blob: fa2bbbf59974a5dda61568388720d824ee5a5184 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This file needs to be included as .inc as it depends on certain macros being
// defined prior to its inclusion.
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <cmath>
#include <limits>
#include <google/protobuf/message.h>
#ifndef _MSC_VER
#include <unistd.h>
#endif
#include <fstream>
#include <sstream>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/descriptor.pb.h>
#include <gmock/gmock.h>
#include <google/protobuf/testing/googletest.h>
#include <gtest/gtest.h>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/substitute.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/descriptor.h>
#include <google/protobuf/io/io_win32.h>
#include <google/protobuf/generated_message_reflection.h>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <google/protobuf/test_util2.h>
namespace google {
namespace protobuf {
#if defined(_WIN32)
// DO NOT include <io.h>, instead create functions in io_win32.{h,cc} and import
// them like we do below.
using google::protobuf::io::win32::close;
using google::protobuf::io::win32::open;
#endif
#ifndef O_BINARY
#ifdef _O_BINARY
#define O_BINARY _O_BINARY
#else
#define O_BINARY 0 // If this isn't defined, the platform doesn't need it.
#endif
#endif
TEST(MESSAGE_TEST_NAME, SerializeHelpers) {
// TODO(kenton): Test more helpers? They're all two-liners so it seems
// like a waste of time.
UNITTEST::TestAllTypes message;
TestUtil::SetAllFields(&message);
std::stringstream stream;
std::string str1("foo");
std::string str2("bar");
EXPECT_TRUE(message.SerializeToString(&str1));
EXPECT_TRUE(message.AppendToString(&str2));
EXPECT_TRUE(message.SerializeToOstream(&stream));
EXPECT_EQ(str1.size() + 3, str2.size());
EXPECT_EQ("bar", str2.substr(0, 3));
// Don't use EXPECT_EQ because we don't want to dump raw binary data to
// stdout.
EXPECT_TRUE(str2.substr(3) == str1);
// GCC gives some sort of error if we try to just do stream.str() == str1.
std::string temp = stream.str();
EXPECT_TRUE(temp == str1);
EXPECT_TRUE(message.SerializeAsString() == str1);
}
TEST(MESSAGE_TEST_NAME, SerializeToBrokenOstream) {
std::ofstream out;
UNITTEST::TestAllTypes message;
message.set_optional_int32(123);
EXPECT_FALSE(message.SerializeToOstream(&out));
}
TEST(MESSAGE_TEST_NAME, ParseFromFileDescriptor) {
std::string filename =
TestUtil::GetTestDataPath("net/proto2/internal/testdata/golden_message");
int file = open(filename.c_str(), O_RDONLY | O_BINARY);
ASSERT_GE(file, 0);
UNITTEST::TestAllTypes message;
EXPECT_TRUE(message.ParseFromFileDescriptor(file));
TestUtil::ExpectAllFieldsSet(message);
EXPECT_GE(close(file), 0);
}
TEST(MESSAGE_TEST_NAME, ParsePackedFromFileDescriptor) {
std::string filename = TestUtil::GetTestDataPath(
"net/proto2/internal/testdata/golden_packed_fields_message");
int file = open(filename.c_str(), O_RDONLY | O_BINARY);
ASSERT_GE(file, 0);
UNITTEST::TestPackedTypes message;
EXPECT_TRUE(message.ParseFromFileDescriptor(file));
TestUtil::ExpectPackedFieldsSet(message);
EXPECT_GE(close(file), 0);
}
TEST(MESSAGE_TEST_NAME, ParseHelpers) {
// TODO(kenton): Test more helpers? They're all two-liners so it seems
// like a waste of time.
std::string data;
{
// Set up.
UNITTEST::TestAllTypes message;
TestUtil::SetAllFields(&message);
message.SerializeToString(&data);
}
{
// Test ParseFromString.
UNITTEST::TestAllTypes message;
EXPECT_TRUE(message.ParseFromString(data));
TestUtil::ExpectAllFieldsSet(message);
}
{
// Test ParseFromIstream.
UNITTEST::TestAllTypes message;
std::stringstream stream(data);
EXPECT_TRUE(message.ParseFromIstream(&stream));
EXPECT_TRUE(stream.eof());
TestUtil::ExpectAllFieldsSet(message);
}
{
// Test ParseFromBoundedZeroCopyStream.
std::string data_with_junk(data);
data_with_junk.append("some junk on the end");
io::ArrayInputStream stream(data_with_junk.data(), data_with_junk.size());
UNITTEST::TestAllTypes message;
EXPECT_TRUE(message.ParseFromBoundedZeroCopyStream(&stream, data.size()));
TestUtil::ExpectAllFieldsSet(message);
}
{
// Test that ParseFromBoundedZeroCopyStream fails (but doesn't crash) if
// EOF is reached before the expected number of bytes.
io::ArrayInputStream stream(data.data(), data.size());
UNITTEST::TestAllTypes message;
EXPECT_FALSE(
message.ParseFromBoundedZeroCopyStream(&stream, data.size() + 1));
}
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfNotInitialized) {
UNITTEST::TestRequired message;
std::vector<std::string> errors;
{
ScopedMemoryLog log;
EXPECT_FALSE(message.ParseFromString(""));
errors = log.GetMessages(ERROR);
}
ASSERT_EQ(1, errors.size());
EXPECT_EQ(
"Can't parse message of type \"" + std::string(UNITTEST_PACKAGE_NAME) +
".TestRequired\" because it is missing required fields: a, b, c",
errors[0]);
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfSubmessageNotInitialized) {
UNITTEST::TestRequiredForeign source, message;
source.mutable_optional_message()->set_dummy2(100);
std::string serialized = source.SerializePartialAsString();
EXPECT_TRUE(message.ParsePartialFromString(serialized));
EXPECT_FALSE(message.IsInitialized());
std::vector<std::string> errors;
{
ScopedMemoryLog log;
EXPECT_FALSE(message.ParseFromString(source.SerializePartialAsString()));
errors = log.GetMessages(ERROR);
}
EXPECT_THAT(
errors,
testing::ElementsAre(
"Can't parse message of type \"" +
std::string(UNITTEST_PACKAGE_NAME) +
".TestRequiredForeign\" because it is missing required fields: "
"optional_message.a, optional_message.b, optional_message.c"));
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfExtensionNotInitialized) {
UNITTEST::TestChildExtension source, message;
auto* r = source.mutable_optional_extension()->MutableExtension(
UNITTEST::TestRequired::single);
r->set_dummy2(100);
std::string serialized = source.SerializePartialAsString();
EXPECT_TRUE(message.ParsePartialFromString(serialized));
EXPECT_FALSE(message.IsInitialized());
std::vector<std::string> errors;
{
ScopedMemoryLog log;
EXPECT_FALSE(message.ParseFromString(source.SerializePartialAsString()));
errors = log.GetMessages(ERROR);
}
EXPECT_THAT(errors,
testing::ElementsAre(strings::Substitute(
"Can't parse message of type \"$0.TestChildExtension\" "
"because it is missing required fields: "
"optional_extension.($0.TestRequired.single).a, "
"optional_extension.($0.TestRequired.single).b, "
"optional_extension.($0.TestRequired.single).c",
UNITTEST_PACKAGE_NAME)));
}
TEST(MESSAGE_TEST_NAME, MergeFromUninitialized) {
UNITTEST::TestNestedRequiredForeign o, p, q;
UNITTEST::TestNestedRequiredForeign* child = o.mutable_child();
constexpr int kDepth = 2;
for (int i = 0; i < kDepth; i++) {
child->set_dummy(i);
child = child->mutable_child();
}
UNITTEST::TestRequiredForeign* payload = child->mutable_payload();
payload->mutable_optional_message()->set_a(1);
payload->mutable_optional_message()->set_dummy2(100);
payload->mutable_optional_message()->set_dummy4(200);
ASSERT_TRUE(p.ParsePartialFromString(o.SerializePartialAsString()));
q.mutable_child()->set_dummy(500);
q = p;
q.ParsePartialFromString(q.SerializePartialAsString());
EXPECT_TRUE(TestUtil::EqualsToSerialized(q, o.SerializePartialAsString()));
EXPECT_TRUE(TestUtil::EqualsToSerialized(q, p.SerializePartialAsString()));
}
TEST(MESSAGE_TEST_NAME, ExplicitLazyExceedRecursionLimit) {
UNITTEST::NestedTestAllTypes original, parsed;
// Build proto with recursion depth of 3.
original.mutable_lazy_child()
->mutable_child()
->mutable_payload()
->set_optional_int32(-1);
std::string serialized;
EXPECT_TRUE(original.SerializeToString(&serialized));
// User annotated LazyField ([lazy = true]) is eagerly verified and should
// catch the recursion limit violation.
io::ArrayInputStream array_stream(serialized.data(), serialized.size());
io::CodedInputStream input_stream(&array_stream);
input_stream.SetRecursionLimit(2);
EXPECT_FALSE(parsed.ParseFromCodedStream(&input_stream));
// Lazy read results in parsing error which can be verified by not having
// expected value.
EXPECT_NE(parsed.lazy_child().child().payload().optional_int32(), -1);
}
TEST(MESSAGE_TEST_NAME, NestedExplicitLazyExceedRecursionLimit) {
UNITTEST::NestedTestAllTypes original, parsed;
// Build proto with recursion depth of 5, with nested annotated LazyField.
original.mutable_lazy_child()
->mutable_child()
->mutable_lazy_child()
->mutable_child()
->mutable_payload()
->set_optional_int32(-1);
std::string serialized;
EXPECT_TRUE(original.SerializeToString(&serialized));
// User annotated LazyField ([lazy = true]) is eagerly verified and should
// catch the recursion limit violation.
io::ArrayInputStream array_stream(serialized.data(), serialized.size());
io::CodedInputStream input_stream(&array_stream);
input_stream.SetRecursionLimit(4);
EXPECT_FALSE(parsed.ParseFromCodedStream(&input_stream));
// Lazy read results in parsing error which can be verified by not having
// expected value.
EXPECT_NE(parsed.lazy_child()
.child()
.lazy_child()
.child()
.payload()
.optional_int32(),
-1);
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfSubmessageTruncated) {
UNITTEST::NestedTestAllTypes o, p;
constexpr int kDepth = 5;
auto* child = o.mutable_child();
for (int i = 0; i < kDepth; i++) {
child = child->mutable_child();
}
TestUtil::SetAllFields(child->mutable_payload());
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should parse correctly.
EXPECT_TRUE(p.ParseFromString(serialized));
constexpr int kMaxTruncate = 50;
ASSERT_GT(serialized.size(), kMaxTruncate);
for (int i = 1; i < kMaxTruncate; i += 3) {
EXPECT_FALSE(
p.ParseFromString(serialized.substr(0, serialized.size() - i)));
}
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfWireMalformed) {
UNITTEST::NestedTestAllTypes o, p;
constexpr int kDepth = 5;
auto* child = o.mutable_child();
for (int i = 0; i < kDepth; i++) {
child = child->mutable_child();
}
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
child->mutable_payload()->set_optional_int32(-1);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should parse correctly.
EXPECT_TRUE(p.ParseFromString(serialized));
// Overwriting the last byte to 0xFF results in malformed wire.
serialized[serialized.size() - 1] = 0xFF;
EXPECT_FALSE(p.ParseFromString(serialized));
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfOneofWireMalformed) {
UNITTEST::NestedTestAllTypes o, p;
constexpr int kDepth = 5;
auto* child = o.mutable_child();
for (int i = 0; i < kDepth; i++) {
child = child->mutable_child();
}
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
child->mutable_payload()->mutable_oneof_nested_message()->set_bb(-1);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should parse correctly.
EXPECT_TRUE(p.ParseFromString(serialized));
// Overwriting the last byte to 0xFF results in malformed wire.
serialized[serialized.size() - 1] = 0xFF;
EXPECT_FALSE(p.ParseFromString(serialized));
}
TEST(MESSAGE_TEST_NAME, ParseFailsIfExtensionWireMalformed) {
UNITTEST::TestChildExtension o, p;
auto* m = o.mutable_optional_extension()->MutableExtension(
UNITTEST::optional_nested_message_extension);
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
m->set_bb(-1);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should parse correctly.
EXPECT_TRUE(p.ParseFromString(serialized));
// Overwriting the last byte to 0xFF results in malformed wire.
serialized[serialized.size() - 1] = 0xFF;
EXPECT_FALSE(p.ParseFromString(serialized));
}
TEST(MESSAGE_TEST_NAME, UninitializedAndMalformed) {
UNITTEST::TestRequiredForeign o, p1, p2;
o.mutable_optional_message()->set_a(-1);
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
std::string serialized;
EXPECT_TRUE(o.SerializePartialToString(&serialized));
// Should parse correctly.
EXPECT_TRUE(p1.ParsePartialFromString(serialized));
EXPECT_FALSE(p1.IsInitialized());
// Overwriting the last byte to 0xFF results in malformed wire.
serialized[serialized.size() - 1] = 0xFF;
EXPECT_FALSE(p2.ParseFromString(serialized));
EXPECT_FALSE(p2.IsInitialized());
}
inline UNITTEST::NestedTestAllTypes InitNestedProto(int depth) {
UNITTEST::NestedTestAllTypes p;
auto* child = p.mutable_child();
for (int i = 0; i < depth; i++) {
child->mutable_payload()->set_optional_int32(i);
child = child->mutable_child();
}
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
child->mutable_payload()->set_optional_int32(-1);
return p;
}
// Parsing proto must not access beyond the bound.
TEST(MESSAGE_TEST_NAME, ParseStrictlyBoundedStream) {
UNITTEST::NestedTestAllTypes o, p;
constexpr int kDepth = 2;
o = InitNestedProto(kDepth);
TestUtil::SetAllFields(o.mutable_child()->mutable_payload());
o.mutable_child()->mutable_child()->mutable_payload()->set_optional_string(
std::string(1024, 'a'));
std::string data;
EXPECT_TRUE(o.SerializeToString(&data));
TestUtil::BoundedArrayInputStream stream(data.data(), data.size());
EXPECT_TRUE(p.ParseFromBoundedZeroCopyStream(&stream, data.size()));
TestUtil::ExpectAllFieldsSet(p.child().payload());
}
TEST(MESSAGE_TEST_NAME, AllSetMethodsOnStringField) {
UNITTEST::TestAllTypes msg;
msg.set_optional_string("Asciiz");
EXPECT_EQ(msg.optional_string(), "Asciiz");
msg.set_optional_string("Length delimited", 6);
EXPECT_EQ(msg.optional_string(), "Length");
std::string value = "std::string value 1";
msg.set_optional_string(value);
EXPECT_EQ(msg.optional_string(), "std::string value 1");
value = "std::string value 2";
msg.set_optional_string(std::cref(value));
EXPECT_EQ(msg.optional_string(), "std::string value 2");
value = "std::string value 3";
msg.set_optional_string(std::move(value));
EXPECT_EQ(msg.optional_string(), "std::string value 3");
}
TEST(MESSAGE_TEST_NAME, SuccessAfterParsingFailure) {
UNITTEST::NestedTestAllTypes o, p, q;
constexpr int kDepth = 5;
o = InitNestedProto(kDepth);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should parse correctly.
EXPECT_TRUE(p.ParseFromString(serialized));
// Overwriting the last byte to 0xFF results in malformed wire.
serialized[serialized.size() - 1] = 0xFF;
EXPECT_FALSE(p.ParseFromString(serialized));
// Subsequent serialization should be parsed correctly.
EXPECT_TRUE(q.ParseFromString(p.SerializeAsString()));
}
TEST(MESSAGE_TEST_NAME, ExceedRecursionLimit) {
UNITTEST::NestedTestAllTypes o, p;
const int kDepth = io::CodedInputStream::GetDefaultRecursionLimit() + 10;
o = InitNestedProto(kDepth);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Recursion level deeper than the default.
EXPECT_FALSE(p.ParseFromString(serialized));
}
TEST(MESSAGE_TEST_NAME, SupportCustomRecursionLimitRead) {
UNITTEST::NestedTestAllTypes o, p;
const int kDepth = io::CodedInputStream::GetDefaultRecursionLimit() + 10;
o = InitNestedProto(kDepth);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should pass with custom limit + reads.
io::ArrayInputStream raw_input(serialized.data(), serialized.size());
io::CodedInputStream input(&raw_input);
input.SetRecursionLimit(kDepth + 10);
EXPECT_TRUE(p.ParseFromCodedStream(&input));
EXPECT_EQ(p.child().payload().optional_int32(), 0);
EXPECT_EQ(p.child().child().payload().optional_int32(), 1);
// Verify p serializes successfully (survives VerifyConsistency).
std::string result;
EXPECT_TRUE(p.SerializeToString(&result));
}
TEST(MESSAGE_TEST_NAME, SupportCustomRecursionLimitWrite) {
UNITTEST::NestedTestAllTypes o, p;
const int kDepth = io::CodedInputStream::GetDefaultRecursionLimit() + 10;
o = InitNestedProto(kDepth);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
// Should pass with custom limit + writes.
io::ArrayInputStream raw_input(serialized.data(), serialized.size());
io::CodedInputStream input(&raw_input);
input.SetRecursionLimit(kDepth + 10);
EXPECT_TRUE(p.ParseFromCodedStream(&input));
EXPECT_EQ(p.mutable_child()->mutable_payload()->optional_int32(), 0);
EXPECT_EQ(
p.mutable_child()->mutable_child()->mutable_payload()->optional_int32(),
1);
}
// While deep recursion is never guaranteed, this test aims to catch potential
// issues with very deep recursion.
TEST(MESSAGE_TEST_NAME, SupportDeepRecursionLimit) {
UNITTEST::NestedTestAllTypes o, p;
constexpr int kDepth = 1000;
auto* child = o.mutable_child();
for (int i = 0; i < kDepth; i++) {
child = child->mutable_child();
}
child->mutable_payload()->set_optional_int32(100);
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
io::ArrayInputStream raw_input(serialized.data(), serialized.size());
io::CodedInputStream input(&raw_input);
input.SetRecursionLimit(1100);
EXPECT_TRUE(p.ParseFromCodedStream(&input));
}
TEST(MESSAGE_TEST_NAME, Swap) {
UNITTEST::NestedTestAllTypes o;
constexpr int kDepth = 5;
auto* child = o.mutable_child();
for (int i = 0; i < kDepth; i++) {
child = child->mutable_child();
}
TestUtil::SetAllFields(child->mutable_payload());
std::string serialized;
EXPECT_TRUE(o.SerializeToString(&serialized));
{
Arena arena;
UNITTEST::NestedTestAllTypes* p1 =
Arena::CreateMessage<UNITTEST::NestedTestAllTypes>(&arena);
// Should parse correctly.
EXPECT_TRUE(p1->ParseFromString(serialized));
UNITTEST::NestedTestAllTypes* p2 =
Arena::CreateMessage<UNITTEST::NestedTestAllTypes>(&arena);
p1->Swap(p2);
EXPECT_EQ(o.SerializeAsString(), p2->SerializeAsString());
}
}
TEST(MESSAGE_TEST_NAME, BypassInitializationCheckOnParse) {
UNITTEST::TestRequired message;
io::ArrayInputStream raw_input(nullptr, 0);
io::CodedInputStream input(&raw_input);
EXPECT_TRUE(message.MergePartialFromCodedStream(&input));
}
TEST(MESSAGE_TEST_NAME, InitializationErrorString) {
UNITTEST::TestRequired message;
EXPECT_EQ("a, b, c", message.InitializationErrorString());
}
TEST(MESSAGE_TEST_NAME, DynamicCastToGenerated) {
UNITTEST::TestAllTypes test_all_types;
Message* test_all_types_pointer = &test_all_types;
EXPECT_EQ(&test_all_types, DynamicCastToGenerated<UNITTEST::TestAllTypes>(
test_all_types_pointer));
EXPECT_EQ(nullptr, DynamicCastToGenerated<UNITTEST::TestRequired>(
test_all_types_pointer));
const Message* test_all_types_pointer_const = &test_all_types;
EXPECT_EQ(&test_all_types,
DynamicCastToGenerated<const UNITTEST::TestAllTypes>(
test_all_types_pointer_const));
EXPECT_EQ(nullptr, DynamicCastToGenerated<const UNITTEST::TestRequired>(
test_all_types_pointer_const));
Message* test_all_types_pointer_nullptr = nullptr;
EXPECT_EQ(nullptr, DynamicCastToGenerated<UNITTEST::TestAllTypes>(
test_all_types_pointer_nullptr));
}
#ifdef PROTOBUF_HAS_DEATH_TEST // death tests do not work on Windows yet.
TEST(MESSAGE_TEST_NAME, SerializeFailsIfNotInitialized) {
UNITTEST::TestRequired message;
std::string data;
EXPECT_DEBUG_DEATH(EXPECT_TRUE(message.SerializeToString(&data)),
"Can't serialize message of type \"" +
std::string(UNITTEST_PACKAGE_NAME) +
".TestRequired\" because "
"it is missing required fields: a, b, c");
}
TEST(MESSAGE_TEST_NAME, CheckInitialized) {
UNITTEST::TestRequired message;
EXPECT_DEATH(message.CheckInitialized(),
"Message of type \"" + std::string(UNITTEST_PACKAGE_NAME) +
".TestRequired\" is missing required "
"fields: a, b, c");
}
#endif // PROTOBUF_HAS_DEATH_TEST
namespace {
// An input stream that repeats a std::string's content for a number of times.
// It helps us create a really large input without consuming too much memory.
// Used to test the parsing behavior when the input size exceeds 2G or close to
// it.
class RepeatedInputStream : public io::ZeroCopyInputStream {
public:
RepeatedInputStream(const std::string& data, size_t count)
: data_(data), count_(count), position_(0), total_byte_count_(0) {}
bool Next(const void** data, int* size) override {
if (position_ == data_.size()) {
if (--count_ == 0) {
return false;
}
position_ = 0;
}
*data = &data_[position_];
*size = static_cast<int>(data_.size() - position_);
position_ = data_.size();
total_byte_count_ += *size;
return true;
}
void BackUp(int count) override {
position_ -= static_cast<size_t>(count);
total_byte_count_ -= count;
}
bool Skip(int count) override {
while (count > 0) {
const void* data;
int size;
if (!Next(&data, &size)) {
break;
}
if (size >= count) {
BackUp(size - count);
return true;
} else {
count -= size;
}
}
return false;
}
int64_t ByteCount() const override { return total_byte_count_; }
private:
std::string data_;
size_t count_; // The number of strings that haven't been consumed.
size_t position_; // Position in the std::string for the next read.
int64_t total_byte_count_;
};
} // namespace
TEST(MESSAGE_TEST_NAME, TestParseMessagesCloseTo2G) {
constexpr int32_t kint32max = std::numeric_limits<int32_t>::max();
// Create a message with a large std::string field.
std::string value = std::string(64 * 1024 * 1024, 'x');
UNITTEST::TestAllTypes message;
message.set_optional_string(value);
// Repeat this message in the input stream to make the total input size
// close to 2G.
std::string data = message.SerializeAsString();
size_t count = static_cast<size_t>(kint32max) / data.size();
RepeatedInputStream input(data, count);
// The parsing should succeed.
UNITTEST::TestAllTypes result;
EXPECT_TRUE(result.ParseFromZeroCopyStream(&input));
// When there are multiple occurrences of a singular field, the last one
// should win.
EXPECT_EQ(value, result.optional_string());
}
TEST(MESSAGE_TEST_NAME, TestParseMessagesOver2G) {
constexpr int32_t kint32max = std::numeric_limits<int32_t>::max();
// Create a message with a large std::string field.
std::string value = std::string(64 * 1024 * 1024, 'x');
UNITTEST::TestAllTypes message;
message.set_optional_string(value);
// Repeat this message in the input stream to make the total input size
// larger than 2G.
std::string data = message.SerializeAsString();
size_t count = static_cast<size_t>(kint32max) / data.size() + 1;
RepeatedInputStream input(data, count);
// The parsing should fail.
UNITTEST::TestAllTypes result;
EXPECT_FALSE(result.ParseFromZeroCopyStream(&input));
}
TEST(MESSAGE_TEST_NAME, BypassInitializationCheckOnSerialize) {
UNITTEST::TestRequired message;
io::ArrayOutputStream raw_output(nullptr, 0);
io::CodedOutputStream output(&raw_output);
EXPECT_TRUE(message.SerializePartialToCodedStream(&output));
}
TEST(MESSAGE_TEST_NAME, FindInitializationErrors) {
UNITTEST::TestRequired message;
std::vector<std::string> errors;
message.FindInitializationErrors(&errors);
ASSERT_EQ(3, errors.size());
EXPECT_EQ("a", errors[0]);
EXPECT_EQ("b", errors[1]);
EXPECT_EQ("c", errors[2]);
}
TEST(MESSAGE_TEST_NAME, ReleaseMustUseResult) {
UNITTEST::TestAllTypes message;
auto* f = new UNITTEST::ForeignMessage();
f->set_c(1000);
message.set_allocated_optional_foreign_message(f);
auto* mf = message.mutable_optional_foreign_message();
EXPECT_EQ(mf, f);
std::unique_ptr<UNITTEST::ForeignMessage> rf(
message.release_optional_foreign_message());
EXPECT_NE(rf.get(), nullptr);
}
TEST(MESSAGE_TEST_NAME, ParseFailsOnInvalidMessageEnd) {
UNITTEST::TestAllTypes message;
// Control case.
EXPECT_TRUE(message.ParseFromArray("", 0));
// The byte is a valid varint, but not a valid tag (zero).
EXPECT_FALSE(message.ParseFromArray("\0", 1));
// The byte is a malformed varint.
EXPECT_FALSE(message.ParseFromArray("\200", 1));
// The byte is an endgroup tag, but we aren't parsing a group.
EXPECT_FALSE(message.ParseFromArray("\014", 1));
}
// Regression test for b/23630858
TEST(MESSAGE_TEST_NAME, MessageIsStillValidAfterParseFails) {
UNITTEST::TestAllTypes message;
// 9 0xFFs for the "optional_uint64" field.
std::string invalid_data = "\x20\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF";
EXPECT_FALSE(message.ParseFromString(invalid_data));
message.Clear();
EXPECT_EQ(0, message.optional_uint64());
// invalid data for field "optional_string". Length prefix is 1 but no
// payload.
std::string invalid_string_data = "\x72\x01";
{
Arena arena;
UNITTEST::TestAllTypes* arena_message =
Arena::CreateMessage<UNITTEST::TestAllTypes>(&arena);
EXPECT_FALSE(arena_message->ParseFromString(invalid_string_data));
arena_message->Clear();
EXPECT_EQ("", arena_message->optional_string());
}
}
namespace {
void ExpectMessageMerged(const UNITTEST::TestAllTypes& message) {
EXPECT_EQ(3, message.optional_int32());
EXPECT_EQ(2, message.optional_int64());
EXPECT_EQ("hello", message.optional_string());
}
void AssignParsingMergeMessages(UNITTEST::TestAllTypes* msg1,
UNITTEST::TestAllTypes* msg2,
UNITTEST::TestAllTypes* msg3) {
msg1->set_optional_int32(1);
msg2->set_optional_int64(2);
msg3->set_optional_int32(3);
msg3->set_optional_string("hello");
}
} // namespace
// Test that if an optional or required message/group field appears multiple
// times in the input, they need to be merged.
TEST(MESSAGE_TEST_NAME, ParsingMerge) {
UNITTEST::TestParsingMerge::RepeatedFieldsGenerator generator;
UNITTEST::TestAllTypes* msg1;
UNITTEST::TestAllTypes* msg2;
UNITTEST::TestAllTypes* msg3;
#define ASSIGN_REPEATED_FIELD(FIELD) \
msg1 = generator.add_##FIELD(); \
msg2 = generator.add_##FIELD(); \
msg3 = generator.add_##FIELD(); \
AssignParsingMergeMessages(msg1, msg2, msg3)
ASSIGN_REPEATED_FIELD(field1);
ASSIGN_REPEATED_FIELD(field2);
ASSIGN_REPEATED_FIELD(field3);
ASSIGN_REPEATED_FIELD(ext1);
ASSIGN_REPEATED_FIELD(ext2);
#undef ASSIGN_REPEATED_FIELD
#define ASSIGN_REPEATED_GROUP(FIELD) \
msg1 = generator.add_##FIELD()->mutable_field1(); \
msg2 = generator.add_##FIELD()->mutable_field1(); \
msg3 = generator.add_##FIELD()->mutable_field1(); \
AssignParsingMergeMessages(msg1, msg2, msg3)
ASSIGN_REPEATED_GROUP(group1);
ASSIGN_REPEATED_GROUP(group2);
#undef ASSIGN_REPEATED_GROUP
std::string buffer;
generator.SerializeToString(&buffer);
UNITTEST::TestParsingMerge parsing_merge;
parsing_merge.ParseFromString(buffer);
// Required and optional fields should be merged.
ExpectMessageMerged(parsing_merge.required_all_types());
ExpectMessageMerged(parsing_merge.optional_all_types());
ExpectMessageMerged(parsing_merge.optionalgroup().optional_group_all_types());
ExpectMessageMerged(
parsing_merge.GetExtension(UNITTEST::TestParsingMerge::optional_ext));
// Repeated fields should not be merged.
EXPECT_EQ(3, parsing_merge.repeated_all_types_size());
EXPECT_EQ(3, parsing_merge.repeatedgroup_size());
EXPECT_EQ(
3, parsing_merge.ExtensionSize(UNITTEST::TestParsingMerge::repeated_ext));
}
TEST(MESSAGE_TEST_NAME, MergeFrom) {
UNITTEST::TestAllTypes source, dest;
// Optional fields
source.set_optional_int32(1); // only source
source.set_optional_int64(2); // both source and dest
dest.set_optional_int64(3);
dest.set_optional_uint32(4); // only dest
// Optional fields with defaults
source.set_default_int32(13); // only source
source.set_default_int64(14); // both source and dest
dest.set_default_int64(15);
dest.set_default_uint32(16); // only dest
// Repeated fields
source.add_repeated_int32(5); // only source
source.add_repeated_int32(6);
source.add_repeated_int64(7); // both source and dest
source.add_repeated_int64(8);
dest.add_repeated_int64(9);
dest.add_repeated_int64(10);
dest.add_repeated_uint32(11); // only dest
dest.add_repeated_uint32(12);
dest.MergeFrom(source);
// Optional fields: source overwrites dest if source is specified
EXPECT_EQ(1, dest.optional_int32()); // only source: use source
EXPECT_EQ(2, dest.optional_int64()); // source and dest: use source
EXPECT_EQ(4, dest.optional_uint32()); // only dest: use dest
EXPECT_EQ(0, dest.optional_uint64()); // neither: use default
// Optional fields with defaults
EXPECT_EQ(13, dest.default_int32()); // only source: use source
EXPECT_EQ(14, dest.default_int64()); // source and dest: use source
EXPECT_EQ(16, dest.default_uint32()); // only dest: use dest
EXPECT_EQ(44, dest.default_uint64()); // neither: use default
// Repeated fields: concatenate source onto the end of dest
ASSERT_EQ(2, dest.repeated_int32_size());
EXPECT_EQ(5, dest.repeated_int32(0));
EXPECT_EQ(6, dest.repeated_int32(1));
ASSERT_EQ(4, dest.repeated_int64_size());
EXPECT_EQ(9, dest.repeated_int64(0));
EXPECT_EQ(10, dest.repeated_int64(1));
EXPECT_EQ(7, dest.repeated_int64(2));
EXPECT_EQ(8, dest.repeated_int64(3));
ASSERT_EQ(2, dest.repeated_uint32_size());
EXPECT_EQ(11, dest.repeated_uint32(0));
EXPECT_EQ(12, dest.repeated_uint32(1));
ASSERT_EQ(0, dest.repeated_uint64_size());
}
TEST(MESSAGE_TEST_NAME, IsInitialized) {
UNITTEST::TestIsInitialized msg;
EXPECT_TRUE(msg.IsInitialized());
UNITTEST::TestIsInitialized::SubMessage* sub_message =
msg.mutable_sub_message();
EXPECT_TRUE(msg.IsInitialized());
UNITTEST::TestIsInitialized::SubMessage::SubGroup* sub_group =
sub_message->mutable_subgroup();
EXPECT_FALSE(msg.IsInitialized());
sub_group->set_i(1);
EXPECT_TRUE(msg.IsInitialized());
}
TEST(MESSAGE_TEST_NAME, IsInitializedSplitBytestream) {
UNITTEST::TestRequired ab, c;
ab.set_a(1);
ab.set_b(2);
c.set_c(3);
// The protobuf represented by the concatenated string has all required
// fields (a,b,c) set.
std::string bytes =
ab.SerializePartialAsString() + c.SerializePartialAsString();
UNITTEST::TestRequired concatenated;
EXPECT_TRUE(concatenated.ParsePartialFromString(bytes));
EXPECT_TRUE(concatenated.IsInitialized());
UNITTEST::TestRequiredForeign fab, fc;
fab.mutable_optional_message()->set_a(1);
fab.mutable_optional_message()->set_b(2);
fc.mutable_optional_message()->set_c(3);
bytes =
fab.SerializePartialAsString() + fc.SerializePartialAsString();
UNITTEST::TestRequiredForeign fconcatenated;
EXPECT_TRUE(fconcatenated.ParsePartialFromString(bytes));
EXPECT_TRUE(fconcatenated.IsInitialized());
}
TEST(MESSAGE_FACTORY_TEST_NAME, GeneratedFactoryLookup) {
EXPECT_EQ(MessageFactory::generated_factory()->GetPrototype(
UNITTEST::TestAllTypes::descriptor()),
&UNITTEST::TestAllTypes::default_instance());
}
TEST(MESSAGE_FACTORY_TEST_NAME, GeneratedFactoryUnknownType) {
// Construct a new descriptor.
DescriptorPool pool;
FileDescriptorProto file;
file.set_name("foo.proto");
file.add_message_type()->set_name("Foo");
const Descriptor* descriptor = pool.BuildFile(file)->message_type(0);
// Trying to construct it should return nullptr.
EXPECT_TRUE(MessageFactory::generated_factory()->GetPrototype(descriptor) ==
nullptr);
}
TEST(MESSAGE_TEST_NAME, MOMIParserEdgeCases) {
{
UNITTEST::TestAllTypes msg;
// Parser ends in last 16 bytes of buffer due to a 0.
std::string data;
// 12 bytes of data
for (int i = 0; i < 4; i++) data += "\370\1\1";
// 13 byte is terminator
data += '\0'; // Terminator
// followed by the rest of the stream
// space is ascii 32 so no end group
data += std::string(30, ' ');
io::ArrayInputStream zcis(data.data(), data.size(), 17);
io::CodedInputStream cis(&zcis);
EXPECT_TRUE(msg.MergePartialFromCodedStream(&cis));
EXPECT_EQ(cis.CurrentPosition(), 3 * 4 + 1);
}
{
// Parser ends in last 16 bytes of buffer due to a end-group.
// Must use a message that is a group. Otherwise ending on a group end is
// a failure.
UNITTEST::TestAllTypes::OptionalGroup msg;
std::string data;
for (int i = 0; i < 3; i++) data += "\370\1\1";
data += '\14'; // Octal end-group tag 12 (1 * 8 + 4(
data += std::string(30, ' ');
io::ArrayInputStream zcis(data.data(), data.size(), 17);
io::CodedInputStream cis(&zcis);
EXPECT_TRUE(msg.MergePartialFromCodedStream(&cis));
EXPECT_EQ(cis.CurrentPosition(), 3 * 3 + 1);
EXPECT_TRUE(cis.LastTagWas(12));
}
{
// Parser ends in last 16 bytes of buffer due to a end-group. But is inside
// a length delimited field.
// a failure.
UNITTEST::TestAllTypes::OptionalGroup msg;
std::string data;
data += "\22\3foo";
data += '\14'; // Octal end-group tag 12 (1 * 8 + 4(
data += std::string(30, ' ');
io::ArrayInputStream zcis(data.data(), data.size(), 17);
io::CodedInputStream cis(&zcis);
EXPECT_TRUE(msg.MergePartialFromCodedStream(&cis));
EXPECT_EQ(cis.CurrentPosition(), 6);
EXPECT_TRUE(cis.LastTagWas(12));
}
{
// Parser fails when ending on 0 if from ZeroCopyInputStream
UNITTEST::TestAllTypes msg;
std::string data;
// 12 bytes of data
for (int i = 0; i < 4; i++) data += "\370\1\1";
// 13 byte is terminator
data += '\0'; // Terminator
data += std::string(30, ' ');
io::ArrayInputStream zcis(data.data(), data.size(), 17);
EXPECT_FALSE(msg.ParsePartialFromZeroCopyStream(&zcis));
}
}
TEST(MESSAGE_TEST_NAME, CheckSerializationWhenInterleavedExtensions) {
UNITTEST::TestExtensionRangeSerialize in_message;
in_message.set_foo_one(1);
in_message.set_foo_two(2);
in_message.set_foo_three(3);
in_message.set_foo_four(4);
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_one, 1);
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_two, 2);
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_three, 3);
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_four, 4);
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_five, 5);
std::string buffer;
in_message.SerializeToString(&buffer);
UNITTEST::TestExtensionRangeSerialize out_message;
out_message.ParseFromString(buffer);
EXPECT_EQ(1, out_message.foo_one());
EXPECT_EQ(2, out_message.foo_two());
EXPECT_EQ(3, out_message.foo_three());
EXPECT_EQ(4, out_message.foo_four());
EXPECT_EQ(1, out_message.GetExtension(UNITTEST::TestExtensionRangeSerialize::bar_one));
EXPECT_EQ(2, out_message.GetExtension(UNITTEST::TestExtensionRangeSerialize::bar_two));
EXPECT_EQ(3, out_message.GetExtension(UNITTEST::TestExtensionRangeSerialize::bar_three));
EXPECT_EQ(4, out_message.GetExtension(UNITTEST::TestExtensionRangeSerialize::bar_four));
EXPECT_EQ(5, out_message.GetExtension(UNITTEST::TestExtensionRangeSerialize::bar_five));
}
TEST(MESSAGE_TEST_NAME, PreservesFloatingPointNegative0) {
UNITTEST::TestAllTypes in_message;
in_message.set_optional_float(-0.0f);
in_message.set_optional_double(-0.0);
std::string serialized;
EXPECT_TRUE(in_message.SerializeToString(&serialized));
UNITTEST::TestAllTypes out_message;
EXPECT_TRUE(out_message.ParseFromString(serialized));
EXPECT_EQ(in_message.optional_float(), out_message.optional_float());
EXPECT_EQ(std::signbit(in_message.optional_float()),
std::signbit(out_message.optional_float()));
EXPECT_EQ(in_message.optional_double(), out_message.optional_double());
EXPECT_EQ(std::signbit(in_message.optional_double()),
std::signbit(out_message.optional_double()));
}
} // namespace protobuf
} // namespace google