blob: 936b5dca033dca5b582691643b2daa7f4a491d16 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.server.backup.encryption.chunking.cdc;
import static com.google.common.truth.Truth.assertThat;
import static org.testng.Assert.assertThrows;
import android.platform.test.annotations.Presubmit;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.robolectric.RobolectricTestRunner;
import java.security.InvalidKeyException;
import java.security.Key;
import java.util.HashSet;
import java.util.Random;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;
/** Tests for {@link FingerprintMixer}. */
@RunWith(RobolectricTestRunner.class)
@Presubmit
public class FingerprintMixerTest {
private static final String KEY_ALGORITHM = "AES";
private static final int SEED = 42;
private static final int SALT_LENGTH_BYTES = 256 / 8;
private static final int KEY_SIZE_BITS = 256;
private Random mSeededRandom;
private FingerprintMixer mFingerprintMixer;
/** Set up a {@link FingerprintMixer} with deterministic key and salt generation. */
@Before
public void setUp() throws Exception {
// Seed so that the tests are deterministic.
mSeededRandom = new Random(SEED);
mFingerprintMixer = new FingerprintMixer(randomKey(), randomSalt());
}
/**
* Construcing a {@link FingerprintMixer} with a salt that is too small should throw an {@link
* IllegalArgumentException}.
*/
@Test
public void create_withIncorrectSaltSize_throwsIllegalArgumentException() {
byte[] tooSmallSalt = new byte[SALT_LENGTH_BYTES - 1];
assertThrows(
IllegalArgumentException.class,
() -> new FingerprintMixer(randomKey(), tooSmallSalt));
}
/**
* Constructing a {@link FingerprintMixer} with a secret key that can't be encoded should throw
* an {@link InvalidKeyException}.
*/
@Test
public void create_withUnencodableSecretKey_throwsInvalidKeyException() {
byte[] keyBytes = new byte[KEY_SIZE_BITS / 8];
UnencodableSecretKeySpec keySpec =
new UnencodableSecretKeySpec(keyBytes, 0, keyBytes.length, KEY_ALGORITHM);
assertThrows(InvalidKeyException.class, () -> new FingerprintMixer(keySpec, randomSalt()));
}
/**
* {@link FingerprintMixer#getAddend()} should not return the same addend for two different
* keys.
*/
@Test
public void getAddend_withDifferentKey_returnsDifferentResult() throws Exception {
int iterations = 100_000;
HashSet<Long> returnedAddends = new HashSet<>();
byte[] salt = randomSalt();
for (int i = 0; i < iterations; i++) {
FingerprintMixer fingerprintMixer = new FingerprintMixer(randomKey(), salt);
long addend = fingerprintMixer.getAddend();
returnedAddends.add(addend);
}
assertThat(returnedAddends).containsNoDuplicates();
}
/**
* {@link FingerprintMixer#getMultiplicand()} should not return the same multiplicand for two
* different keys.
*/
@Test
public void getMultiplicand_withDifferentKey_returnsDifferentResult() throws Exception {
int iterations = 100_000;
HashSet<Long> returnedMultiplicands = new HashSet<>();
byte[] salt = randomSalt();
for (int i = 0; i < iterations; i++) {
FingerprintMixer fingerprintMixer = new FingerprintMixer(randomKey(), salt);
long multiplicand = fingerprintMixer.getMultiplicand();
returnedMultiplicands.add(multiplicand);
}
assertThat(returnedMultiplicands).containsNoDuplicates();
}
/** The multiplicant returned by {@link FingerprintMixer} should always be odd. */
@Test
public void getMultiplicand_isOdd() throws Exception {
int iterations = 100_000;
for (int i = 0; i < iterations; i++) {
FingerprintMixer fingerprintMixer = new FingerprintMixer(randomKey(), randomSalt());
long multiplicand = fingerprintMixer.getMultiplicand();
assertThat(isOdd(multiplicand)).isTrue();
}
}
/** {@link FingerprintMixer#mix(long)} should have a random distribution. */
@Test
public void mix_randomlyDistributesBits() throws Exception {
int iterations = 100_000;
float tolerance = 0.1f;
int[] totals = new int[64];
for (int i = 0; i < iterations; i++) {
long n = mFingerprintMixer.mix(mSeededRandom.nextLong());
for (int j = 0; j < 64; j++) {
int bit = (int) (n >> j & 1);
totals[j] += bit;
}
}
for (int i = 0; i < 64; i++) {
float mean = ((float) totals[i]) / iterations;
float diff = Math.abs(mean - 0.5f);
assertThat(diff).isLessThan(tolerance);
}
}
/**
* {@link FingerprintMixer#mix(long)} should always produce a number that's different from the
* input.
*/
@Test
public void mix_doesNotProduceSameNumberAsInput() {
int iterations = 100_000;
for (int i = 0; i < iterations; i++) {
assertThat(mFingerprintMixer.mix(i)).isNotEqualTo(i);
}
}
private byte[] randomSalt() {
byte[] salt = new byte[SALT_LENGTH_BYTES];
mSeededRandom.nextBytes(salt);
return salt;
}
/**
* Not a secure way of generating keys. We want to deterministically generate the same keys for
* each test run, though, to ensure the test is deterministic.
*/
private SecretKey randomKey() {
byte[] keyBytes = new byte[KEY_SIZE_BITS / 8];
mSeededRandom.nextBytes(keyBytes);
return new SecretKeySpec(keyBytes, 0, keyBytes.length, KEY_ALGORITHM);
}
private static boolean isOdd(long n) {
return Math.abs(n % 2) == 1;
}
/**
* Subclass of {@link SecretKeySpec} that does not provide an encoded version. As per its
* contract in {@link Key}, that means {@code getEncoded()} always returns null.
*/
private class UnencodableSecretKeySpec extends SecretKeySpec {
UnencodableSecretKeySpec(byte[] key, int offset, int len, String algorithm) {
super(key, offset, len, algorithm);
}
@Override
public byte[] getEncoded() {
return null;
}
}
}