.lang.Object} are not
* overridden by a proxy class, so invocations of those methods behave
* like they do for instances of {@code java.lang.Object}.
* </ul>
*
* <h3>Methods Duplicated in Multiple Proxy Interfaces</h3>
*
* <p>When two or more interfaces of a proxy class contain a method with
* the same name and parameter signature, the order of the proxy class's
* interfaces becomes significant. When such a <i>duplicate method</i>
* is invoked on a proxy instance, the {@code Method} object passed
* to the invocation handler will not necessarily be the one whose
* declaring class is assignable from the reference type of the interface
* that the proxy's method was invoked through. This limitation exists
* because the corresponding method implementation in the generated proxy
* class cannot determine which interface it was invoked through.
* Therefore, when a duplicate method is invoked on a proxy instance,
* the {@code Method} object for the method in the foremost interface
* that contains the method (either directly or inherited through a
* superinterface) in the proxy class's list of interfaces is passed to
* the invocation handler's {@code invoke} method, regardless of the
* reference type through which the method invocation occurred.
*
* <p>If a proxy interface contains a method with the same name and
* parameter signature as the {@code hashCode}, {@code equals},
* or {@code toString} methods of {@code java.lang.Object},
* when such a method is invoked on a proxy instance, the
* {@code Method} object passed to the invocation handler will have
* {@code java.lang.Object} as its declaring class. In other words,
* the public, non-final methods of {@code java.lang.Object}
* logically precede all of the proxy interfaces for the determination of
* which {@code Method} object to pass to the invocation handler.
*
* <p>Note also that when a duplicate method is dispatched to an
* invocation handler, the {@code invoke} method may only throw
* checked exception types that are assignable to one of the exception
* types in the {@code throws} clause of the method in <i>all</i> of
* the proxy interfaces that it can be invoked through. If the
* {@code invoke} method throws a checked exception that is not
* assignable to any of the exception types declared by the method in one
* of the proxy interfaces that it can be invoked through, then an
* unchecked {@code UndeclaredThrowableException} will be thrown by
* the invocation on the proxy instance. This restriction means that not
* all of the exception types returned by invoking
* {@code getExceptionTypes} on the {@code Method} object
* passed to the {@code invoke} method can necessarily be thrown
* successfully by the {@code invoke} method.
*
* @author Peter Jones
* @see java.lang.reflect.InvocationHandler
* @since 1.3
*/
@SuppressWarnings({"unchecked", "deprecation", "all"})
public class Proxy implements java.io.Serializable {
/**
* Constructs a new {@code Proxy} instance from a subclass
* (typically, a dynamic proxy class) with the specified value
* for its invocation handler.
*
* @param h the invocation handler for this proxy instance
*
* @throws java.lang.NullPointerException if the given invocation handler, {@code h},
* is {@code null}.
*/
protected Proxy(@android.annotation.NonNull java.lang.reflect.InvocationHandler h) { throw new RuntimeException("Stub!"); }
/**
* Returns the {@code java.lang.Class} object for a proxy class
* given a class loader and an array of interfaces. The proxy class
* will be defined by the specified class loader and will implement
* all of the supplied interfaces. If any of the given interfaces
* is non-public, the proxy class will be non-public. If a proxy class
* for the same permutation of interfaces has already been defined by the
* class loader, then the existing proxy class will be returned; otherwise,
* a proxy class for those interfaces will be generated dynamically
* and defined by the class loader.
*
* <p>There are several restrictions on the parameters that may be
* passed to {@code Proxy.getProxyClass}:
*
* <ul>
* <li>All of the {@code Class} objects in the
* {@code interfaces} array must represent interfaces, not
* classes or primitive types.
*
* <li>No two elements in the {@code interfaces} array may
* refer to identical {@code Class} objects.
*
* <li>All of the interface types must be visible by name through the
* specified class loader. In other words, for class loader
* {@code cl} and every interface {@code i}, the following
* expression must be true:
* <pre>
* Class.forName(i.getName(), false, cl) == i
* </pre>
*
* <li>All non-public interfaces must be in the same package;
* otherwise, it would not be possible for the proxy class to
* implement all of the interfaces, regardless of what package it is
* defined in.
*
* <li>For any set of member methods of the specified interfaces
* that have the same signature:
* <ul>
* <li>If the return type of any of the methods is a primitive
* type or void, then all of the methods must have that same
* return type.
* <li>Otherwise, one of the methods must have a return type that
* is assignable to all of the return types of the rest of the
* methods.
* </ul>
*
* <li>The resulting proxy class must not exceed any limits imposed
* on classes by the virtual machine. For example, the VM may limit
* the number of interfaces that a class may implement to 65535; in
* that case, the size of the {@code interfaces} array must not
* exceed 65535.
* </ul>
*
* <p>If any of these restrictions are violated,
* {@code Proxy.getProxyClass} will throw an
* {@code IllegalArgumentException}. If the {@code interfaces}
* array argument or any of its elements are {@code null}, a
* {@code NullPointerException} will be thrown.
*
* <p>Note that the order of the specified proxy interfaces is
* significant: two requests for a proxy class with the same combination
* of interfaces but in a different order will result in two distinct
* proxy classes.
*
* @param loader the class loader to define the proxy class
* @param interfaces the list of interfaces for the proxy class
* to implement
* @return a proxy class that is defined in the specified class loader
* and that implements the specified interfaces
* @throws java.lang.IllegalArgumentException if any of the restrictions on the
* parameters that may be passed to {@code getProxyClass}
* are violated
* @throws java.lang.SecurityException if a security manager, <em>s</em>, is present
* and any of the following conditions is met:
* <ul>
* <li> the given {@code loader} is {@code null} and
* the caller's class loader is not {@code null} and the
* invocation of {@link java.lang.SecurityManager#checkPermission SecurityManager#checkPermission} with
* {@code RuntimePermission("getClassLoader")} permission
* denies access.</li>
* <li> for each proxy interface, {@code intf},
* the caller's class loader is not the same as or an
* ancestor of the class loader for {@code intf} and
* invocation of {@link java.lang.SecurityManager#checkPackageAccess SecurityManager#checkPackageAccess} denies access to {@code intf}.</li>
* </ul>
* @throws java.lang.NullPointerException if the {@code interfaces} array
* argument or any of its elements are {@code null}
*/
@android.annotation.NonNull
public static java.lang.Class<?> getProxyClass(@android.annotation.Nullable java.lang.ClassLoader loader, @android.annotation.NonNull java.lang.Class<?>... interfaces) throws java.lang.IllegalArgumentException { throw new RuntimeException("Stub!"); }
/**
* Returns an instance of a proxy class for the specified interfaces
* that dispatches method invocations to the specified invocation
* handler.
*
* <p>{@code Proxy.newProxyInstance} throws
* {@code IllegalArgumentException} for the same reasons that
* {@code Proxy.getProxyClass} does.
*
* @param loader the class loader to define the proxy class
* @param interfaces the list of interfaces for the proxy class
* to implement
* @param h the invocation handler to dispatch method invocations to
* @return a proxy instance with the specified invocation handler of a
* proxy class that is defined by the specified class loader
* and that implements the specified interfaces
* @throws java.lang.IllegalArgumentException if any of the restrictions on the
* parameters that may be passed to {@code getProxyClass}
* are violated
* @throws java.lang.SecurityException if a security manager, <em>s</em>, is present
* and any of the following conditions is met:
* <ul>
* <li> the given {@code loader} is {@code null} and
* the caller's class loader is not {@code null} and the
* invocation of {@link java.lang.SecurityManager#checkPermission SecurityManager#checkPermission} with
* {@code RuntimePermission("getClassLoader")} permission
* denies access;</li>
* <li> for each proxy interface, {@code intf},
* the caller's class loader is not the same as or an
* ancestor of the class loader for {@code intf} and
* invocation of {@link java.lang.SecurityManager#checkPackageAccess SecurityManager#checkPackageAccess} denies access to {@code intf};</li>
* <li> any of the given proxy interfaces is non-public and the
* caller class is not in the same {@linkplain java.lang.Package Package}
* as the non-public interface and the invocation of
* {@link java.lang.SecurityManager#checkPermission SecurityManager#checkPermission} with
* {@code ReflectPermission("newProxyInPackage.{package name}")}
* permission denies access.</li>
* </ul>
* @throws java.lang.NullPointerException if the {@code interfaces} array
* argument or any of its elements are {@code null}, or
* if the invocation handler, {@code h}, is
* {@code null}
*/
@android.annotation.NonNull
public static java.lang.Object newProxyInstance(@android.annotation.Nullable java.lang.ClassLoader loader, @android.annotation.NonNull java.lang.Class<?>[] interfaces, @android.annotation.NonNull java.lang.reflect.InvocationHandler h) throws java.lang.IllegalArgumentException { throw new RuntimeException("Stub!"); }
/**
* Returns true if and only if the specified class was dynamically
* generated to be a proxy class using the {@code getProxyClass}
* method or the {@code newProxyInstance} method.
*
* <p>The reliability of this method is important for the ability
* to use it to make security decisions, so its implementation should
* not just test if the class in question extends {@code Proxy}.
*
* @param cl the class to test
* @return {@code true} if the class is a proxy class and
* {@code false} otherwise
* @throws java.lang.NullPointerException if {@code cl} is {@code null}
*/
public static boolean isProxyClass(@android.annotation.NonNull java.lang.Class<?> cl) { throw new RuntimeException("Stub!"); }
/**
* Returns the invocation handler for the specified proxy instance.
*
* @param proxy the proxy instance to return the invocation handler for
* @return the invocation handler for the proxy instance
* @throws java.lang.IllegalArgumentException if the argument is not a
* proxy instance
* @throws java.lang.SecurityException if a security manager, <em>s</em>, is present
* and the caller's class loader is not the same as or an
* ancestor of the class loader for the invocation handler
* and invocation of {@link java.lang.SecurityManager#checkPackageAccess SecurityManager#checkPackageAccess} denies access to the invocation
* handler's class.
*/
@android.annotation.NonNull
public static java.lang.reflect.InvocationHandler getInvocationHandler(@android.annotation.NonNull java.lang.Object proxy) throws java.lang.IllegalArgumentException { throw new RuntimeException("Stub!"); }
/**
* the invocation handler for this proxy instance.
* @serial
*/
protected java.lang.reflect.InvocationHandler h;
}