|  | /* | 
|  | * Copyright (C) 2014 The Android Open Source Project | 
|  | * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. | 
|  | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
|  | * | 
|  | * This code is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 only, as | 
|  | * published by the Free Software Foundation.  Oracle designates this | 
|  | * particular file as subject to the "Classpath" exception as provided | 
|  | * by Oracle in the LICENSE file that accompanied this code. | 
|  | * | 
|  | * This code is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | * version 2 for more details (a copy is included in the LICENSE file that | 
|  | * accompanied this code). | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License version | 
|  | * 2 along with this work; if not, write to the Free Software Foundation, | 
|  | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | * | 
|  | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
|  | * or visit www.oracle.com if you need additional information or have any | 
|  | * questions. | 
|  | */ | 
|  |  | 
|  | package java.util; | 
|  | import java.io.Serializable; | 
|  | import java.io.ObjectOutputStream; | 
|  | import java.io.IOException; | 
|  | import java.io.ObjectOutputStream; | 
|  | import java.io.Serializable; | 
|  | import java.lang.reflect.Array; | 
|  | import java.util.function.BiConsumer; | 
|  | import java.util.function.BiFunction; | 
|  | import java.util.function.Consumer; | 
|  | import java.util.function.Function; | 
|  | import java.util.function.Predicate; | 
|  | import java.util.function.UnaryOperator; | 
|  | import java.util.stream.IntStream; | 
|  | import java.util.stream.Stream; | 
|  | import java.util.stream.StreamSupport; | 
|  |  | 
|  | import dalvik.system.VMRuntime; | 
|  |  | 
|  | /** | 
|  | * This class consists exclusively of static methods that operate on or return | 
|  | * collections.  It contains polymorphic algorithms that operate on | 
|  | * collections, "wrappers", which return a new collection backed by a | 
|  | * specified collection, and a few other odds and ends. | 
|  | * | 
|  | * <p>The methods of this class all throw a <tt>NullPointerException</tt> | 
|  | * if the collections or class objects provided to them are null. | 
|  | * | 
|  | * <p>The documentation for the polymorphic algorithms contained in this class | 
|  | * generally includes a brief description of the <i>implementation</i>.  Such | 
|  | * descriptions should be regarded as <i>implementation notes</i>, rather than | 
|  | * parts of the <i>specification</i>.  Implementors should feel free to | 
|  | * substitute other algorithms, so long as the specification itself is adhered | 
|  | * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be | 
|  | * a mergesort, but it does have to be <i>stable</i>.) | 
|  | * | 
|  | * <p>The "destructive" algorithms contained in this class, that is, the | 
|  | * algorithms that modify the collection on which they operate, are specified | 
|  | * to throw <tt>UnsupportedOperationException</tt> if the collection does not | 
|  | * support the appropriate mutation primitive(s), such as the <tt>set</tt> | 
|  | * method.  These algorithms may, but are not required to, throw this | 
|  | * exception if an invocation would have no effect on the collection.  For | 
|  | * example, invoking the <tt>sort</tt> method on an unmodifiable list that is | 
|  | * already sorted may or may not throw <tt>UnsupportedOperationException</tt>. | 
|  | * | 
|  | * <p>This class is a member of the | 
|  | * <a href="https://docs.oracle.com/javase/8/docs/technotes/guides/collections/index.html"> | 
|  | * Java Collections Framework</a>. | 
|  | * | 
|  | * @author  Josh Bloch | 
|  | * @author  Neal Gafter | 
|  | * @see     Collection | 
|  | * @see     Set | 
|  | * @see     List | 
|  | * @see     Map | 
|  | * @since   1.2 | 
|  | */ | 
|  |  | 
|  | public class Collections { | 
|  | // Suppresses default constructor, ensuring non-instantiability. | 
|  | private Collections() { | 
|  | } | 
|  |  | 
|  | // Algorithms | 
|  |  | 
|  | /* | 
|  | * Tuning parameters for algorithms - Many of the List algorithms have | 
|  | * two implementations, one of which is appropriate for RandomAccess | 
|  | * lists, the other for "sequential."  Often, the random access variant | 
|  | * yields better performance on small sequential access lists.  The | 
|  | * tuning parameters below determine the cutoff point for what constitutes | 
|  | * a "small" sequential access list for each algorithm.  The values below | 
|  | * were empirically determined to work well for LinkedList. Hopefully | 
|  | * they should be reasonable for other sequential access List | 
|  | * implementations.  Those doing performance work on this code would | 
|  | * do well to validate the values of these parameters from time to time. | 
|  | * (The first word of each tuning parameter name is the algorithm to which | 
|  | * it applies.) | 
|  | */ | 
|  | private static final int BINARYSEARCH_THRESHOLD   = 5000; | 
|  | private static final int REVERSE_THRESHOLD        =   18; | 
|  | private static final int SHUFFLE_THRESHOLD        =    5; | 
|  | private static final int FILL_THRESHOLD           =   25; | 
|  | private static final int ROTATE_THRESHOLD         =  100; | 
|  | private static final int COPY_THRESHOLD           =   10; | 
|  | private static final int REPLACEALL_THRESHOLD     =   11; | 
|  | private static final int INDEXOFSUBLIST_THRESHOLD =   35; | 
|  |  | 
|  | // Android-added: List.sort() vs. Collections.sort() app compat. | 
|  | // Added a warning in the documentation. | 
|  | // Collections.sort() calls List.sort() for apps targeting API version >= 26 | 
|  | // (Android Oreo) but the other way around for app targeting <= 25 (Nougat). | 
|  | /** | 
|  | * Sorts the specified list into ascending order, according to the | 
|  | * {@linkplain Comparable natural ordering} of its elements. | 
|  | * All elements in the list must implement the {@link Comparable} | 
|  | * interface.  Furthermore, all elements in the list must be | 
|  | * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} | 
|  | * must not throw a {@code ClassCastException} for any elements | 
|  | * {@code e1} and {@code e2} in the list). | 
|  | * | 
|  | * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will | 
|  | * not be reordered as a result of the sort. | 
|  | * | 
|  | * <p>The specified list must be modifiable, but need not be resizable. | 
|  | * | 
|  | * @implNote | 
|  | * This implementation defers to the {@link List#sort(Comparator)} | 
|  | * method using the specified list and a {@code null} comparator. | 
|  | * Do not call this method from {@code List.sort()} since that can lead | 
|  | * to infinite recursion. Apps targeting APIs {@code <= 25} observe | 
|  | * backwards compatibility behavior where this method was implemented | 
|  | * on top of {@link List#toArray()}, {@link ListIterator#next()} and | 
|  | * {@link ListIterator#set(Object)}. | 
|  | * | 
|  | * @param  <T> the class of the objects in the list | 
|  | * @param  list the list to be sorted. | 
|  | * @throws ClassCastException if the list contains elements that are not | 
|  | *         <i>mutually comparable</i> (for example, strings and integers). | 
|  | * @throws UnsupportedOperationException if the specified list's | 
|  | *         list-iterator does not support the {@code set} operation. | 
|  | * @throws IllegalArgumentException (optional) if the implementation | 
|  | *         detects that the natural ordering of the list elements is | 
|  | *         found to violate the {@link Comparable} contract | 
|  | * @see List#sort(Comparator) | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static <T extends Comparable<? super T>> void sort(List<T> list) { | 
|  | // Android-changed: List.sort() vs. Collections.sort() app compat. | 
|  | // Call sort(list, null) here to be consistent with that method's | 
|  | // (changed on Android) behavior. | 
|  | // list.sort(null); | 
|  | sort(list, null); | 
|  | } | 
|  |  | 
|  | // Android-added: List.sort() vs. Collections.sort() app compat. | 
|  | // Added a warning in the documentation. | 
|  | // Collections.sort() calls List.sort() for apps targeting API version >= 26 | 
|  | // (Android Oreo) but the other way around for app targeting <= 25 (Nougat). | 
|  | /** | 
|  | * Sorts the specified list according to the order induced by the | 
|  | * specified comparator.  All elements in the list must be <i>mutually | 
|  | * comparable</i> using the specified comparator (that is, | 
|  | * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException} | 
|  | * for any elements {@code e1} and {@code e2} in the list). | 
|  | * | 
|  | * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will | 
|  | * not be reordered as a result of the sort. | 
|  | * | 
|  | * <p>The specified list must be modifiable, but need not be resizable. | 
|  | * | 
|  | * @implNote | 
|  | * This implementation defers to the {@link List#sort(Comparator)} | 
|  | * method using the specified list and comparator. | 
|  | * Do not call this method from {@code List.sort()} since that can lead | 
|  | * to infinite recursion. Apps targeting APIs {@code <= 25} observe | 
|  | * backwards compatibility behavior where this method was implemented | 
|  | * on top of {@link List#toArray()}, {@link ListIterator#next()} and | 
|  | * {@link ListIterator#set(Object)}. | 
|  | * | 
|  | * @param  <T> the class of the objects in the list | 
|  | * @param  list the list to be sorted. | 
|  | * @param  c the comparator to determine the order of the list.  A | 
|  | *        {@code null} value indicates that the elements' <i>natural | 
|  | *        ordering</i> should be used. | 
|  | * @throws ClassCastException if the list contains elements that are not | 
|  | *         <i>mutually comparable</i> using the specified comparator. | 
|  | * @throws UnsupportedOperationException if the specified list's | 
|  | *         list-iterator does not support the {@code set} operation. | 
|  | * @throws IllegalArgumentException (optional) if the comparator is | 
|  | *         found to violate the {@link Comparator} contract | 
|  | * @see List#sort(Comparator) | 
|  | */ | 
|  | @SuppressWarnings({"unchecked", "rawtypes"}) | 
|  | public static <T> void sort(List<T> list, Comparator<? super T> c) { | 
|  | // BEGIN Android-changed: List.sort() vs. Collections.sort() app compat. | 
|  | // list.sort(c); | 
|  | int targetSdkVersion = VMRuntime.getRuntime().getTargetSdkVersion(); | 
|  | if (targetSdkVersion > 25) { | 
|  | list.sort(c); | 
|  | } else { | 
|  | // Compatibility behavior for API <= 25. http://b/33482884 | 
|  | if (list.getClass() == ArrayList.class) { | 
|  | Arrays.sort((T[]) ((ArrayList) list).elementData, 0, list.size(), c); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Object[] a = list.toArray(); | 
|  | Arrays.sort(a, (Comparator) c); | 
|  | ListIterator<T> i = list.listIterator(); | 
|  | for (int j = 0; j < a.length; j++) { | 
|  | i.next(); | 
|  | i.set((T) a[j]); | 
|  | } | 
|  | } | 
|  | // END Android-changed: List.sort() vs. Collections.sort() app compat. | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Searches the specified list for the specified object using the binary | 
|  | * search algorithm.  The list must be sorted into ascending order | 
|  | * according to the {@linkplain Comparable natural ordering} of its | 
|  | * elements (as by the {@link #sort(List)} method) prior to making this | 
|  | * call.  If it is not sorted, the results are undefined.  If the list | 
|  | * contains multiple elements equal to the specified object, there is no | 
|  | * guarantee which one will be found. | 
|  | * | 
|  | * <p>This method runs in log(n) time for a "random access" list (which | 
|  | * provides near-constant-time positional access).  If the specified list | 
|  | * does not implement the {@link RandomAccess} interface and is large, | 
|  | * this method will do an iterator-based binary search that performs | 
|  | * O(n) link traversals and O(log n) element comparisons. | 
|  | * | 
|  | * @param  <T> the class of the objects in the list | 
|  | * @param  list the list to be searched. | 
|  | * @param  key the key to be searched for. | 
|  | * @return the index of the search key, if it is contained in the list; | 
|  | *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The | 
|  | *         <i>insertion point</i> is defined as the point at which the | 
|  | *         key would be inserted into the list: the index of the first | 
|  | *         element greater than the key, or <tt>list.size()</tt> if all | 
|  | *         elements in the list are less than the specified key.  Note | 
|  | *         that this guarantees that the return value will be >= 0 if | 
|  | *         and only if the key is found. | 
|  | * @throws ClassCastException if the list contains elements that are not | 
|  | *         <i>mutually comparable</i> (for example, strings and | 
|  | *         integers), or the search key is not mutually comparable | 
|  | *         with the elements of the list. | 
|  | */ | 
|  | public static <T> | 
|  | int binarySearch(List<? extends Comparable<? super T>> list, T key) { | 
|  | if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD) | 
|  | return Collections.indexedBinarySearch(list, key); | 
|  | else | 
|  | return Collections.iteratorBinarySearch(list, key); | 
|  | } | 
|  |  | 
|  | private static <T> | 
|  | int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key) { | 
|  | int low = 0; | 
|  | int high = list.size()-1; | 
|  |  | 
|  | while (low <= high) { | 
|  | int mid = (low + high) >>> 1; | 
|  | Comparable<? super T> midVal = list.get(mid); | 
|  | int cmp = midVal.compareTo(key); | 
|  |  | 
|  | if (cmp < 0) | 
|  | low = mid + 1; | 
|  | else if (cmp > 0) | 
|  | high = mid - 1; | 
|  | else | 
|  | return mid; // key found | 
|  | } | 
|  | return -(low + 1);  // key not found | 
|  | } | 
|  |  | 
|  | private static <T> | 
|  | int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key) | 
|  | { | 
|  | int low = 0; | 
|  | int high = list.size()-1; | 
|  | ListIterator<? extends Comparable<? super T>> i = list.listIterator(); | 
|  |  | 
|  | while (low <= high) { | 
|  | int mid = (low + high) >>> 1; | 
|  | Comparable<? super T> midVal = get(i, mid); | 
|  | int cmp = midVal.compareTo(key); | 
|  |  | 
|  | if (cmp < 0) | 
|  | low = mid + 1; | 
|  | else if (cmp > 0) | 
|  | high = mid - 1; | 
|  | else | 
|  | return mid; // key found | 
|  | } | 
|  | return -(low + 1);  // key not found | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Gets the ith element from the given list by repositioning the specified | 
|  | * list listIterator. | 
|  | */ | 
|  | private static <T> T get(ListIterator<? extends T> i, int index) { | 
|  | T obj = null; | 
|  | int pos = i.nextIndex(); | 
|  | if (pos <= index) { | 
|  | do { | 
|  | obj = i.next(); | 
|  | } while (pos++ < index); | 
|  | } else { | 
|  | do { | 
|  | obj = i.previous(); | 
|  | } while (--pos > index); | 
|  | } | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Searches the specified list for the specified object using the binary | 
|  | * search algorithm.  The list must be sorted into ascending order | 
|  | * according to the specified comparator (as by the | 
|  | * {@link #sort(List, Comparator) sort(List, Comparator)} | 
|  | * method), prior to making this call.  If it is | 
|  | * not sorted, the results are undefined.  If the list contains multiple | 
|  | * elements equal to the specified object, there is no guarantee which one | 
|  | * will be found. | 
|  | * | 
|  | * <p>This method runs in log(n) time for a "random access" list (which | 
|  | * provides near-constant-time positional access).  If the specified list | 
|  | * does not implement the {@link RandomAccess} interface and is large, | 
|  | * this method will do an iterator-based binary search that performs | 
|  | * O(n) link traversals and O(log n) element comparisons. | 
|  | * | 
|  | * @param  <T> the class of the objects in the list | 
|  | * @param  list the list to be searched. | 
|  | * @param  key the key to be searched for. | 
|  | * @param  c the comparator by which the list is ordered. | 
|  | *         A <tt>null</tt> value indicates that the elements' | 
|  | *         {@linkplain Comparable natural ordering} should be used. | 
|  | * @return the index of the search key, if it is contained in the list; | 
|  | *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The | 
|  | *         <i>insertion point</i> is defined as the point at which the | 
|  | *         key would be inserted into the list: the index of the first | 
|  | *         element greater than the key, or <tt>list.size()</tt> if all | 
|  | *         elements in the list are less than the specified key.  Note | 
|  | *         that this guarantees that the return value will be >= 0 if | 
|  | *         and only if the key is found. | 
|  | * @throws ClassCastException if the list contains elements that are not | 
|  | *         <i>mutually comparable</i> using the specified comparator, | 
|  | *         or the search key is not mutually comparable with the | 
|  | *         elements of the list using this comparator. | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) { | 
|  | if (c==null) | 
|  | return binarySearch((List<? extends Comparable<? super T>>) list, key); | 
|  |  | 
|  | if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD) | 
|  | return Collections.indexedBinarySearch(list, key, c); | 
|  | else | 
|  | return Collections.iteratorBinarySearch(list, key, c); | 
|  | } | 
|  |  | 
|  | private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) { | 
|  | int low = 0; | 
|  | int high = l.size()-1; | 
|  |  | 
|  | while (low <= high) { | 
|  | int mid = (low + high) >>> 1; | 
|  | T midVal = l.get(mid); | 
|  | int cmp = c.compare(midVal, key); | 
|  |  | 
|  | if (cmp < 0) | 
|  | low = mid + 1; | 
|  | else if (cmp > 0) | 
|  | high = mid - 1; | 
|  | else | 
|  | return mid; // key found | 
|  | } | 
|  | return -(low + 1);  // key not found | 
|  | } | 
|  |  | 
|  | private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) { | 
|  | int low = 0; | 
|  | int high = l.size()-1; | 
|  | ListIterator<? extends T> i = l.listIterator(); | 
|  |  | 
|  | while (low <= high) { | 
|  | int mid = (low + high) >>> 1; | 
|  | T midVal = get(i, mid); | 
|  | int cmp = c.compare(midVal, key); | 
|  |  | 
|  | if (cmp < 0) | 
|  | low = mid + 1; | 
|  | else if (cmp > 0) | 
|  | high = mid - 1; | 
|  | else | 
|  | return mid; // key found | 
|  | } | 
|  | return -(low + 1);  // key not found | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Reverses the order of the elements in the specified list.<p> | 
|  | * | 
|  | * This method runs in linear time. | 
|  | * | 
|  | * @param  list the list whose elements are to be reversed. | 
|  | * @throws UnsupportedOperationException if the specified list or | 
|  | *         its list-iterator does not support the <tt>set</tt> operation. | 
|  | */ | 
|  | @SuppressWarnings({"rawtypes", "unchecked"}) | 
|  | public static void reverse(List<?> list) { | 
|  | int size = list.size(); | 
|  | if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) { | 
|  | for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--) | 
|  | swap(list, i, j); | 
|  | } else { | 
|  | // instead of using a raw type here, it's possible to capture | 
|  | // the wildcard but it will require a call to a supplementary | 
|  | // private method | 
|  | ListIterator fwd = list.listIterator(); | 
|  | ListIterator rev = list.listIterator(size); | 
|  | for (int i=0, mid=list.size()>>1; i<mid; i++) { | 
|  | Object tmp = fwd.next(); | 
|  | fwd.set(rev.previous()); | 
|  | rev.set(tmp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Randomly permutes the specified list using a default source of | 
|  | * randomness.  All permutations occur with approximately equal | 
|  | * likelihood. | 
|  | * | 
|  | * <p>The hedge "approximately" is used in the foregoing description because | 
|  | * default source of randomness is only approximately an unbiased source | 
|  | * of independently chosen bits. If it were a perfect source of randomly | 
|  | * chosen bits, then the algorithm would choose permutations with perfect | 
|  | * uniformity. | 
|  | * | 
|  | * <p>This implementation traverses the list backwards, from the last | 
|  | * element up to the second, repeatedly swapping a randomly selected element | 
|  | * into the "current position".  Elements are randomly selected from the | 
|  | * portion of the list that runs from the first element to the current | 
|  | * position, inclusive. | 
|  | * | 
|  | * <p>This method runs in linear time.  If the specified list does not | 
|  | * implement the {@link RandomAccess} interface and is large, this | 
|  | * implementation dumps the specified list into an array before shuffling | 
|  | * it, and dumps the shuffled array back into the list.  This avoids the | 
|  | * quadratic behavior that would result from shuffling a "sequential | 
|  | * access" list in place. | 
|  | * | 
|  | * @param  list the list to be shuffled. | 
|  | * @throws UnsupportedOperationException if the specified list or | 
|  | *         its list-iterator does not support the <tt>set</tt> operation. | 
|  | */ | 
|  | public static void shuffle(List<?> list) { | 
|  | Random rnd = r; | 
|  | if (rnd == null) | 
|  | r = rnd = new Random(); // harmless race. | 
|  | shuffle(list, rnd); | 
|  | } | 
|  |  | 
|  | private static Random r; | 
|  |  | 
|  | /** | 
|  | * Randomly permute the specified list using the specified source of | 
|  | * randomness.  All permutations occur with equal likelihood | 
|  | * assuming that the source of randomness is fair.<p> | 
|  | * | 
|  | * This implementation traverses the list backwards, from the last element | 
|  | * up to the second, repeatedly swapping a randomly selected element into | 
|  | * the "current position".  Elements are randomly selected from the | 
|  | * portion of the list that runs from the first element to the current | 
|  | * position, inclusive.<p> | 
|  | * | 
|  | * This method runs in linear time.  If the specified list does not | 
|  | * implement the {@link RandomAccess} interface and is large, this | 
|  | * implementation dumps the specified list into an array before shuffling | 
|  | * it, and dumps the shuffled array back into the list.  This avoids the | 
|  | * quadratic behavior that would result from shuffling a "sequential | 
|  | * access" list in place. | 
|  | * | 
|  | * @param  list the list to be shuffled. | 
|  | * @param  rnd the source of randomness to use to shuffle the list. | 
|  | * @throws UnsupportedOperationException if the specified list or its | 
|  | *         list-iterator does not support the <tt>set</tt> operation. | 
|  | */ | 
|  | @SuppressWarnings({"rawtypes", "unchecked"}) | 
|  | public static void shuffle(List<?> list, Random rnd) { | 
|  | int size = list.size(); | 
|  | if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) { | 
|  | for (int i=size; i>1; i--) | 
|  | swap(list, i-1, rnd.nextInt(i)); | 
|  | } else { | 
|  | Object arr[] = list.toArray(); | 
|  |  | 
|  | // Shuffle array | 
|  | for (int i=size; i>1; i--) | 
|  | swap(arr, i-1, rnd.nextInt(i)); | 
|  |  | 
|  | // Dump array back into list | 
|  | // instead of using a raw type here, it's possible to capture | 
|  | // the wildcard but it will require a call to a supplementary | 
|  | // private method | 
|  | ListIterator it = list.listIterator(); | 
|  | for (int i=0; i<arr.length; i++) { | 
|  | it.next(); | 
|  | it.set(arr[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Swaps the elements at the specified positions in the specified list. | 
|  | * (If the specified positions are equal, invoking this method leaves | 
|  | * the list unchanged.) | 
|  | * | 
|  | * @param list The list in which to swap elements. | 
|  | * @param i the index of one element to be swapped. | 
|  | * @param j the index of the other element to be swapped. | 
|  | * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt> | 
|  | *         is out of range (i < 0 || i >= list.size() | 
|  | *         || j < 0 || j >= list.size()). | 
|  | * @since 1.4 | 
|  | */ | 
|  | @SuppressWarnings({"rawtypes", "unchecked"}) | 
|  | public static void swap(List<?> list, int i, int j) { | 
|  | // instead of using a raw type here, it's possible to capture | 
|  | // the wildcard but it will require a call to a supplementary | 
|  | // private method | 
|  | final List l = list; | 
|  | l.set(i, l.set(j, l.get(i))); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Swaps the two specified elements in the specified array. | 
|  | */ | 
|  | private static void swap(Object[] arr, int i, int j) { | 
|  | Object tmp = arr[i]; | 
|  | arr[i] = arr[j]; | 
|  | arr[j] = tmp; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Replaces all of the elements of the specified list with the specified | 
|  | * element. <p> | 
|  | * | 
|  | * This method runs in linear time. | 
|  | * | 
|  | * @param  <T> the class of the objects in the list | 
|  | * @param  list the list to be filled with the specified element. | 
|  | * @param  obj The element with which to fill the specified list. | 
|  | * @throws UnsupportedOperationException if the specified list or its | 
|  | *         list-iterator does not support the <tt>set</tt> operation. | 
|  | */ | 
|  | public static <T> void fill(List<? super T> list, T obj) { | 
|  | int size = list.size(); | 
|  |  | 
|  | if (size < FILL_THRESHOLD || list instanceof RandomAccess) { | 
|  | for (int i=0; i<size; i++) | 
|  | list.set(i, obj); | 
|  | } else { | 
|  | ListIterator<? super T> itr = list.listIterator(); | 
|  | for (int i=0; i<size; i++) { | 
|  | itr.next(); | 
|  | itr.set(obj); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Copies all of the elements from one list into another.  After the | 
|  | * operation, the index of each copied element in the destination list | 
|  | * will be identical to its index in the source list.  The destination | 
|  | * list must be at least as long as the source list.  If it is longer, the | 
|  | * remaining elements in the destination list are unaffected. <p> | 
|  | * | 
|  | * This method runs in linear time. | 
|  | * | 
|  | * @param  <T> the class of the objects in the lists | 
|  | * @param  dest The destination list. | 
|  | * @param  src The source list. | 
|  | * @throws IndexOutOfBoundsException if the destination list is too small | 
|  | *         to contain the entire source List. | 
|  | * @throws UnsupportedOperationException if the destination list's | 
|  | *         list-iterator does not support the <tt>set</tt> operation. | 
|  | */ | 
|  | public static <T> void copy(List<? super T> dest, List<? extends T> src) { | 
|  | int srcSize = src.size(); | 
|  | if (srcSize > dest.size()) | 
|  | throw new IndexOutOfBoundsException("Source does not fit in dest"); | 
|  |  | 
|  | if (srcSize < COPY_THRESHOLD || | 
|  | (src instanceof RandomAccess && dest instanceof RandomAccess)) { | 
|  | for (int i=0; i<srcSize; i++) | 
|  | dest.set(i, src.get(i)); | 
|  | } else { | 
|  | ListIterator<? super T> di=dest.listIterator(); | 
|  | ListIterator<? extends T> si=src.listIterator(); | 
|  | for (int i=0; i<srcSize; i++) { | 
|  | di.next(); | 
|  | di.set(si.next()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns the minimum element of the given collection, according to the | 
|  | * <i>natural ordering</i> of its elements.  All elements in the | 
|  | * collection must implement the <tt>Comparable</tt> interface. | 
|  | * Furthermore, all elements in the collection must be <i>mutually | 
|  | * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a | 
|  | * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and | 
|  | * <tt>e2</tt> in the collection).<p> | 
|  | * | 
|  | * This method iterates over the entire collection, hence it requires | 
|  | * time proportional to the size of the collection. | 
|  | * | 
|  | * @param  <T> the class of the objects in the collection | 
|  | * @param  coll the collection whose minimum element is to be determined. | 
|  | * @return the minimum element of the given collection, according | 
|  | *         to the <i>natural ordering</i> of its elements. | 
|  | * @throws ClassCastException if the collection contains elements that are | 
|  | *         not <i>mutually comparable</i> (for example, strings and | 
|  | *         integers). | 
|  | * @throws NoSuchElementException if the collection is empty. | 
|  | * @see Comparable | 
|  | */ | 
|  | public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) { | 
|  | Iterator<? extends T> i = coll.iterator(); | 
|  | T candidate = i.next(); | 
|  |  | 
|  | while (i.hasNext()) { | 
|  | T next = i.next(); | 
|  | if (next.compareTo(candidate) < 0) | 
|  | candidate = next; | 
|  | } | 
|  | return candidate; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns the minimum element of the given collection, according to the | 
|  | * order induced by the specified comparator.  All elements in the | 
|  | * collection must be <i>mutually comparable</i> by the specified | 
|  | * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a | 
|  | * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and | 
|  | * <tt>e2</tt> in the collection).<p> | 
|  | * | 
|  | * This method iterates over the entire collection, hence it requires | 
|  | * time proportional to the size of the collection. | 
|  | * | 
|  | * @param  <T> the class of the objects in the collection | 
|  | * @param  coll the collection whose minimum element is to be determined. | 
|  | * @param  comp the comparator with which to determine the minimum element. | 
|  | *         A <tt>null</tt> value indicates that the elements' <i>natural | 
|  | *         ordering</i> should be used. | 
|  | * @return the minimum element of the given collection, according | 
|  | *         to the specified comparator. | 
|  | * @throws ClassCastException if the collection contains elements that are | 
|  | *         not <i>mutually comparable</i> using the specified comparator. | 
|  | * @throws NoSuchElementException if the collection is empty. | 
|  | * @see Comparable | 
|  | */ | 
|  | @SuppressWarnings({"unchecked", "rawtypes"}) | 
|  | public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) { | 
|  | if (comp==null) | 
|  | return (T)min((Collection) coll); | 
|  |  | 
|  | Iterator<? extends T> i = coll.iterator(); | 
|  | T candidate = i.next(); | 
|  |  | 
|  | while (i.hasNext()) { | 
|  | T next = i.next(); | 
|  | if (comp.compare(next, candidate) < 0) | 
|  | candidate = next; | 
|  | } | 
|  | return candidate; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns the maximum element of the given collection, according to the | 
|  | * <i>natural ordering</i> of its elements.  All elements in the | 
|  | * collection must implement the <tt>Comparable</tt> interface. | 
|  | * Furthermore, all elements in the collection must be <i>mutually | 
|  | * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a | 
|  | * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and | 
|  | * <tt>e2</tt> in the collection).<p> | 
|  | * | 
|  | * This method iterates over the entire collection, hence it requires | 
|  | * time proportional to the size of the collection. | 
|  | * | 
|  | * @param  <T> the class of the objects in the collection | 
|  | * @param  coll the collection whose maximum element is to be determined. | 
|  | * @return the maximum element of the given collection, according | 
|  | *         to the <i>natural ordering</i> of its elements. | 
|  | * @throws ClassCastException if the collection contains elements that are | 
|  | *         not <i>mutually comparable</i> (for example, strings and | 
|  | *         integers). | 
|  | * @throws NoSuchElementException if the collection is empty. | 
|  | * @see Comparable | 
|  | */ | 
|  | public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) { | 
|  | Iterator<? extends T> i = coll.iterator(); | 
|  | T candidate = i.next(); | 
|  |  | 
|  | while (i.hasNext()) { | 
|  | T next = i.next(); | 
|  | if (next.compareTo(candidate) > 0) | 
|  | candidate = next; | 
|  | } | 
|  | return candidate; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns the maximum element of the given collection, according to the | 
|  | * order induced by the specified comparator.  All elements in the | 
|  | * collection must be <i>mutually comparable</i> by the specified | 
|  | * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a | 
|  | * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and | 
|  | * <tt>e2</tt> in the collection).<p> | 
|  | * | 
|  | * This method iterates over the entire collection, hence it requires | 
|  | * time proportional to the size of the collection. | 
|  | * | 
|  | * @param  <T> the class of the objects in the collection | 
|  | * @param  coll the collection whose maximum element is to be determined. | 
|  | * @param  comp the comparator with which to determine the maximum element. | 
|  | *         A <tt>null</tt> value indicates that the elements' <i>natural | 
|  | *        ordering</i> should be used. | 
|  | * @return the maximum element of the given collection, according | 
|  | *         to the specified comparator. | 
|  | * @throws ClassCastException if the collection contains elements that are | 
|  | *         not <i>mutually comparable</i> using the specified comparator. | 
|  | * @throws NoSuchElementException if the collection is empty. | 
|  | * @see Comparable | 
|  | */ | 
|  | @SuppressWarnings({"unchecked", "rawtypes"}) | 
|  | public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) { | 
|  | if (comp==null) | 
|  | return (T)max((Collection) coll); | 
|  |  | 
|  | Iterator<? extends T> i = coll.iterator(); | 
|  | T candidate = i.next(); | 
|  |  | 
|  | while (i.hasNext()) { | 
|  | T next = i.next(); | 
|  | if (comp.compare(next, candidate) > 0) | 
|  | candidate = next; | 
|  | } | 
|  | return candidate; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Rotates the elements in the specified list by the specified distance. | 
|  | * After calling this method, the element at index <tt>i</tt> will be | 
|  | * the element previously at index <tt>(i - distance)</tt> mod | 
|  | * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt> | 
|  | * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on | 
|  | * the size of the list.) | 
|  | * | 
|  | * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>. | 
|  | * After invoking <tt>Collections.rotate(list, 1)</tt> (or | 
|  | * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise | 
|  | * <tt>[s, t, a, n, k]</tt>. | 
|  | * | 
|  | * <p>Note that this method can usefully be applied to sublists to | 
|  | * move one or more elements within a list while preserving the | 
|  | * order of the remaining elements.  For example, the following idiom | 
|  | * moves the element at index <tt>j</tt> forward to position | 
|  | * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>): | 
|  | * <pre> | 
|  | *     Collections.rotate(list.subList(j, k+1), -1); | 
|  | * </pre> | 
|  | * To make this concrete, suppose <tt>list</tt> comprises | 
|  | * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt> | 
|  | * (<tt>b</tt>) forward two positions, perform the following invocation: | 
|  | * <pre> | 
|  | *     Collections.rotate(l.subList(1, 4), -1); | 
|  | * </pre> | 
|  | * The resulting list is <tt>[a, c, d, b, e]</tt>. | 
|  | * | 
|  | * <p>To move more than one element forward, increase the absolute value | 
|  | * of the rotation distance.  To move elements backward, use a positive | 
|  | * shift distance. | 
|  | * | 
|  | * <p>If the specified list is small or implements the {@link | 
|  | * RandomAccess} interface, this implementation exchanges the first | 
|  | * element into the location it should go, and then repeatedly exchanges | 
|  | * the displaced element into the location it should go until a displaced | 
|  | * element is swapped into the first element.  If necessary, the process | 
|  | * is repeated on the second and successive elements, until the rotation | 
|  | * is complete.  If the specified list is large and doesn't implement the | 
|  | * <tt>RandomAccess</tt> interface, this implementation breaks the | 
|  | * list into two sublist views around index <tt>-distance mod size</tt>. | 
|  | * Then the {@link #reverse(List)} method is invoked on each sublist view, | 
|  | * and finally it is invoked on the entire list.  For a more complete | 
|  | * description of both algorithms, see Section 2.3 of Jon Bentley's | 
|  | * <i>Programming Pearls</i> (Addison-Wesley, 1986). | 
|  | * | 
|  | * @param list the list to be rotated. | 
|  | * @param distance the distance to rotate the list.  There are no | 
|  | *        constraints on this value; it may be zero, negative, or | 
|  | *        greater than <tt>list.size()</tt>. | 
|  | * @throws UnsupportedOperationException if the specified list or | 
|  | *         its list-iterator does not support the <tt>set</tt> operation. | 
|  | * @since 1.4 | 
|  | */ | 
|  | public static void rotate(List<?> list, int distance) { | 
|  | if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD) | 
|  | rotate1(list, distance); | 
|  | else | 
|  | rotate2(list, distance); | 
|  | } | 
|  |  | 
|  | private static <T> void rotate1(List<T> list, int distance) { | 
|  | int size = list.size(); | 
|  | if (size == 0) | 
|  | return; | 
|  | distance = distance % size; | 
|  | if (distance < 0) | 
|  | distance += size; | 
|  | if (distance == 0) | 
|  | return; | 
|  |  | 
|  | for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) { | 
|  | T displaced = list.get(cycleStart); | 
|  | int i = cycleStart; | 
|  | do { | 
|  | i += distance; | 
|  | if (i >= size) | 
|  | i -= size; | 
|  | displaced = list.set(i, displaced); | 
|  | nMoved ++; | 
|  | } while (i != cycleStart); | 
|  | } | 
|  | } | 
|  |  | 
|  | private static void rotate2(List<?> list, int distance) { | 
|  | int size = list.size(); | 
|  | if (size == 0) | 
|  | return; | 
|  | int mid =  -distance % size; | 
|  | if (mid < 0) | 
|  | mid += size; | 
|  | if (mid == 0) | 
|  | return; | 
|  |  | 
|  | reverse(list.subList(0, mid)); | 
|  | reverse(list.subList(mid, size)); | 
|  | reverse(list); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Replaces all occurrences of one specified value in a list with another. | 
|  | * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt> | 
|  | * in <tt>list</tt> such that | 
|  | * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>. | 
|  | * (This method has no effect on the size of the list.) | 
|  | * | 
|  | * @param  <T> the class of the objects in the list | 
|  | * @param list the list in which replacement is to occur. | 
|  | * @param oldVal the old value to be replaced. | 
|  | * @param newVal the new value with which <tt>oldVal</tt> is to be | 
|  | *        replaced. | 
|  | * @return <tt>true</tt> if <tt>list</tt> contained one or more elements | 
|  | *         <tt>e</tt> such that | 
|  | *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>. | 
|  | * @throws UnsupportedOperationException if the specified list or | 
|  | *         its list-iterator does not support the <tt>set</tt> operation. | 
|  | * @since  1.4 | 
|  | */ | 
|  | public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) { | 
|  | boolean result = false; | 
|  | int size = list.size(); | 
|  | if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) { | 
|  | if (oldVal==null) { | 
|  | for (int i=0; i<size; i++) { | 
|  | if (list.get(i)==null) { | 
|  | list.set(i, newVal); | 
|  | result = true; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | for (int i=0; i<size; i++) { | 
|  | if (oldVal.equals(list.get(i))) { | 
|  | list.set(i, newVal); | 
|  | result = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | ListIterator<T> itr=list.listIterator(); | 
|  | if (oldVal==null) { | 
|  | for (int i=0; i<size; i++) { | 
|  | if (itr.next()==null) { | 
|  | itr.set(newVal); | 
|  | result = true; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | for (int i=0; i<size; i++) { | 
|  | if (oldVal.equals(itr.next())) { | 
|  | itr.set(newVal); | 
|  | result = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns the starting position of the first occurrence of the specified | 
|  | * target list within the specified source list, or -1 if there is no | 
|  | * such occurrence.  More formally, returns the lowest index <tt>i</tt> | 
|  | * such that {@code source.subList(i, i+target.size()).equals(target)}, | 
|  | * or -1 if there is no such index.  (Returns -1 if | 
|  | * {@code target.size() > source.size()}) | 
|  | * | 
|  | * <p>This implementation uses the "brute force" technique of scanning | 
|  | * over the source list, looking for a match with the target at each | 
|  | * location in turn. | 
|  | * | 
|  | * @param source the list in which to search for the first occurrence | 
|  | *        of <tt>target</tt>. | 
|  | * @param target the list to search for as a subList of <tt>source</tt>. | 
|  | * @return the starting position of the first occurrence of the specified | 
|  | *         target list within the specified source list, or -1 if there | 
|  | *         is no such occurrence. | 
|  | * @since  1.4 | 
|  | */ | 
|  | public static int indexOfSubList(List<?> source, List<?> target) { | 
|  | int sourceSize = source.size(); | 
|  | int targetSize = target.size(); | 
|  | int maxCandidate = sourceSize - targetSize; | 
|  |  | 
|  | if (sourceSize < INDEXOFSUBLIST_THRESHOLD || | 
|  | (source instanceof RandomAccess&&target instanceof RandomAccess)) { | 
|  | nextCand: | 
|  | for (int candidate = 0; candidate <= maxCandidate; candidate++) { | 
|  | for (int i=0, j=candidate; i<targetSize; i++, j++) | 
|  | if (!eq(target.get(i), source.get(j))) | 
|  | continue nextCand;  // Element mismatch, try next cand | 
|  | return candidate;  // All elements of candidate matched target | 
|  | } | 
|  | } else {  // Iterator version of above algorithm | 
|  | ListIterator<?> si = source.listIterator(); | 
|  | nextCand: | 
|  | for (int candidate = 0; candidate <= maxCandidate; candidate++) { | 
|  | ListIterator<?> ti = target.listIterator(); | 
|  | for (int i=0; i<targetSize; i++) { | 
|  | if (!eq(ti.next(), si.next())) { | 
|  | // Back up source iterator to next candidate | 
|  | for (int j=0; j<i; j++) | 
|  | si.previous(); | 
|  | continue nextCand; | 
|  | } | 
|  | } | 
|  | return candidate; | 
|  | } | 
|  | } | 
|  | return -1;  // No candidate matched the target | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns the starting position of the last occurrence of the specified | 
|  | * target list within the specified source list, or -1 if there is no such | 
|  | * occurrence.  More formally, returns the highest index <tt>i</tt> | 
|  | * such that {@code source.subList(i, i+target.size()).equals(target)}, | 
|  | * or -1 if there is no such index.  (Returns -1 if | 
|  | * {@code target.size() > source.size()}) | 
|  | * | 
|  | * <p>This implementation uses the "brute force" technique of iterating | 
|  | * over the source list, looking for a match with the target at each | 
|  | * location in turn. | 
|  | * | 
|  | * @param source the list in which to search for the last occurrence | 
|  | *        of <tt>target</tt>. | 
|  | * @param target the list to search for as a subList of <tt>source</tt>. | 
|  | * @return the starting position of the last occurrence of the specified | 
|  | *         target list within the specified source list, or -1 if there | 
|  | *         is no such occurrence. | 
|  | * @since  1.4 | 
|  | */ | 
|  | public static int lastIndexOfSubList(List<?> source, List<?> target) { | 
|  | int sourceSize = source.size(); | 
|  | int targetSize = target.size(); | 
|  | int maxCandidate = sourceSize - targetSize; | 
|  |  | 
|  | if (sourceSize < INDEXOFSUBLIST_THRESHOLD || | 
|  | source instanceof RandomAccess) {   // Index access version | 
|  | nextCand: | 
|  | for (int candidate = maxCandidate; candidate >= 0; candidate--) { | 
|  | for (int i=0, j=candidate; i<targetSize; i++, j++) | 
|  | if (!eq(target.get(i), source.get(j))) | 
|  | continue nextCand;  // Element mismatch, try next cand | 
|  | return candidate;  // All elements of candidate matched target | 
|  | } | 
|  | } else {  // Iterator version of above algorithm | 
|  | if (maxCandidate < 0) | 
|  | return -1; | 
|  | ListIterator<?> si = source.listIterator(maxCandidate); | 
|  | nextCand: | 
|  | for (int candidate = maxCandidate; candidate >= 0; candidate--) { | 
|  | ListIterator<?> ti = target.listIterator(); | 
|  | for (int i=0; i<targetSize; i++) { | 
|  | if (!eq(ti.next(), si.next())) { | 
|  | if (candidate != 0) { | 
|  | // Back up source iterator to next candidate | 
|  | for (int j=0; j<=i+1; j++) | 
|  | si.previous(); | 
|  | } | 
|  | continue nextCand; | 
|  | } | 
|  | } | 
|  | return candidate; | 
|  | } | 
|  | } | 
|  | return -1;  // No candidate matched the target | 
|  | } | 
|  |  | 
|  |  | 
|  | // Unmodifiable Wrappers | 
|  |  | 
|  | /** | 
|  | * Returns an unmodifiable view of the specified collection.  This method | 
|  | * allows modules to provide users with "read-only" access to internal | 
|  | * collections.  Query operations on the returned collection "read through" | 
|  | * to the specified collection, and attempts to modify the returned | 
|  | * collection, whether direct or via its iterator, result in an | 
|  | * <tt>UnsupportedOperationException</tt>.<p> | 
|  | * | 
|  | * The returned collection does <i>not</i> pass the hashCode and equals | 
|  | * operations through to the backing collection, but relies on | 
|  | * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This | 
|  | * is necessary to preserve the contracts of these operations in the case | 
|  | * that the backing collection is a set or a list.<p> | 
|  | * | 
|  | * The returned collection will be serializable if the specified collection | 
|  | * is serializable. | 
|  | * | 
|  | * @param  <T> the class of the objects in the collection | 
|  | * @param  c the collection for which an unmodifiable view is to be | 
|  | *         returned. | 
|  | * @return an unmodifiable view of the specified collection. | 
|  | */ | 
|  | public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) { | 
|  | return new UnmodifiableCollection<>(c); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class UnmodifiableCollection<E> implements Collection<E>, Serializable { | 
|  | private static final long serialVersionUID = 1820017752578914078L; | 
|  |  | 
|  | final Collection<? extends E> c; | 
|  |  | 
|  | UnmodifiableCollection(Collection<? extends E> c) { | 
|  | if (c==null) | 
|  | throw new NullPointerException(); | 
|  | this.c = c; | 
|  | } | 
|  |  | 
|  | public int size()                   {return c.size();} | 
|  | public boolean isEmpty()            {return c.isEmpty();} | 
|  | public boolean contains(Object o)   {return c.contains(o);} | 
|  | public Object[] toArray()           {return c.toArray();} | 
|  | public <T> T[] toArray(T[] a)       {return c.toArray(a);} | 
|  | public String toString()            {return c.toString();} | 
|  |  | 
|  | public Iterator<E> iterator() { | 
|  | return new Iterator<E>() { | 
|  | private final Iterator<? extends E> i = c.iterator(); | 
|  |  | 
|  | public boolean hasNext() {return i.hasNext();} | 
|  | public E next()          {return i.next();} | 
|  | public void remove() { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | @Override | 
|  | public void forEachRemaining(Consumer<? super E> action) { | 
|  | // Use backing collection version | 
|  | i.forEachRemaining(action); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | public boolean add(E e) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public boolean remove(Object o) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | public boolean containsAll(Collection<?> coll) { | 
|  | return c.containsAll(coll); | 
|  | } | 
|  | public boolean addAll(Collection<? extends E> coll) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public boolean removeAll(Collection<?> coll) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public boolean retainAll(Collection<?> coll) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public void clear() { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | // Override default methods in Collection | 
|  | @Override | 
|  | public void forEach(Consumer<? super E> action) { | 
|  | c.forEach(action); | 
|  | } | 
|  | @Override | 
|  | public boolean removeIf(Predicate<? super E> filter) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | @SuppressWarnings("unchecked") | 
|  | @Override | 
|  | public Spliterator<E> spliterator() { | 
|  | return (Spliterator<E>)c.spliterator(); | 
|  | } | 
|  | @SuppressWarnings("unchecked") | 
|  | @Override | 
|  | public Stream<E> stream() { | 
|  | return (Stream<E>)c.stream(); | 
|  | } | 
|  | @SuppressWarnings("unchecked") | 
|  | @Override | 
|  | public Stream<E> parallelStream() { | 
|  | return (Stream<E>)c.parallelStream(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an unmodifiable view of the specified set.  This method allows | 
|  | * modules to provide users with "read-only" access to internal sets. | 
|  | * Query operations on the returned set "read through" to the specified | 
|  | * set, and attempts to modify the returned set, whether direct or via its | 
|  | * iterator, result in an <tt>UnsupportedOperationException</tt>.<p> | 
|  | * | 
|  | * The returned set will be serializable if the specified set | 
|  | * is serializable. | 
|  | * | 
|  | * @param  <T> the class of the objects in the set | 
|  | * @param  s the set for which an unmodifiable view is to be returned. | 
|  | * @return an unmodifiable view of the specified set. | 
|  | */ | 
|  | public static <T> Set<T> unmodifiableSet(Set<? extends T> s) { | 
|  | return new UnmodifiableSet<>(s); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class UnmodifiableSet<E> extends UnmodifiableCollection<E> | 
|  | implements Set<E>, Serializable { | 
|  | private static final long serialVersionUID = -9215047833775013803L; | 
|  |  | 
|  | UnmodifiableSet(Set<? extends E> s)     {super(s);} | 
|  | public boolean equals(Object o) {return o == this || c.equals(o);} | 
|  | public int hashCode()           {return c.hashCode();} | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an unmodifiable view of the specified sorted set.  This method | 
|  | * allows modules to provide users with "read-only" access to internal | 
|  | * sorted sets.  Query operations on the returned sorted set "read | 
|  | * through" to the specified sorted set.  Attempts to modify the returned | 
|  | * sorted set, whether direct, via its iterator, or via its | 
|  | * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in | 
|  | * an <tt>UnsupportedOperationException</tt>.<p> | 
|  | * | 
|  | * The returned sorted set will be serializable if the specified sorted set | 
|  | * is serializable. | 
|  | * | 
|  | * @param  <T> the class of the objects in the set | 
|  | * @param s the sorted set for which an unmodifiable view is to be | 
|  | *        returned. | 
|  | * @return an unmodifiable view of the specified sorted set. | 
|  | */ | 
|  | public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) { | 
|  | return new UnmodifiableSortedSet<>(s); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class UnmodifiableSortedSet<E> | 
|  | extends UnmodifiableSet<E> | 
|  | implements SortedSet<E>, Serializable { | 
|  | private static final long serialVersionUID = -4929149591599911165L; | 
|  | private final SortedSet<E> ss; | 
|  |  | 
|  | UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;} | 
|  |  | 
|  | public Comparator<? super E> comparator() {return ss.comparator();} | 
|  |  | 
|  | public SortedSet<E> subSet(E fromElement, E toElement) { | 
|  | return new UnmodifiableSortedSet<>(ss.subSet(fromElement,toElement)); | 
|  | } | 
|  | public SortedSet<E> headSet(E toElement) { | 
|  | return new UnmodifiableSortedSet<>(ss.headSet(toElement)); | 
|  | } | 
|  | public SortedSet<E> tailSet(E fromElement) { | 
|  | return new UnmodifiableSortedSet<>(ss.tailSet(fromElement)); | 
|  | } | 
|  |  | 
|  | public E first()                   {return ss.first();} | 
|  | public E last()                    {return ss.last();} | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an unmodifiable view of the specified navigable set.  This method | 
|  | * allows modules to provide users with "read-only" access to internal | 
|  | * navigable sets.  Query operations on the returned navigable set "read | 
|  | * through" to the specified navigable set.  Attempts to modify the returned | 
|  | * navigable set, whether direct, via its iterator, or via its | 
|  | * {@code subSet}, {@code headSet}, or {@code tailSet} views, result in | 
|  | * an {@code UnsupportedOperationException}.<p> | 
|  | * | 
|  | * The returned navigable set will be serializable if the specified | 
|  | * navigable set is serializable. | 
|  | * | 
|  | * @param  <T> the class of the objects in the set | 
|  | * @param s the navigable set for which an unmodifiable view is to be | 
|  | *        returned | 
|  | * @return an unmodifiable view of the specified navigable set | 
|  | * @since 1.8 | 
|  | */ | 
|  | public static <T> NavigableSet<T> unmodifiableNavigableSet(NavigableSet<T> s) { | 
|  | return new UnmodifiableNavigableSet<>(s); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Wraps a navigable set and disables all of the mutative operations. | 
|  | * | 
|  | * @param <E> type of elements | 
|  | * @serial include | 
|  | */ | 
|  | static class UnmodifiableNavigableSet<E> | 
|  | extends UnmodifiableSortedSet<E> | 
|  | implements NavigableSet<E>, Serializable { | 
|  |  | 
|  | private static final long serialVersionUID = -6027448201786391929L; | 
|  |  | 
|  | /** | 
|  | * A singleton empty unmodifiable navigable set used for | 
|  | * {@link #emptyNavigableSet()}. | 
|  | * | 
|  | * @param <E> type of elements, if there were any, and bounds | 
|  | */ | 
|  | private static class EmptyNavigableSet<E> extends UnmodifiableNavigableSet<E> | 
|  | implements Serializable { | 
|  | private static final long serialVersionUID = -6291252904449939134L; | 
|  |  | 
|  | public EmptyNavigableSet() { | 
|  | super(new TreeSet<E>()); | 
|  | } | 
|  |  | 
|  | private Object readResolve()        { return EMPTY_NAVIGABLE_SET; } | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("rawtypes") | 
|  | private static final NavigableSet<?> EMPTY_NAVIGABLE_SET = | 
|  | new EmptyNavigableSet<>(); | 
|  |  | 
|  | /** | 
|  | * The instance we are protecting. | 
|  | */ | 
|  | private final NavigableSet<E> ns; | 
|  |  | 
|  | UnmodifiableNavigableSet(NavigableSet<E> s)         {super(s); ns = s;} | 
|  |  | 
|  | public E lower(E e)                             { return ns.lower(e); } | 
|  | public E floor(E e)                             { return ns.floor(e); } | 
|  | public E ceiling(E e)                         { return ns.ceiling(e); } | 
|  | public E higher(E e)                           { return ns.higher(e); } | 
|  | public E pollFirst()     { throw new UnsupportedOperationException(); } | 
|  | public E pollLast()      { throw new UnsupportedOperationException(); } | 
|  | public NavigableSet<E> descendingSet() | 
|  | { return new UnmodifiableNavigableSet<>(ns.descendingSet()); } | 
|  | public Iterator<E> descendingIterator() | 
|  | { return descendingSet().iterator(); } | 
|  |  | 
|  | public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { | 
|  | return new UnmodifiableNavigableSet<>( | 
|  | ns.subSet(fromElement, fromInclusive, toElement, toInclusive)); | 
|  | } | 
|  |  | 
|  | public NavigableSet<E> headSet(E toElement, boolean inclusive) { | 
|  | return new UnmodifiableNavigableSet<>( | 
|  | ns.headSet(toElement, inclusive)); | 
|  | } | 
|  |  | 
|  | public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { | 
|  | return new UnmodifiableNavigableSet<>( | 
|  | ns.tailSet(fromElement, inclusive)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an unmodifiable view of the specified list.  This method allows | 
|  | * modules to provide users with "read-only" access to internal | 
|  | * lists.  Query operations on the returned list "read through" to the | 
|  | * specified list, and attempts to modify the returned list, whether | 
|  | * direct or via its iterator, result in an | 
|  | * <tt>UnsupportedOperationException</tt>.<p> | 
|  | * | 
|  | * The returned list will be serializable if the specified list | 
|  | * is serializable. Similarly, the returned list will implement | 
|  | * {@link RandomAccess} if the specified list does. | 
|  | * | 
|  | * @param  <T> the class of the objects in the list | 
|  | * @param  list the list for which an unmodifiable view is to be returned. | 
|  | * @return an unmodifiable view of the specified list. | 
|  | */ | 
|  | public static <T> List<T> unmodifiableList(List<? extends T> list) { | 
|  | return (list instanceof RandomAccess ? | 
|  | new UnmodifiableRandomAccessList<>(list) : | 
|  | new UnmodifiableList<>(list)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class UnmodifiableList<E> extends UnmodifiableCollection<E> | 
|  | implements List<E> { | 
|  | private static final long serialVersionUID = -283967356065247728L; | 
|  |  | 
|  | final List<? extends E> list; | 
|  |  | 
|  | UnmodifiableList(List<? extends E> list) { | 
|  | super(list); | 
|  | this.list = list; | 
|  | } | 
|  |  | 
|  | public boolean equals(Object o) {return o == this || list.equals(o);} | 
|  | public int hashCode()           {return list.hashCode();} | 
|  |  | 
|  | public E get(int index) {return list.get(index);} | 
|  | public E set(int index, E element) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public void add(int index, E element) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public E remove(int index) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public int indexOf(Object o)            {return list.indexOf(o);} | 
|  | public int lastIndexOf(Object o)        {return list.lastIndexOf(o);} | 
|  | public boolean addAll(int index, Collection<? extends E> c) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void replaceAll(UnaryOperator<E> operator) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | @Override | 
|  | public void sort(Comparator<? super E> c) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | public ListIterator<E> listIterator()   {return listIterator(0);} | 
|  |  | 
|  | public ListIterator<E> listIterator(final int index) { | 
|  | return new ListIterator<E>() { | 
|  | private final ListIterator<? extends E> i | 
|  | = list.listIterator(index); | 
|  |  | 
|  | public boolean hasNext()     {return i.hasNext();} | 
|  | public E next()              {return i.next();} | 
|  | public boolean hasPrevious() {return i.hasPrevious();} | 
|  | public E previous()          {return i.previous();} | 
|  | public int nextIndex()       {return i.nextIndex();} | 
|  | public int previousIndex()   {return i.previousIndex();} | 
|  |  | 
|  | public void remove() { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public void set(E e) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public void add(E e) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void forEachRemaining(Consumer<? super E> action) { | 
|  | i.forEachRemaining(action); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | public List<E> subList(int fromIndex, int toIndex) { | 
|  | return new UnmodifiableList<>(list.subList(fromIndex, toIndex)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * UnmodifiableRandomAccessList instances are serialized as | 
|  | * UnmodifiableList instances to allow them to be deserialized | 
|  | * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList). | 
|  | * This method inverts the transformation.  As a beneficial | 
|  | * side-effect, it also grafts the RandomAccess marker onto | 
|  | * UnmodifiableList instances that were serialized in pre-1.4 JREs. | 
|  | * | 
|  | * Note: Unfortunately, UnmodifiableRandomAccessList instances | 
|  | * serialized in 1.4.1 and deserialized in 1.4 will become | 
|  | * UnmodifiableList instances, as this method was missing in 1.4. | 
|  | */ | 
|  | private Object readResolve() { | 
|  | return (list instanceof RandomAccess | 
|  | ? new UnmodifiableRandomAccessList<>(list) | 
|  | : this); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E> | 
|  | implements RandomAccess | 
|  | { | 
|  | UnmodifiableRandomAccessList(List<? extends E> list) { | 
|  | super(list); | 
|  | } | 
|  |  | 
|  | public List<E> subList(int fromIndex, int toIndex) { | 
|  | return new UnmodifiableRandomAccessList<>( | 
|  | list.subList(fromIndex, toIndex)); | 
|  | } | 
|  |  | 
|  | private static final long serialVersionUID = -2542308836966382001L; | 
|  |  | 
|  | /** | 
|  | * Allows instances to be deserialized in pre-1.4 JREs (which do | 
|  | * not have UnmodifiableRandomAccessList).  UnmodifiableList has | 
|  | * a readResolve method that inverts this transformation upon | 
|  | * deserialization. | 
|  | */ | 
|  | private Object writeReplace() { | 
|  | return new UnmodifiableList<>(list); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an unmodifiable view of the specified map.  This method | 
|  | * allows modules to provide users with "read-only" access to internal | 
|  | * maps.  Query operations on the returned map "read through" | 
|  | * to the specified map, and attempts to modify the returned | 
|  | * map, whether direct or via its collection views, result in an | 
|  | * <tt>UnsupportedOperationException</tt>.<p> | 
|  | * | 
|  | * The returned map will be serializable if the specified map | 
|  | * is serializable. | 
|  | * | 
|  | * @param <K> the class of the map keys | 
|  | * @param <V> the class of the map values | 
|  | * @param  m the map for which an unmodifiable view is to be returned. | 
|  | * @return an unmodifiable view of the specified map. | 
|  | */ | 
|  | public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) { | 
|  | return new UnmodifiableMap<>(m); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable { | 
|  | private static final long serialVersionUID = -1034234728574286014L; | 
|  |  | 
|  | private final Map<? extends K, ? extends V> m; | 
|  |  | 
|  | UnmodifiableMap(Map<? extends K, ? extends V> m) { | 
|  | if (m==null) | 
|  | throw new NullPointerException(); | 
|  | this.m = m; | 
|  | } | 
|  |  | 
|  | public int size()                        {return m.size();} | 
|  | public boolean isEmpty()                 {return m.isEmpty();} | 
|  | public boolean containsKey(Object key)   {return m.containsKey(key);} | 
|  | public boolean containsValue(Object val) {return m.containsValue(val);} | 
|  | public V get(Object key)                 {return m.get(key);} | 
|  |  | 
|  | public V put(K key, V value) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public V remove(Object key) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public void putAll(Map<? extends K, ? extends V> m) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public void clear() { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | private transient Set<K> keySet; | 
|  | private transient Set<Map.Entry<K,V>> entrySet; | 
|  | private transient Collection<V> values; | 
|  |  | 
|  | public Set<K> keySet() { | 
|  | if (keySet==null) | 
|  | keySet = unmodifiableSet(m.keySet()); | 
|  | return keySet; | 
|  | } | 
|  |  | 
|  | public Set<Map.Entry<K,V>> entrySet() { | 
|  | if (entrySet==null) | 
|  | entrySet = new UnmodifiableEntrySet<>(m.entrySet()); | 
|  | return entrySet; | 
|  | } | 
|  |  | 
|  | public Collection<V> values() { | 
|  | if (values==null) | 
|  | values = unmodifiableCollection(m.values()); | 
|  | return values; | 
|  | } | 
|  |  | 
|  | public boolean equals(Object o) {return o == this || m.equals(o);} | 
|  | public int hashCode()           {return m.hashCode();} | 
|  | public String toString()        {return m.toString();} | 
|  |  | 
|  | // Override default methods in Map | 
|  | @Override | 
|  | @SuppressWarnings("unchecked") | 
|  | public V getOrDefault(Object k, V defaultValue) { | 
|  | // Safe cast as we don't change the value | 
|  | return ((Map<K, V>)m).getOrDefault(k, defaultValue); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void forEach(BiConsumer<? super K, ? super V> action) { | 
|  | m.forEach(action); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V putIfAbsent(K key, V value) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public boolean remove(Object key, Object value) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public boolean replace(K key, V oldValue, V newValue) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V replace(K key, V value) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V computeIfPresent(K key, | 
|  | BiFunction<? super K, ? super V, ? extends V> remappingFunction) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V compute(K key, | 
|  | BiFunction<? super K, ? super V, ? extends V> remappingFunction) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V merge(K key, V value, | 
|  | BiFunction<? super V, ? super V, ? extends V> remappingFunction) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * We need this class in addition to UnmodifiableSet as | 
|  | * Map.Entries themselves permit modification of the backing Map | 
|  | * via their setValue operation.  This class is subtle: there are | 
|  | * many possible attacks that must be thwarted. | 
|  | * | 
|  | * @serial include | 
|  | */ | 
|  | static class UnmodifiableEntrySet<K,V> | 
|  | extends UnmodifiableSet<Map.Entry<K,V>> { | 
|  | private static final long serialVersionUID = 7854390611657943733L; | 
|  |  | 
|  | @SuppressWarnings({"unchecked", "rawtypes"}) | 
|  | UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) { | 
|  | // Need to cast to raw in order to work around a limitation in the type system | 
|  | super((Set)s); | 
|  | } | 
|  |  | 
|  | static <K, V> Consumer<Map.Entry<K, V>> entryConsumer(Consumer<? super Entry<K, V>> action) { | 
|  | return e -> action.accept(new UnmodifiableEntry<>(e)); | 
|  | } | 
|  |  | 
|  | public void forEach(Consumer<? super Entry<K, V>> action) { | 
|  | Objects.requireNonNull(action); | 
|  | c.forEach(entryConsumer(action)); | 
|  | } | 
|  |  | 
|  | static final class UnmodifiableEntrySetSpliterator<K, V> | 
|  | implements Spliterator<Entry<K,V>> { | 
|  | final Spliterator<Map.Entry<K, V>> s; | 
|  |  | 
|  | UnmodifiableEntrySetSpliterator(Spliterator<Entry<K, V>> s) { | 
|  | this.s = s; | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public boolean tryAdvance(Consumer<? super Entry<K, V>> action) { | 
|  | Objects.requireNonNull(action); | 
|  | return s.tryAdvance(entryConsumer(action)); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void forEachRemaining(Consumer<? super Entry<K, V>> action) { | 
|  | Objects.requireNonNull(action); | 
|  | s.forEachRemaining(entryConsumer(action)); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public Spliterator<Entry<K, V>> trySplit() { | 
|  | Spliterator<Entry<K, V>> split = s.trySplit(); | 
|  | return split == null | 
|  | ? null | 
|  | : new UnmodifiableEntrySetSpliterator<>(split); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public long estimateSize() { | 
|  | return s.estimateSize(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public long getExactSizeIfKnown() { | 
|  | return s.getExactSizeIfKnown(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public int characteristics() { | 
|  | return s.characteristics(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public boolean hasCharacteristics(int characteristics) { | 
|  | return s.hasCharacteristics(characteristics); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public Comparator<? super Entry<K, V>> getComparator() { | 
|  | return s.getComparator(); | 
|  | } | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | public Spliterator<Entry<K,V>> spliterator() { | 
|  | return new UnmodifiableEntrySetSpliterator<>( | 
|  | (Spliterator<Map.Entry<K, V>>) c.spliterator()); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public Stream<Entry<K,V>> stream() { | 
|  | return StreamSupport.stream(spliterator(), false); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public Stream<Entry<K,V>> parallelStream() { | 
|  | return StreamSupport.stream(spliterator(), true); | 
|  | } | 
|  |  | 
|  | public Iterator<Map.Entry<K,V>> iterator() { | 
|  | return new Iterator<Map.Entry<K,V>>() { | 
|  | private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator(); | 
|  |  | 
|  | public boolean hasNext() { | 
|  | return i.hasNext(); | 
|  | } | 
|  | public Map.Entry<K,V> next() { | 
|  | return new UnmodifiableEntry<>(i.next()); | 
|  | } | 
|  | public void remove() { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | // Android-note: Oversight of Iterator.forEachRemaining(). | 
|  | // This seems pretty inconsistent. Unlike other subclasses, | 
|  | // we aren't delegating to the subclass iterator here. | 
|  | // Seems like an oversight. http://b/110351017 | 
|  | }; | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | public Object[] toArray() { | 
|  | Object[] a = c.toArray(); | 
|  | for (int i=0; i<a.length; i++) | 
|  | a[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)a[i]); | 
|  | return a; | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | public <T> T[] toArray(T[] a) { | 
|  | // We don't pass a to c.toArray, to avoid window of | 
|  | // vulnerability wherein an unscrupulous multithreaded client | 
|  | // could get his hands on raw (unwrapped) Entries from c. | 
|  | Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0)); | 
|  |  | 
|  | for (int i=0; i<arr.length; i++) | 
|  | arr[i] = new UnmodifiableEntry<>((Map.Entry<? extends K, ? extends V>)arr[i]); | 
|  |  | 
|  | if (arr.length > a.length) | 
|  | return (T[])arr; | 
|  |  | 
|  | System.arraycopy(arr, 0, a, 0, arr.length); | 
|  | if (a.length > arr.length) | 
|  | a[arr.length] = null; | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * This method is overridden to protect the backing set against | 
|  | * an object with a nefarious equals function that senses | 
|  | * that the equality-candidate is Map.Entry and calls its | 
|  | * setValue method. | 
|  | */ | 
|  | public boolean contains(Object o) { | 
|  | if (!(o instanceof Map.Entry)) | 
|  | return false; | 
|  | return c.contains( | 
|  | new UnmodifiableEntry<>((Map.Entry<?,?>) o)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * The next two methods are overridden to protect against | 
|  | * an unscrupulous List whose contains(Object o) method senses | 
|  | * when o is a Map.Entry, and calls o.setValue. | 
|  | */ | 
|  | public boolean containsAll(Collection<?> coll) { | 
|  | for (Object e : coll) { | 
|  | if (!contains(e)) // Invokes safe contains() above | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | public boolean equals(Object o) { | 
|  | if (o == this) | 
|  | return true; | 
|  |  | 
|  | if (!(o instanceof Set)) | 
|  | return false; | 
|  | Set<?> s = (Set<?>) o; | 
|  | if (s.size() != c.size()) | 
|  | return false; | 
|  | return containsAll(s); // Invokes safe containsAll() above | 
|  | } | 
|  |  | 
|  | /** | 
|  | * This "wrapper class" serves two purposes: it prevents | 
|  | * the client from modifying the backing Map, by short-circuiting | 
|  | * the setValue method, and it protects the backing Map against | 
|  | * an ill-behaved Map.Entry that attempts to modify another | 
|  | * Map Entry when asked to perform an equality check. | 
|  | */ | 
|  | private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> { | 
|  | private Map.Entry<? extends K, ? extends V> e; | 
|  |  | 
|  | UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) | 
|  | {this.e = Objects.requireNonNull(e);} | 
|  |  | 
|  | public K getKey()        {return e.getKey();} | 
|  | public V getValue()      {return e.getValue();} | 
|  | public V setValue(V value) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public int hashCode()    {return e.hashCode();} | 
|  | public boolean equals(Object o) { | 
|  | if (this == o) | 
|  | return true; | 
|  | if (!(o instanceof Map.Entry)) | 
|  | return false; | 
|  | Map.Entry<?,?> t = (Map.Entry<?,?>)o; | 
|  | return eq(e.getKey(),   t.getKey()) && | 
|  | eq(e.getValue(), t.getValue()); | 
|  | } | 
|  | public String toString() {return e.toString();} | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an unmodifiable view of the specified sorted map.  This method | 
|  | * allows modules to provide users with "read-only" access to internal | 
|  | * sorted maps.  Query operations on the returned sorted map "read through" | 
|  | * to the specified sorted map.  Attempts to modify the returned | 
|  | * sorted map, whether direct, via its collection views, or via its | 
|  | * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in | 
|  | * an <tt>UnsupportedOperationException</tt>.<p> | 
|  | * | 
|  | * The returned sorted map will be serializable if the specified sorted map | 
|  | * is serializable. | 
|  | * | 
|  | * @param <K> the class of the map keys | 
|  | * @param <V> the class of the map values | 
|  | * @param m the sorted map for which an unmodifiable view is to be | 
|  | *        returned. | 
|  | * @return an unmodifiable view of the specified sorted map. | 
|  | */ | 
|  | public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) { | 
|  | return new UnmodifiableSortedMap<>(m); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class UnmodifiableSortedMap<K,V> | 
|  | extends UnmodifiableMap<K,V> | 
|  | implements SortedMap<K,V>, Serializable { | 
|  | private static final long serialVersionUID = -8806743815996713206L; | 
|  |  | 
|  | private final SortedMap<K, ? extends V> sm; | 
|  |  | 
|  | UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m; } | 
|  | public Comparator<? super K> comparator()   { return sm.comparator(); } | 
|  | public SortedMap<K,V> subMap(K fromKey, K toKey) | 
|  | { return new UnmodifiableSortedMap<>(sm.subMap(fromKey, toKey)); } | 
|  | public SortedMap<K,V> headMap(K toKey) | 
|  | { return new UnmodifiableSortedMap<>(sm.headMap(toKey)); } | 
|  | public SortedMap<K,V> tailMap(K fromKey) | 
|  | { return new UnmodifiableSortedMap<>(sm.tailMap(fromKey)); } | 
|  | public K firstKey()                           { return sm.firstKey(); } | 
|  | public K lastKey()                             { return sm.lastKey(); } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an unmodifiable view of the specified navigable map.  This method | 
|  | * allows modules to provide users with "read-only" access to internal | 
|  | * navigable maps.  Query operations on the returned navigable map "read | 
|  | * through" to the specified navigable map.  Attempts to modify the returned | 
|  | * navigable map, whether direct, via its collection views, or via its | 
|  | * {@code subMap}, {@code headMap}, or {@code tailMap} views, result in | 
|  | * an {@code UnsupportedOperationException}.<p> | 
|  | * | 
|  | * The returned navigable map will be serializable if the specified | 
|  | * navigable map is serializable. | 
|  | * | 
|  | * @param <K> the class of the map keys | 
|  | * @param <V> the class of the map values | 
|  | * @param m the navigable map for which an unmodifiable view is to be | 
|  | *        returned | 
|  | * @return an unmodifiable view of the specified navigable map | 
|  | * @since 1.8 | 
|  | */ | 
|  | public static <K,V> NavigableMap<K,V> unmodifiableNavigableMap(NavigableMap<K, ? extends V> m) { | 
|  | return new UnmodifiableNavigableMap<>(m); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class UnmodifiableNavigableMap<K,V> | 
|  | extends UnmodifiableSortedMap<K,V> | 
|  | implements NavigableMap<K,V>, Serializable { | 
|  | private static final long serialVersionUID = -4858195264774772197L; | 
|  |  | 
|  | /** | 
|  | * A class for the {@link EMPTY_NAVIGABLE_MAP} which needs readResolve | 
|  | * to preserve singleton property. | 
|  | * | 
|  | * @param <K> type of keys, if there were any, and of bounds | 
|  | * @param <V> type of values, if there were any | 
|  | */ | 
|  | private static class EmptyNavigableMap<K,V> extends UnmodifiableNavigableMap<K,V> | 
|  | implements Serializable { | 
|  |  | 
|  | private static final long serialVersionUID = -2239321462712562324L; | 
|  |  | 
|  | EmptyNavigableMap()                       { super(new TreeMap<K,V>()); } | 
|  |  | 
|  | @Override | 
|  | public NavigableSet<K> navigableKeySet() | 
|  | { return emptyNavigableSet(); } | 
|  |  | 
|  | private Object readResolve()        { return EMPTY_NAVIGABLE_MAP; } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Singleton for {@link emptyNavigableMap()} which is also immutable. | 
|  | */ | 
|  | private static final EmptyNavigableMap<?,?> EMPTY_NAVIGABLE_MAP = | 
|  | new EmptyNavigableMap<>(); | 
|  |  | 
|  | /** | 
|  | * The instance we wrap and protect. | 
|  | */ | 
|  | private final NavigableMap<K, ? extends V> nm; | 
|  |  | 
|  | UnmodifiableNavigableMap(NavigableMap<K, ? extends V> m) | 
|  | {super(m); nm = m;} | 
|  |  | 
|  | public K lowerKey(K key)                   { return nm.lowerKey(key); } | 
|  | public K floorKey(K key)                   { return nm.floorKey(key); } | 
|  | public K ceilingKey(K key)               { return nm.ceilingKey(key); } | 
|  | public K higherKey(K key)                 { return nm.higherKey(key); } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | public Entry<K, V> lowerEntry(K key) { | 
|  | Entry<K,V> lower = (Entry<K, V>) nm.lowerEntry(key); | 
|  | return (null != lower) | 
|  | ? new UnmodifiableEntrySet.UnmodifiableEntry<>(lower) | 
|  | : null; | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | public Entry<K, V> floorEntry(K key) { | 
|  | Entry<K,V> floor = (Entry<K, V>) nm.floorEntry(key); | 
|  | return (null != floor) | 
|  | ? new UnmodifiableEntrySet.UnmodifiableEntry<>(floor) | 
|  | : null; | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | public Entry<K, V> ceilingEntry(K key) { | 
|  | Entry<K,V> ceiling = (Entry<K, V>) nm.ceilingEntry(key); | 
|  | return (null != ceiling) | 
|  | ? new UnmodifiableEntrySet.UnmodifiableEntry<>(ceiling) | 
|  | : null; | 
|  | } | 
|  |  | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | public Entry<K, V> higherEntry(K key) { | 
|  | Entry<K,V> higher = (Entry<K, V>) nm.higherEntry(key); | 
|  | return (null != higher) | 
|  | ? new UnmodifiableEntrySet.UnmodifiableEntry<>(higher) | 
|  | : null; | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | public Entry<K, V> firstEntry() { | 
|  | Entry<K,V> first = (Entry<K, V>) nm.firstEntry(); | 
|  | return (null != first) | 
|  | ? new UnmodifiableEntrySet.UnmodifiableEntry<>(first) | 
|  | : null; | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | public Entry<K, V> lastEntry() { | 
|  | Entry<K,V> last = (Entry<K, V>) nm.lastEntry(); | 
|  | return (null != last) | 
|  | ? new UnmodifiableEntrySet.UnmodifiableEntry<>(last) | 
|  | : null; | 
|  | } | 
|  |  | 
|  | public Entry<K, V> pollFirstEntry() | 
|  | { throw new UnsupportedOperationException(); } | 
|  | public Entry<K, V> pollLastEntry() | 
|  | { throw new UnsupportedOperationException(); } | 
|  | public NavigableMap<K, V> descendingMap() | 
|  | { return unmodifiableNavigableMap(nm.descendingMap()); } | 
|  | public NavigableSet<K> navigableKeySet() | 
|  | { return unmodifiableNavigableSet(nm.navigableKeySet()); } | 
|  | public NavigableSet<K> descendingKeySet() | 
|  | { return unmodifiableNavigableSet(nm.descendingKeySet()); } | 
|  |  | 
|  | public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { | 
|  | return unmodifiableNavigableMap( | 
|  | nm.subMap(fromKey, fromInclusive, toKey, toInclusive)); | 
|  | } | 
|  |  | 
|  | public NavigableMap<K, V> headMap(K toKey, boolean inclusive) | 
|  | { return unmodifiableNavigableMap(nm.headMap(toKey, inclusive)); } | 
|  | public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) | 
|  | { return unmodifiableNavigableMap(nm.tailMap(fromKey, inclusive)); } | 
|  | } | 
|  |  | 
|  | // Synch Wrappers | 
|  |  | 
|  | /** | 
|  | * Returns a synchronized (thread-safe) collection backed by the specified | 
|  | * collection.  In order to guarantee serial access, it is critical that | 
|  | * <strong>all</strong> access to the backing collection is accomplished | 
|  | * through the returned collection.<p> | 
|  | * | 
|  | * It is imperative that the user manually synchronize on the returned | 
|  | * collection when traversing it via {@link Iterator}, {@link Spliterator} | 
|  | * or {@link Stream}: | 
|  | * <pre> | 
|  | *  Collection c = Collections.synchronizedCollection(myCollection); | 
|  | *     ... | 
|  | *  synchronized (c) { | 
|  | *      Iterator i = c.iterator(); // Must be in the synchronized block | 
|  | *      while (i.hasNext()) | 
|  | *         foo(i.next()); | 
|  | *  } | 
|  | * </pre> | 
|  | * Failure to follow this advice may result in non-deterministic behavior. | 
|  | * | 
|  | * <p>The returned collection does <i>not</i> pass the {@code hashCode} | 
|  | * and {@code equals} operations through to the backing collection, but | 
|  | * relies on {@code Object}'s equals and hashCode methods.  This is | 
|  | * necessary to preserve the contracts of these operations in the case | 
|  | * that the backing collection is a set or a list.<p> | 
|  | * | 
|  | * The returned collection will be serializable if the specified collection | 
|  | * is serializable. | 
|  | * | 
|  | * @param  <T> the class of the objects in the collection | 
|  | * @param  c the collection to be "wrapped" in a synchronized collection. | 
|  | * @return a synchronized view of the specified collection. | 
|  | */ | 
|  | public static <T> Collection<T> synchronizedCollection(Collection<T> c) { | 
|  | return new SynchronizedCollection<>(c); | 
|  | } | 
|  |  | 
|  | static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) { | 
|  | return new SynchronizedCollection<>(c, mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class SynchronizedCollection<E> implements Collection<E>, Serializable { | 
|  | private static final long serialVersionUID = 3053995032091335093L; | 
|  |  | 
|  | final Collection<E> c;  // Backing Collection | 
|  | final Object mutex;     // Object on which to synchronize | 
|  |  | 
|  | SynchronizedCollection(Collection<E> c) { | 
|  | this.c = Objects.requireNonNull(c); | 
|  | mutex = this; | 
|  | } | 
|  |  | 
|  | SynchronizedCollection(Collection<E> c, Object mutex) { | 
|  | this.c = Objects.requireNonNull(c); | 
|  | this.mutex = Objects.requireNonNull(mutex); | 
|  | } | 
|  |  | 
|  | public int size() { | 
|  | synchronized (mutex) {return c.size();} | 
|  | } | 
|  | public boolean isEmpty() { | 
|  | synchronized (mutex) {return c.isEmpty();} | 
|  | } | 
|  | public boolean contains(Object o) { | 
|  | synchronized (mutex) {return c.contains(o);} | 
|  | } | 
|  | public Object[] toArray() { | 
|  | synchronized (mutex) {return c.toArray();} | 
|  | } | 
|  | public <T> T[] toArray(T[] a) { | 
|  | synchronized (mutex) {return c.toArray(a);} | 
|  | } | 
|  |  | 
|  | public Iterator<E> iterator() { | 
|  | return c.iterator(); // Must be manually synched by user! | 
|  | } | 
|  |  | 
|  | public boolean add(E e) { | 
|  | synchronized (mutex) {return c.add(e);} | 
|  | } | 
|  | public boolean remove(Object o) { | 
|  | synchronized (mutex) {return c.remove(o);} | 
|  | } | 
|  |  | 
|  | public boolean containsAll(Collection<?> coll) { | 
|  | synchronized (mutex) {return c.containsAll(coll);} | 
|  | } | 
|  | public boolean addAll(Collection<? extends E> coll) { | 
|  | synchronized (mutex) {return c.addAll(coll);} | 
|  | } | 
|  | public boolean removeAll(Collection<?> coll) { | 
|  | synchronized (mutex) {return c.removeAll(coll);} | 
|  | } | 
|  | public boolean retainAll(Collection<?> coll) { | 
|  | synchronized (mutex) {return c.retainAll(coll);} | 
|  | } | 
|  | public void clear() { | 
|  | synchronized (mutex) {c.clear();} | 
|  | } | 
|  | public String toString() { | 
|  | synchronized (mutex) {return c.toString();} | 
|  | } | 
|  | // Override default methods in Collection | 
|  | @Override | 
|  | public void forEach(Consumer<? super E> consumer) { | 
|  | synchronized (mutex) {c.forEach(consumer);} | 
|  | } | 
|  | @Override | 
|  | public boolean removeIf(Predicate<? super E> filter) { | 
|  | synchronized (mutex) {return c.removeIf(filter);} | 
|  | } | 
|  | @Override | 
|  | public Spliterator<E> spliterator() { | 
|  | return c.spliterator(); // Must be manually synched by user! | 
|  | } | 
|  | @Override | 
|  | public Stream<E> stream() { | 
|  | return c.stream(); // Must be manually synched by user! | 
|  | } | 
|  | @Override | 
|  | public Stream<E> parallelStream() { | 
|  | return c.parallelStream(); // Must be manually synched by user! | 
|  | } | 
|  | private void writeObject(ObjectOutputStream s) throws IOException { | 
|  | synchronized (mutex) {s.defaultWriteObject();} | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a synchronized (thread-safe) set backed by the specified | 
|  | * set.  In order to guarantee serial access, it is critical that | 
|  | * <strong>all</strong> access to the backing set is accomplished | 
|  | * through the returned set.<p> | 
|  | * | 
|  | * It is imperative that the user manually synchronize on the returned | 
|  | * set when iterating over it: | 
|  | * <pre> | 
|  | *  Set s = Collections.synchronizedSet(new HashSet()); | 
|  | *      ... | 
|  | *  synchronized (s) { | 
|  | *      Iterator i = s.iterator(); // Must be in the synchronized block | 
|  | *      while (i.hasNext()) | 
|  | *          foo(i.next()); | 
|  | *  } | 
|  | * </pre> | 
|  | * Failure to follow this advice may result in non-deterministic behavior. | 
|  | * | 
|  | * <p>The returned set will be serializable if the specified set is | 
|  | * serializable. | 
|  | * | 
|  | * @param  <T> the class of the objects in the set | 
|  | * @param  s the set to be "wrapped" in a synchronized set. | 
|  | * @return a synchronized view of the specified set. | 
|  | */ | 
|  | public static <T> Set<T> synchronizedSet(Set<T> s) { | 
|  | return new SynchronizedSet<>(s); | 
|  | } | 
|  |  | 
|  | static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) { | 
|  | return new SynchronizedSet<>(s, mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class SynchronizedSet<E> | 
|  | extends SynchronizedCollection<E> | 
|  | implements Set<E> { | 
|  | private static final long serialVersionUID = 487447009682186044L; | 
|  |  | 
|  | SynchronizedSet(Set<E> s) { | 
|  | super(s); | 
|  | } | 
|  | SynchronizedSet(Set<E> s, Object mutex) { | 
|  | super(s, mutex); | 
|  | } | 
|  |  | 
|  | public boolean equals(Object o) { | 
|  | if (this == o) | 
|  | return true; | 
|  | synchronized (mutex) {return c.equals(o);} | 
|  | } | 
|  | public int hashCode() { | 
|  | synchronized (mutex) {return c.hashCode();} | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a synchronized (thread-safe) sorted set backed by the specified | 
|  | * sorted set.  In order to guarantee serial access, it is critical that | 
|  | * <strong>all</strong> access to the backing sorted set is accomplished | 
|  | * through the returned sorted set (or its views).<p> | 
|  | * | 
|  | * It is imperative that the user manually synchronize on the returned | 
|  | * sorted set when iterating over it or any of its <tt>subSet</tt>, | 
|  | * <tt>headSet</tt>, or <tt>tailSet</tt> views. | 
|  | * <pre> | 
|  | *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet()); | 
|  | *      ... | 
|  | *  synchronized (s) { | 
|  | *      Iterator i = s.iterator(); // Must be in the synchronized block | 
|  | *      while (i.hasNext()) | 
|  | *          foo(i.next()); | 
|  | *  } | 
|  | * </pre> | 
|  | * or: | 
|  | * <pre> | 
|  | *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet()); | 
|  | *  SortedSet s2 = s.headSet(foo); | 
|  | *      ... | 
|  | *  synchronized (s) {  // Note: s, not s2!!! | 
|  | *      Iterator i = s2.iterator(); // Must be in the synchronized block | 
|  | *      while (i.hasNext()) | 
|  | *          foo(i.next()); | 
|  | *  } | 
|  | * </pre> | 
|  | * Failure to follow this advice may result in non-deterministic behavior. | 
|  | * | 
|  | * <p>The returned sorted set will be serializable if the specified | 
|  | * sorted set is serializable. | 
|  | * | 
|  | * @param  <T> the class of the objects in the set | 
|  | * @param  s the sorted set to be "wrapped" in a synchronized sorted set. | 
|  | * @return a synchronized view of the specified sorted set. | 
|  | */ | 
|  | public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) { | 
|  | return new SynchronizedSortedSet<>(s); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class SynchronizedSortedSet<E> | 
|  | extends SynchronizedSet<E> | 
|  | implements SortedSet<E> | 
|  | { | 
|  | private static final long serialVersionUID = 8695801310862127406L; | 
|  |  | 
|  | private final SortedSet<E> ss; | 
|  |  | 
|  | SynchronizedSortedSet(SortedSet<E> s) { | 
|  | super(s); | 
|  | ss = s; | 
|  | } | 
|  | SynchronizedSortedSet(SortedSet<E> s, Object mutex) { | 
|  | super(s, mutex); | 
|  | ss = s; | 
|  | } | 
|  |  | 
|  | public Comparator<? super E> comparator() { | 
|  | synchronized (mutex) {return ss.comparator();} | 
|  | } | 
|  |  | 
|  | public SortedSet<E> subSet(E fromElement, E toElement) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedSortedSet<>( | 
|  | ss.subSet(fromElement, toElement), mutex); | 
|  | } | 
|  | } | 
|  | public SortedSet<E> headSet(E toElement) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedSortedSet<>(ss.headSet(toElement), mutex); | 
|  | } | 
|  | } | 
|  | public SortedSet<E> tailSet(E fromElement) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedSortedSet<>(ss.tailSet(fromElement),mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | public E first() { | 
|  | synchronized (mutex) {return ss.first();} | 
|  | } | 
|  | public E last() { | 
|  | synchronized (mutex) {return ss.last();} | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a synchronized (thread-safe) navigable set backed by the | 
|  | * specified navigable set.  In order to guarantee serial access, it is | 
|  | * critical that <strong>all</strong> access to the backing navigable set is | 
|  | * accomplished through the returned navigable set (or its views).<p> | 
|  | * | 
|  | * It is imperative that the user manually synchronize on the returned | 
|  | * navigable set when iterating over it or any of its {@code subSet}, | 
|  | * {@code headSet}, or {@code tailSet} views. | 
|  | * <pre> | 
|  | *  NavigableSet s = Collections.synchronizedNavigableSet(new TreeSet()); | 
|  | *      ... | 
|  | *  synchronized (s) { | 
|  | *      Iterator i = s.iterator(); // Must be in the synchronized block | 
|  | *      while (i.hasNext()) | 
|  | *          foo(i.next()); | 
|  | *  } | 
|  | * </pre> | 
|  | * or: | 
|  | * <pre> | 
|  | *  NavigableSet s = Collections.synchronizedNavigableSet(new TreeSet()); | 
|  | *  NavigableSet s2 = s.headSet(foo, true); | 
|  | *      ... | 
|  | *  synchronized (s) {  // Note: s, not s2!!! | 
|  | *      Iterator i = s2.iterator(); // Must be in the synchronized block | 
|  | *      while (i.hasNext()) | 
|  | *          foo(i.next()); | 
|  | *  } | 
|  | * </pre> | 
|  | * Failure to follow this advice may result in non-deterministic behavior. | 
|  | * | 
|  | * <p>The returned navigable set will be serializable if the specified | 
|  | * navigable set is serializable. | 
|  | * | 
|  | * @param  <T> the class of the objects in the set | 
|  | * @param  s the navigable set to be "wrapped" in a synchronized navigable | 
|  | * set | 
|  | * @return a synchronized view of the specified navigable set | 
|  | * @since 1.8 | 
|  | */ | 
|  | public static <T> NavigableSet<T> synchronizedNavigableSet(NavigableSet<T> s) { | 
|  | return new SynchronizedNavigableSet<>(s); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class SynchronizedNavigableSet<E> | 
|  | extends SynchronizedSortedSet<E> | 
|  | implements NavigableSet<E> | 
|  | { | 
|  | private static final long serialVersionUID = -5505529816273629798L; | 
|  |  | 
|  | private final NavigableSet<E> ns; | 
|  |  | 
|  | SynchronizedNavigableSet(NavigableSet<E> s) { | 
|  | super(s); | 
|  | ns = s; | 
|  | } | 
|  |  | 
|  | SynchronizedNavigableSet(NavigableSet<E> s, Object mutex) { | 
|  | super(s, mutex); | 
|  | ns = s; | 
|  | } | 
|  | public E lower(E e)      { synchronized (mutex) {return ns.lower(e);} } | 
|  | public E floor(E e)      { synchronized (mutex) {return ns.floor(e);} } | 
|  | public E ceiling(E e)  { synchronized (mutex) {return ns.ceiling(e);} } | 
|  | public E higher(E e)    { synchronized (mutex) {return ns.higher(e);} } | 
|  | public E pollFirst()  { synchronized (mutex) {return ns.pollFirst();} } | 
|  | public E pollLast()    { synchronized (mutex) {return ns.pollLast();} } | 
|  |  | 
|  | public NavigableSet<E> descendingSet() { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableSet<>(ns.descendingSet(), mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | public Iterator<E> descendingIterator() | 
|  | { synchronized (mutex) { return descendingSet().iterator(); } } | 
|  |  | 
|  | public NavigableSet<E> subSet(E fromElement, E toElement) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableSet<>(ns.subSet(fromElement, true, toElement, false), mutex); | 
|  | } | 
|  | } | 
|  | public NavigableSet<E> headSet(E toElement) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableSet<>(ns.headSet(toElement, false), mutex); | 
|  | } | 
|  | } | 
|  | public NavigableSet<E> tailSet(E fromElement) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableSet<>(ns.tailSet(fromElement, true), mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableSet<>(ns.subSet(fromElement, fromInclusive, toElement, toInclusive), mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | public NavigableSet<E> headSet(E toElement, boolean inclusive) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableSet<>(ns.headSet(toElement, inclusive), mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableSet<>(ns.tailSet(fromElement, inclusive), mutex); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a synchronized (thread-safe) list backed by the specified | 
|  | * list.  In order to guarantee serial access, it is critical that | 
|  | * <strong>all</strong> access to the backing list is accomplished | 
|  | * through the returned list.<p> | 
|  | * | 
|  | * It is imperative that the user manually synchronize on the returned | 
|  | * list when iterating over it: | 
|  | * <pre> | 
|  | *  List list = Collections.synchronizedList(new ArrayList()); | 
|  | *      ... | 
|  | *  synchronized (list) { | 
|  | *      Iterator i = list.iterator(); // Must be in synchronized block | 
|  | *      while (i.hasNext()) | 
|  | *          foo(i.next()); | 
|  | *  } | 
|  | * </pre> | 
|  | * Failure to follow this advice may result in non-deterministic behavior. | 
|  | * | 
|  | * <p>The returned list will be serializable if the specified list is | 
|  | * serializable. | 
|  | * | 
|  | * @param  <T> the class of the objects in the list | 
|  | * @param  list the list to be "wrapped" in a synchronized list. | 
|  | * @return a synchronized view of the specified list. | 
|  | */ | 
|  | public static <T> List<T> synchronizedList(List<T> list) { | 
|  | return (list instanceof RandomAccess ? | 
|  | new SynchronizedRandomAccessList<>(list) : | 
|  | new SynchronizedList<>(list)); | 
|  | } | 
|  |  | 
|  | static <T> List<T> synchronizedList(List<T> list, Object mutex) { | 
|  | return (list instanceof RandomAccess ? | 
|  | new SynchronizedRandomAccessList<>(list, mutex) : | 
|  | new SynchronizedList<>(list, mutex)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class SynchronizedList<E> | 
|  | extends SynchronizedCollection<E> | 
|  | implements List<E> { | 
|  | private static final long serialVersionUID = -7754090372962971524L; | 
|  |  | 
|  | final List<E> list; | 
|  |  | 
|  | SynchronizedList(List<E> list) { | 
|  | super(list); | 
|  | this.list = list; | 
|  | } | 
|  | SynchronizedList(List<E> list, Object mutex) { | 
|  | super(list, mutex); | 
|  | this.list = list; | 
|  | } | 
|  |  | 
|  | public boolean equals(Object o) { | 
|  | if (this == o) | 
|  | return true; | 
|  | synchronized (mutex) {return list.equals(o);} | 
|  | } | 
|  | public int hashCode() { | 
|  | synchronized (mutex) {return list.hashCode();} | 
|  | } | 
|  |  | 
|  | public E get(int index) { | 
|  | synchronized (mutex) {return list.get(index);} | 
|  | } | 
|  | public E set(int index, E element) { | 
|  | synchronized (mutex) {return list.set(index, element);} | 
|  | } | 
|  | public void add(int index, E element) { | 
|  | synchronized (mutex) {list.add(index, element);} | 
|  | } | 
|  | public E remove(int index) { | 
|  | synchronized (mutex) {return list.remove(index);} | 
|  | } | 
|  |  | 
|  | public int indexOf(Object o) { | 
|  | synchronized (mutex) {return list.indexOf(o);} | 
|  | } | 
|  | public int lastIndexOf(Object o) { | 
|  | synchronized (mutex) {return list.lastIndexOf(o);} | 
|  | } | 
|  |  | 
|  | public boolean addAll(int index, Collection<? extends E> c) { | 
|  | synchronized (mutex) {return list.addAll(index, c);} | 
|  | } | 
|  |  | 
|  | public ListIterator<E> listIterator() { | 
|  | return list.listIterator(); // Must be manually synched by user | 
|  | } | 
|  |  | 
|  | public ListIterator<E> listIterator(int index) { | 
|  | return list.listIterator(index); // Must be manually synched by user | 
|  | } | 
|  |  | 
|  | public List<E> subList(int fromIndex, int toIndex) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedList<>(list.subList(fromIndex, toIndex), | 
|  | mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void replaceAll(UnaryOperator<E> operator) { | 
|  | synchronized (mutex) {list.replaceAll(operator);} | 
|  | } | 
|  | @Override | 
|  | public void sort(Comparator<? super E> c) { | 
|  | synchronized (mutex) {list.sort(c);} | 
|  | } | 
|  |  | 
|  | /** | 
|  | * SynchronizedRandomAccessList instances are serialized as | 
|  | * SynchronizedList instances to allow them to be deserialized | 
|  | * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList). | 
|  | * This method inverts the transformation.  As a beneficial | 
|  | * side-effect, it also grafts the RandomAccess marker onto | 
|  | * SynchronizedList instances that were serialized in pre-1.4 JREs. | 
|  | * | 
|  | * Note: Unfortunately, SynchronizedRandomAccessList instances | 
|  | * serialized in 1.4.1 and deserialized in 1.4 will become | 
|  | * SynchronizedList instances, as this method was missing in 1.4. | 
|  | */ | 
|  | private Object readResolve() { | 
|  | return (list instanceof RandomAccess | 
|  | ? new SynchronizedRandomAccessList<>(list) | 
|  | : this); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class SynchronizedRandomAccessList<E> | 
|  | extends SynchronizedList<E> | 
|  | implements RandomAccess { | 
|  |  | 
|  | SynchronizedRandomAccessList(List<E> list) { | 
|  | super(list); | 
|  | } | 
|  |  | 
|  | SynchronizedRandomAccessList(List<E> list, Object mutex) { | 
|  | super(list, mutex); | 
|  | } | 
|  |  | 
|  | public List<E> subList(int fromIndex, int toIndex) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedRandomAccessList<>( | 
|  | list.subList(fromIndex, toIndex), mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | private static final long serialVersionUID = 1530674583602358482L; | 
|  |  | 
|  | /** | 
|  | * Allows instances to be deserialized in pre-1.4 JREs (which do | 
|  | * not have SynchronizedRandomAccessList).  SynchronizedList has | 
|  | * a readResolve method that inverts this transformation upon | 
|  | * deserialization. | 
|  | */ | 
|  | private Object writeReplace() { | 
|  | return new SynchronizedList<>(list); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a synchronized (thread-safe) map backed by the specified | 
|  | * map.  In order to guarantee serial access, it is critical that | 
|  | * <strong>all</strong> access to the backing map is accomplished | 
|  | * through the returned map.<p> | 
|  | * | 
|  | * It is imperative that the user manually synchronize on the returned | 
|  | * map when iterating over any of its collection views: | 
|  | * <pre> | 
|  | *  Map m = Collections.synchronizedMap(new HashMap()); | 
|  | *      ... | 
|  | *  Set s = m.keySet();  // Needn't be in synchronized block | 
|  | *      ... | 
|  | *  synchronized (m) {  // Synchronizing on m, not s! | 
|  | *      Iterator i = s.iterator(); // Must be in synchronized block | 
|  | *      while (i.hasNext()) | 
|  | *          foo(i.next()); | 
|  | *  } | 
|  | * </pre> | 
|  | * Failure to follow this advice may result in non-deterministic behavior. | 
|  | * | 
|  | * <p>The returned map will be serializable if the specified map is | 
|  | * serializable. | 
|  | * | 
|  | * @param <K> the class of the map keys | 
|  | * @param <V> the class of the map values | 
|  | * @param  m the map to be "wrapped" in a synchronized map. | 
|  | * @return a synchronized view of the specified map. | 
|  | */ | 
|  | public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) { | 
|  | return new SynchronizedMap<>(m); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class SynchronizedMap<K,V> | 
|  | implements Map<K,V>, Serializable { | 
|  | private static final long serialVersionUID = 1978198479659022715L; | 
|  |  | 
|  | private final Map<K,V> m;     // Backing Map | 
|  | final Object      mutex;        // Object on which to synchronize | 
|  |  | 
|  | SynchronizedMap(Map<K,V> m) { | 
|  | this.m = Objects.requireNonNull(m); | 
|  | mutex = this; | 
|  | } | 
|  |  | 
|  | SynchronizedMap(Map<K,V> m, Object mutex) { | 
|  | this.m = m; | 
|  | this.mutex = mutex; | 
|  | } | 
|  |  | 
|  | public int size() { | 
|  | synchronized (mutex) {return m.size();} | 
|  | } | 
|  | public boolean isEmpty() { | 
|  | synchronized (mutex) {return m.isEmpty();} | 
|  | } | 
|  | public boolean containsKey(Object key) { | 
|  | synchronized (mutex) {return m.containsKey(key);} | 
|  | } | 
|  | public boolean containsValue(Object value) { | 
|  | synchronized (mutex) {return m.containsValue(value);} | 
|  | } | 
|  | public V get(Object key) { | 
|  | synchronized (mutex) {return m.get(key);} | 
|  | } | 
|  |  | 
|  | public V put(K key, V value) { | 
|  | synchronized (mutex) {return m.put(key, value);} | 
|  | } | 
|  | public V remove(Object key) { | 
|  | synchronized (mutex) {return m.remove(key);} | 
|  | } | 
|  | public void putAll(Map<? extends K, ? extends V> map) { | 
|  | synchronized (mutex) {m.putAll(map);} | 
|  | } | 
|  | public void clear() { | 
|  | synchronized (mutex) {m.clear();} | 
|  | } | 
|  |  | 
|  | private transient Set<K> keySet; | 
|  | private transient Set<Map.Entry<K,V>> entrySet; | 
|  | private transient Collection<V> values; | 
|  |  | 
|  | public Set<K> keySet() { | 
|  | synchronized (mutex) { | 
|  | if (keySet==null) | 
|  | keySet = new SynchronizedSet<>(m.keySet(), mutex); | 
|  | return keySet; | 
|  | } | 
|  | } | 
|  |  | 
|  | public Set<Map.Entry<K,V>> entrySet() { | 
|  | synchronized (mutex) { | 
|  | if (entrySet==null) | 
|  | entrySet = new SynchronizedSet<>(m.entrySet(), mutex); | 
|  | return entrySet; | 
|  | } | 
|  | } | 
|  |  | 
|  | public Collection<V> values() { | 
|  | synchronized (mutex) { | 
|  | if (values==null) | 
|  | values = new SynchronizedCollection<>(m.values(), mutex); | 
|  | return values; | 
|  | } | 
|  | } | 
|  |  | 
|  | public boolean equals(Object o) { | 
|  | if (this == o) | 
|  | return true; | 
|  | synchronized (mutex) {return m.equals(o);} | 
|  | } | 
|  | public int hashCode() { | 
|  | synchronized (mutex) {return m.hashCode();} | 
|  | } | 
|  | public String toString() { | 
|  | synchronized (mutex) {return m.toString();} | 
|  | } | 
|  |  | 
|  | // Override default methods in Map | 
|  | @Override | 
|  | public V getOrDefault(Object k, V defaultValue) { | 
|  | synchronized (mutex) {return m.getOrDefault(k, defaultValue);} | 
|  | } | 
|  | @Override | 
|  | public void forEach(BiConsumer<? super K, ? super V> action) { | 
|  | synchronized (mutex) {m.forEach(action);} | 
|  | } | 
|  | @Override | 
|  | public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { | 
|  | synchronized (mutex) {m.replaceAll(function);} | 
|  | } | 
|  | @Override | 
|  | public V putIfAbsent(K key, V value) { | 
|  | synchronized (mutex) {return m.putIfAbsent(key, value);} | 
|  | } | 
|  | @Override | 
|  | public boolean remove(Object key, Object value) { | 
|  | synchronized (mutex) {return m.remove(key, value);} | 
|  | } | 
|  | @Override | 
|  | public boolean replace(K key, V oldValue, V newValue) { | 
|  | synchronized (mutex) {return m.replace(key, oldValue, newValue);} | 
|  | } | 
|  | @Override | 
|  | public V replace(K key, V value) { | 
|  | synchronized (mutex) {return m.replace(key, value);} | 
|  | } | 
|  | @Override | 
|  | public V computeIfAbsent(K key, | 
|  | Function<? super K, ? extends V> mappingFunction) { | 
|  | synchronized (mutex) {return m.computeIfAbsent(key, mappingFunction);} | 
|  | } | 
|  | @Override | 
|  | public V computeIfPresent(K key, | 
|  | BiFunction<? super K, ? super V, ? extends V> remappingFunction) { | 
|  | synchronized (mutex) {return m.computeIfPresent(key, remappingFunction);} | 
|  | } | 
|  | @Override | 
|  | public V compute(K key, | 
|  | BiFunction<? super K, ? super V, ? extends V> remappingFunction) { | 
|  | synchronized (mutex) {return m.compute(key, remappingFunction);} | 
|  | } | 
|  | @Override | 
|  | public V merge(K key, V value, | 
|  | BiFunction<? super V, ? super V, ? extends V> remappingFunction) { | 
|  | synchronized (mutex) {return m.merge(key, value, remappingFunction);} | 
|  | } | 
|  |  | 
|  | private void writeObject(ObjectOutputStream s) throws IOException { | 
|  | synchronized (mutex) {s.defaultWriteObject();} | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a synchronized (thread-safe) sorted map backed by the specified | 
|  | * sorted map.  In order to guarantee serial access, it is critical that | 
|  | * <strong>all</strong> access to the backing sorted map is accomplished | 
|  | * through the returned sorted map (or its views).<p> | 
|  | * | 
|  | * It is imperative that the user manually synchronize on the returned | 
|  | * sorted map when iterating over any of its collection views, or the | 
|  | * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or | 
|  | * <tt>tailMap</tt> views. | 
|  | * <pre> | 
|  | *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap()); | 
|  | *      ... | 
|  | *  Set s = m.keySet();  // Needn't be in synchronized block | 
|  | *      ... | 
|  | *  synchronized (m) {  // Synchronizing on m, not s! | 
|  | *      Iterator i = s.iterator(); // Must be in synchronized block | 
|  | *      while (i.hasNext()) | 
|  | *          foo(i.next()); | 
|  | *  } | 
|  | * </pre> | 
|  | * or: | 
|  | * <pre> | 
|  | *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap()); | 
|  | *  SortedMap m2 = m.subMap(foo, bar); | 
|  | *      ... | 
|  | *  Set s2 = m2.keySet();  // Needn't be in synchronized block | 
|  | *      ... | 
|  | *  synchronized (m) {  // Synchronizing on m, not m2 or s2! | 
|  | *      Iterator i = s.iterator(); // Must be in synchronized block | 
|  | *      while (i.hasNext()) | 
|  | *          foo(i.next()); | 
|  | *  } | 
|  | * </pre> | 
|  | * Failure to follow this advice may result in non-deterministic behavior. | 
|  | * | 
|  | * <p>The returned sorted map will be serializable if the specified | 
|  | * sorted map is serializable. | 
|  | * | 
|  | * @param <K> the class of the map keys | 
|  | * @param <V> the class of the map values | 
|  | * @param  m the sorted map to be "wrapped" in a synchronized sorted map. | 
|  | * @return a synchronized view of the specified sorted map. | 
|  | */ | 
|  | public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) { | 
|  | return new SynchronizedSortedMap<>(m); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class SynchronizedSortedMap<K,V> | 
|  | extends SynchronizedMap<K,V> | 
|  | implements SortedMap<K,V> | 
|  | { | 
|  | private static final long serialVersionUID = -8798146769416483793L; | 
|  |  | 
|  | private final SortedMap<K,V> sm; | 
|  |  | 
|  | SynchronizedSortedMap(SortedMap<K,V> m) { | 
|  | super(m); | 
|  | sm = m; | 
|  | } | 
|  | SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) { | 
|  | super(m, mutex); | 
|  | sm = m; | 
|  | } | 
|  |  | 
|  | public Comparator<? super K> comparator() { | 
|  | synchronized (mutex) {return sm.comparator();} | 
|  | } | 
|  |  | 
|  | public SortedMap<K,V> subMap(K fromKey, K toKey) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedSortedMap<>( | 
|  | sm.subMap(fromKey, toKey), mutex); | 
|  | } | 
|  | } | 
|  | public SortedMap<K,V> headMap(K toKey) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedSortedMap<>(sm.headMap(toKey), mutex); | 
|  | } | 
|  | } | 
|  | public SortedMap<K,V> tailMap(K fromKey) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedSortedMap<>(sm.tailMap(fromKey),mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | public K firstKey() { | 
|  | synchronized (mutex) {return sm.firstKey();} | 
|  | } | 
|  | public K lastKey() { | 
|  | synchronized (mutex) {return sm.lastKey();} | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a synchronized (thread-safe) navigable map backed by the | 
|  | * specified navigable map.  In order to guarantee serial access, it is | 
|  | * critical that <strong>all</strong> access to the backing navigable map is | 
|  | * accomplished through the returned navigable map (or its views).<p> | 
|  | * | 
|  | * It is imperative that the user manually synchronize on the returned | 
|  | * navigable map when iterating over any of its collection views, or the | 
|  | * collections views of any of its {@code subMap}, {@code headMap} or | 
|  | * {@code tailMap} views. | 
|  | * <pre> | 
|  | *  NavigableMap m = Collections.synchronizedNavigableMap(new TreeMap()); | 
|  | *      ... | 
|  | *  Set s = m.keySet();  // Needn't be in synchronized block | 
|  | *      ... | 
|  | *  synchronized (m) {  // Synchronizing on m, not s! | 
|  | *      Iterator i = s.iterator(); // Must be in synchronized block | 
|  | *      while (i.hasNext()) | 
|  | *          foo(i.next()); | 
|  | *  } | 
|  | * </pre> | 
|  | * or: | 
|  | * <pre> | 
|  | *  NavigableMap m = Collections.synchronizedNavigableMap(new TreeMap()); | 
|  | *  NavigableMap m2 = m.subMap(foo, true, bar, false); | 
|  | *      ... | 
|  | *  Set s2 = m2.keySet();  // Needn't be in synchronized block | 
|  | *      ... | 
|  | *  synchronized (m) {  // Synchronizing on m, not m2 or s2! | 
|  | *      Iterator i = s.iterator(); // Must be in synchronized block | 
|  | *      while (i.hasNext()) | 
|  | *          foo(i.next()); | 
|  | *  } | 
|  | * </pre> | 
|  | * Failure to follow this advice may result in non-deterministic behavior. | 
|  | * | 
|  | * <p>The returned navigable map will be serializable if the specified | 
|  | * navigable map is serializable. | 
|  | * | 
|  | * @param <K> the class of the map keys | 
|  | * @param <V> the class of the map values | 
|  | * @param  m the navigable map to be "wrapped" in a synchronized navigable | 
|  | *              map | 
|  | * @return a synchronized view of the specified navigable map. | 
|  | * @since 1.8 | 
|  | */ | 
|  | public static <K,V> NavigableMap<K,V> synchronizedNavigableMap(NavigableMap<K,V> m) { | 
|  | return new SynchronizedNavigableMap<>(m); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * A synchronized NavigableMap. | 
|  | * | 
|  | * @serial include | 
|  | */ | 
|  | static class SynchronizedNavigableMap<K,V> | 
|  | extends SynchronizedSortedMap<K,V> | 
|  | implements NavigableMap<K,V> | 
|  | { | 
|  | private static final long serialVersionUID = 699392247599746807L; | 
|  |  | 
|  | private final NavigableMap<K,V> nm; | 
|  |  | 
|  | SynchronizedNavigableMap(NavigableMap<K,V> m) { | 
|  | super(m); | 
|  | nm = m; | 
|  | } | 
|  | SynchronizedNavigableMap(NavigableMap<K,V> m, Object mutex) { | 
|  | super(m, mutex); | 
|  | nm = m; | 
|  | } | 
|  |  | 
|  | public Entry<K, V> lowerEntry(K key) | 
|  | { synchronized (mutex) { return nm.lowerEntry(key); } } | 
|  | public K lowerKey(K key) | 
|  | { synchronized (mutex) { return nm.lowerKey(key); } } | 
|  | public Entry<K, V> floorEntry(K key) | 
|  | { synchronized (mutex) { return nm.floorEntry(key); } } | 
|  | public K floorKey(K key) | 
|  | { synchronized (mutex) { return nm.floorKey(key); } } | 
|  | public Entry<K, V> ceilingEntry(K key) | 
|  | { synchronized (mutex) { return nm.ceilingEntry(key); } } | 
|  | public K ceilingKey(K key) | 
|  | { synchronized (mutex) { return nm.ceilingKey(key); } } | 
|  | public Entry<K, V> higherEntry(K key) | 
|  | { synchronized (mutex) { return nm.higherEntry(key); } } | 
|  | public K higherKey(K key) | 
|  | { synchronized (mutex) { return nm.higherKey(key); } } | 
|  | public Entry<K, V> firstEntry() | 
|  | { synchronized (mutex) { return nm.firstEntry(); } } | 
|  | public Entry<K, V> lastEntry() | 
|  | { synchronized (mutex) { return nm.lastEntry(); } } | 
|  | public Entry<K, V> pollFirstEntry() | 
|  | { synchronized (mutex) { return nm.pollFirstEntry(); } } | 
|  | public Entry<K, V> pollLastEntry() | 
|  | { synchronized (mutex) { return nm.pollLastEntry(); } } | 
|  |  | 
|  | public NavigableMap<K, V> descendingMap() { | 
|  | synchronized (mutex) { | 
|  | return | 
|  | new SynchronizedNavigableMap<>(nm.descendingMap(), mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | public NavigableSet<K> keySet() { | 
|  | return navigableKeySet(); | 
|  | } | 
|  |  | 
|  | public NavigableSet<K> navigableKeySet() { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableSet<>(nm.navigableKeySet(), mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | public NavigableSet<K> descendingKeySet() { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableSet<>(nm.descendingKeySet(), mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | public SortedMap<K,V> subMap(K fromKey, K toKey) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableMap<>( | 
|  | nm.subMap(fromKey, true, toKey, false), mutex); | 
|  | } | 
|  | } | 
|  | public SortedMap<K,V> headMap(K toKey) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableMap<>(nm.headMap(toKey, false), mutex); | 
|  | } | 
|  | } | 
|  | public SortedMap<K,V> tailMap(K fromKey) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableMap<>(nm.tailMap(fromKey, true),mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableMap<>( | 
|  | nm.subMap(fromKey, fromInclusive, toKey, toInclusive), mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableMap<>( | 
|  | nm.headMap(toKey, inclusive), mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { | 
|  | synchronized (mutex) { | 
|  | return new SynchronizedNavigableMap<>( | 
|  | nm.tailMap(fromKey, inclusive), mutex); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Dynamically typesafe collection wrappers | 
|  |  | 
|  | /** | 
|  | * Returns a dynamically typesafe view of the specified collection. | 
|  | * Any attempt to insert an element of the wrong type will result in an | 
|  | * immediate {@link ClassCastException}.  Assuming a collection | 
|  | * contains no incorrectly typed elements prior to the time a | 
|  | * dynamically typesafe view is generated, and that all subsequent | 
|  | * access to the collection takes place through the view, it is | 
|  | * <i>guaranteed</i> that the collection cannot contain an incorrectly | 
|  | * typed element. | 
|  | * | 
|  | * <p>The generics mechanism in the language provides compile-time | 
|  | * (static) type checking, but it is possible to defeat this mechanism | 
|  | * with unchecked casts.  Usually this is not a problem, as the compiler | 
|  | * issues warnings on all such unchecked operations.  There are, however, | 
|  | * times when static type checking alone is not sufficient.  For example, | 
|  | * suppose a collection is passed to a third-party library and it is | 
|  | * imperative that the library code not corrupt the collection by | 
|  | * inserting an element of the wrong type. | 
|  | * | 
|  | * <p>Another use of dynamically typesafe views is debugging.  Suppose a | 
|  | * program fails with a {@code ClassCastException}, indicating that an | 
|  | * incorrectly typed element was put into a parameterized collection. | 
|  | * Unfortunately, the exception can occur at any time after the erroneous | 
|  | * element is inserted, so it typically provides little or no information | 
|  | * as to the real source of the problem.  If the problem is reproducible, | 
|  | * one can quickly determine its source by temporarily modifying the | 
|  | * program to wrap the collection with a dynamically typesafe view. | 
|  | * For example, this declaration: | 
|  | *  <pre> {@code | 
|  | *     Collection<String> c = new HashSet<>(); | 
|  | * }</pre> | 
|  | * may be replaced temporarily by this one: | 
|  | *  <pre> {@code | 
|  | *     Collection<String> c = Collections.checkedCollection( | 
|  | *         new HashSet<>(), String.class); | 
|  | * }</pre> | 
|  | * Running the program again will cause it to fail at the point where | 
|  | * an incorrectly typed element is inserted into the collection, clearly | 
|  | * identifying the source of the problem.  Once the problem is fixed, the | 
|  | * modified declaration may be reverted back to the original. | 
|  | * | 
|  | * <p>The returned collection does <i>not</i> pass the hashCode and equals | 
|  | * operations through to the backing collection, but relies on | 
|  | * {@code Object}'s {@code equals} and {@code hashCode} methods.  This | 
|  | * is necessary to preserve the contracts of these operations in the case | 
|  | * that the backing collection is a set or a list. | 
|  | * | 
|  | * <p>The returned collection will be serializable if the specified | 
|  | * collection is serializable. | 
|  | * | 
|  | * <p>Since {@code null} is considered to be a value of any reference | 
|  | * type, the returned collection permits insertion of null elements | 
|  | * whenever the backing collection does. | 
|  | * | 
|  | * @param <E> the class of the objects in the collection | 
|  | * @param c the collection for which a dynamically typesafe view is to be | 
|  | *          returned | 
|  | * @param type the type of element that {@code c} is permitted to hold | 
|  | * @return a dynamically typesafe view of the specified collection | 
|  | * @since 1.5 | 
|  | */ | 
|  | public static <E> Collection<E> checkedCollection(Collection<E> c, | 
|  | Class<E> type) { | 
|  | return new CheckedCollection<>(c, type); | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | static <T> T[] zeroLengthArray(Class<T> type) { | 
|  | return (T[]) Array.newInstance(type, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class CheckedCollection<E> implements Collection<E>, Serializable { | 
|  | private static final long serialVersionUID = 1578914078182001775L; | 
|  |  | 
|  | final Collection<E> c; | 
|  | final Class<E> type; | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | E typeCheck(Object o) { | 
|  | if (o != null && !type.isInstance(o)) | 
|  | throw new ClassCastException(badElementMsg(o)); | 
|  | return (E) o; | 
|  | } | 
|  |  | 
|  | private String badElementMsg(Object o) { | 
|  | return "Attempt to insert " + o.getClass() + | 
|  | " element into collection with element type " + type; | 
|  | } | 
|  |  | 
|  | CheckedCollection(Collection<E> c, Class<E> type) { | 
|  | this.c = Objects.requireNonNull(c, "c"); | 
|  | this.type = Objects.requireNonNull(type, "type"); | 
|  | } | 
|  |  | 
|  | public int size()                 { return c.size(); } | 
|  | public boolean isEmpty()          { return c.isEmpty(); } | 
|  | public boolean contains(Object o) { return c.contains(o); } | 
|  | public Object[] toArray()         { return c.toArray(); } | 
|  | public <T> T[] toArray(T[] a)     { return c.toArray(a); } | 
|  | public String toString()          { return c.toString(); } | 
|  | public boolean remove(Object o)   { return c.remove(o); } | 
|  | public void clear()               {        c.clear(); } | 
|  |  | 
|  | public boolean containsAll(Collection<?> coll) { | 
|  | return c.containsAll(coll); | 
|  | } | 
|  | public boolean removeAll(Collection<?> coll) { | 
|  | return c.removeAll(coll); | 
|  | } | 
|  | public boolean retainAll(Collection<?> coll) { | 
|  | return c.retainAll(coll); | 
|  | } | 
|  |  | 
|  | public Iterator<E> iterator() { | 
|  | // JDK-6363904 - unwrapped iterator could be typecast to | 
|  | // ListIterator with unsafe set() | 
|  | final Iterator<E> it = c.iterator(); | 
|  | return new Iterator<E>() { | 
|  | public boolean hasNext() { return it.hasNext(); } | 
|  | public E next()          { return it.next(); } | 
|  | public void remove()     {        it.remove(); }}; | 
|  | // Android-note: Oversight of Iterator.forEachRemaining(). | 
|  | // http://b/110351017 | 
|  | } | 
|  |  | 
|  | public boolean add(E e)          { return c.add(typeCheck(e)); } | 
|  |  | 
|  | private E[] zeroLengthElementArray; // Lazily initialized | 
|  |  | 
|  | private E[] zeroLengthElementArray() { | 
|  | return zeroLengthElementArray != null ? zeroLengthElementArray : | 
|  | (zeroLengthElementArray = zeroLengthArray(type)); | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | Collection<E> checkedCopyOf(Collection<? extends E> coll) { | 
|  | Object[] a; | 
|  | try { | 
|  | E[] z = zeroLengthElementArray(); | 
|  | a = coll.toArray(z); | 
|  | // Defend against coll violating the toArray contract | 
|  | if (a.getClass() != z.getClass()) | 
|  | a = Arrays.copyOf(a, a.length, z.getClass()); | 
|  | } catch (ArrayStoreException ignore) { | 
|  | // To get better and consistent diagnostics, | 
|  | // we call typeCheck explicitly on each element. | 
|  | // We call clone() to defend against coll retaining a | 
|  | // reference to the returned array and storing a bad | 
|  | // element into it after it has been type checked. | 
|  | a = coll.toArray().clone(); | 
|  | for (Object o : a) | 
|  | typeCheck(o); | 
|  | } | 
|  | // A slight abuse of the type system, but safe here. | 
|  | return (Collection<E>) Arrays.asList(a); | 
|  | } | 
|  |  | 
|  | public boolean addAll(Collection<? extends E> coll) { | 
|  | // Doing things this way insulates us from concurrent changes | 
|  | // in the contents of coll and provides all-or-nothing | 
|  | // semantics (which we wouldn't get if we type-checked each | 
|  | // element as we added it) | 
|  | return c.addAll(checkedCopyOf(coll)); | 
|  | } | 
|  |  | 
|  | // Override default methods in Collection | 
|  | @Override | 
|  | public void forEach(Consumer<? super E> action) {c.forEach(action);} | 
|  | @Override | 
|  | public boolean removeIf(Predicate<? super E> filter) { | 
|  | return c.removeIf(filter); | 
|  | } | 
|  | @Override | 
|  | public Spliterator<E> spliterator() {return c.spliterator();} | 
|  | @Override | 
|  | public Stream<E> stream()           {return c.stream();} | 
|  | @Override | 
|  | public Stream<E> parallelStream()   {return c.parallelStream();} | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a dynamically typesafe view of the specified queue. | 
|  | * Any attempt to insert an element of the wrong type will result in | 
|  | * an immediate {@link ClassCastException}.  Assuming a queue contains | 
|  | * no incorrectly typed elements prior to the time a dynamically typesafe | 
|  | * view is generated, and that all subsequent access to the queue | 
|  | * takes place through the view, it is <i>guaranteed</i> that the | 
|  | * queue cannot contain an incorrectly typed element. | 
|  | * | 
|  | * <p>A discussion of the use of dynamically typesafe views may be | 
|  | * found in the documentation for the {@link #checkedCollection | 
|  | * checkedCollection} method. | 
|  | * | 
|  | * <p>The returned queue will be serializable if the specified queue | 
|  | * is serializable. | 
|  | * | 
|  | * <p>Since {@code null} is considered to be a value of any reference | 
|  | * type, the returned queue permits insertion of {@code null} elements | 
|  | * whenever the backing queue does. | 
|  | * | 
|  | * @param <E> the class of the objects in the queue | 
|  | * @param queue the queue for which a dynamically typesafe view is to be | 
|  | *             returned | 
|  | * @param type the type of element that {@code queue} is permitted to hold | 
|  | * @return a dynamically typesafe view of the specified queue | 
|  | * @since 1.8 | 
|  | */ | 
|  | public static <E> Queue<E> checkedQueue(Queue<E> queue, Class<E> type) { | 
|  | return new CheckedQueue<>(queue, type); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class CheckedQueue<E> | 
|  | extends CheckedCollection<E> | 
|  | implements Queue<E>, Serializable | 
|  | { | 
|  | private static final long serialVersionUID = 1433151992604707767L; | 
|  | final Queue<E> queue; | 
|  |  | 
|  | CheckedQueue(Queue<E> queue, Class<E> elementType) { | 
|  | super(queue, elementType); | 
|  | this.queue = queue; | 
|  | } | 
|  |  | 
|  | public E element()              {return queue.element();} | 
|  | public boolean equals(Object o) {return o == this || c.equals(o);} | 
|  | public int hashCode()           {return c.hashCode();} | 
|  | public E peek()                 {return queue.peek();} | 
|  | public E poll()                 {return queue.poll();} | 
|  | public E remove()               {return queue.remove();} | 
|  | public boolean offer(E e)       {return queue.offer(typeCheck(e));} | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a dynamically typesafe view of the specified set. | 
|  | * Any attempt to insert an element of the wrong type will result in | 
|  | * an immediate {@link ClassCastException}.  Assuming a set contains | 
|  | * no incorrectly typed elements prior to the time a dynamically typesafe | 
|  | * view is generated, and that all subsequent access to the set | 
|  | * takes place through the view, it is <i>guaranteed</i> that the | 
|  | * set cannot contain an incorrectly typed element. | 
|  | * | 
|  | * <p>A discussion of the use of dynamically typesafe views may be | 
|  | * found in the documentation for the {@link #checkedCollection | 
|  | * checkedCollection} method. | 
|  | * | 
|  | * <p>The returned set will be serializable if the specified set is | 
|  | * serializable. | 
|  | * | 
|  | * <p>Since {@code null} is considered to be a value of any reference | 
|  | * type, the returned set permits insertion of null elements whenever | 
|  | * the backing set does. | 
|  | * | 
|  | * @param <E> the class of the objects in the set | 
|  | * @param s the set for which a dynamically typesafe view is to be | 
|  | *          returned | 
|  | * @param type the type of element that {@code s} is permitted to hold | 
|  | * @return a dynamically typesafe view of the specified set | 
|  | * @since 1.5 | 
|  | */ | 
|  | public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) { | 
|  | return new CheckedSet<>(s, type); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class CheckedSet<E> extends CheckedCollection<E> | 
|  | implements Set<E>, Serializable | 
|  | { | 
|  | private static final long serialVersionUID = 4694047833775013803L; | 
|  |  | 
|  | CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); } | 
|  |  | 
|  | public boolean equals(Object o) { return o == this || c.equals(o); } | 
|  | public int hashCode()           { return c.hashCode(); } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a dynamically typesafe view of the specified sorted set. | 
|  | * Any attempt to insert an element of the wrong type will result in an | 
|  | * immediate {@link ClassCastException}.  Assuming a sorted set | 
|  | * contains no incorrectly typed elements prior to the time a | 
|  | * dynamically typesafe view is generated, and that all subsequent | 
|  | * access to the sorted set takes place through the view, it is | 
|  | * <i>guaranteed</i> that the sorted set cannot contain an incorrectly | 
|  | * typed element. | 
|  | * | 
|  | * <p>A discussion of the use of dynamically typesafe views may be | 
|  | * found in the documentation for the {@link #checkedCollection | 
|  | * checkedCollection} method. | 
|  | * | 
|  | * <p>The returned sorted set will be serializable if the specified sorted | 
|  | * set is serializable. | 
|  | * | 
|  | * <p>Since {@code null} is considered to be a value of any reference | 
|  | * type, the returned sorted set permits insertion of null elements | 
|  | * whenever the backing sorted set does. | 
|  | * | 
|  | * @param <E> the class of the objects in the set | 
|  | * @param s the sorted set for which a dynamically typesafe view is to be | 
|  | *          returned | 
|  | * @param type the type of element that {@code s} is permitted to hold | 
|  | * @return a dynamically typesafe view of the specified sorted set | 
|  | * @since 1.5 | 
|  | */ | 
|  | public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s, | 
|  | Class<E> type) { | 
|  | return new CheckedSortedSet<>(s, type); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class CheckedSortedSet<E> extends CheckedSet<E> | 
|  | implements SortedSet<E>, Serializable | 
|  | { | 
|  | private static final long serialVersionUID = 1599911165492914959L; | 
|  |  | 
|  | private final SortedSet<E> ss; | 
|  |  | 
|  | CheckedSortedSet(SortedSet<E> s, Class<E> type) { | 
|  | super(s, type); | 
|  | ss = s; | 
|  | } | 
|  |  | 
|  | public Comparator<? super E> comparator() { return ss.comparator(); } | 
|  | public E first()                   { return ss.first(); } | 
|  | public E last()                    { return ss.last(); } | 
|  |  | 
|  | public SortedSet<E> subSet(E fromElement, E toElement) { | 
|  | return checkedSortedSet(ss.subSet(fromElement,toElement), type); | 
|  | } | 
|  | public SortedSet<E> headSet(E toElement) { | 
|  | return checkedSortedSet(ss.headSet(toElement), type); | 
|  | } | 
|  | public SortedSet<E> tailSet(E fromElement) { | 
|  | return checkedSortedSet(ss.tailSet(fromElement), type); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a dynamically typesafe view of the specified navigable set. | 
|  | * Any attempt to insert an element of the wrong type will result in an | 
|  | * immediate {@link ClassCastException}.  Assuming a navigable set | 
|  | * contains no incorrectly typed elements prior to the time a | 
|  | * dynamically typesafe view is generated, and that all subsequent | 
|  | * access to the navigable set takes place through the view, it is | 
|  | * <em>guaranteed</em> that the navigable set cannot contain an incorrectly | 
|  | * typed element. | 
|  | * | 
|  | * <p>A discussion of the use of dynamically typesafe views may be | 
|  | * found in the documentation for the {@link #checkedCollection | 
|  | * checkedCollection} method. | 
|  | * | 
|  | * <p>The returned navigable set will be serializable if the specified | 
|  | * navigable set is serializable. | 
|  | * | 
|  | * <p>Since {@code null} is considered to be a value of any reference | 
|  | * type, the returned navigable set permits insertion of null elements | 
|  | * whenever the backing sorted set does. | 
|  | * | 
|  | * @param <E> the class of the objects in the set | 
|  | * @param s the navigable set for which a dynamically typesafe view is to be | 
|  | *          returned | 
|  | * @param type the type of element that {@code s} is permitted to hold | 
|  | * @return a dynamically typesafe view of the specified navigable set | 
|  | * @since 1.8 | 
|  | */ | 
|  | public static <E> NavigableSet<E> checkedNavigableSet(NavigableSet<E> s, | 
|  | Class<E> type) { | 
|  | return new CheckedNavigableSet<>(s, type); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class CheckedNavigableSet<E> extends CheckedSortedSet<E> | 
|  | implements NavigableSet<E>, Serializable | 
|  | { | 
|  | private static final long serialVersionUID = -5429120189805438922L; | 
|  |  | 
|  | private final NavigableSet<E> ns; | 
|  |  | 
|  | CheckedNavigableSet(NavigableSet<E> s, Class<E> type) { | 
|  | super(s, type); | 
|  | ns = s; | 
|  | } | 
|  |  | 
|  | public E lower(E e)                             { return ns.lower(e); } | 
|  | public E floor(E e)                             { return ns.floor(e); } | 
|  | public E ceiling(E e)                         { return ns.ceiling(e); } | 
|  | public E higher(E e)                           { return ns.higher(e); } | 
|  | public E pollFirst()                         { return ns.pollFirst(); } | 
|  | public E pollLast()                            {return ns.pollLast(); } | 
|  | public NavigableSet<E> descendingSet() | 
|  | { return checkedNavigableSet(ns.descendingSet(), type); } | 
|  | public Iterator<E> descendingIterator() | 
|  | {return checkedNavigableSet(ns.descendingSet(), type).iterator(); } | 
|  |  | 
|  | public NavigableSet<E> subSet(E fromElement, E toElement) { | 
|  | return checkedNavigableSet(ns.subSet(fromElement, true, toElement, false), type); | 
|  | } | 
|  | public NavigableSet<E> headSet(E toElement) { | 
|  | return checkedNavigableSet(ns.headSet(toElement, false), type); | 
|  | } | 
|  | public NavigableSet<E> tailSet(E fromElement) { | 
|  | return checkedNavigableSet(ns.tailSet(fromElement, true), type); | 
|  | } | 
|  |  | 
|  | public NavigableSet<E> subSet(E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { | 
|  | return checkedNavigableSet(ns.subSet(fromElement, fromInclusive, toElement, toInclusive), type); | 
|  | } | 
|  |  | 
|  | public NavigableSet<E> headSet(E toElement, boolean inclusive) { | 
|  | return checkedNavigableSet(ns.headSet(toElement, inclusive), type); | 
|  | } | 
|  |  | 
|  | public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { | 
|  | return checkedNavigableSet(ns.tailSet(fromElement, inclusive), type); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a dynamically typesafe view of the specified list. | 
|  | * Any attempt to insert an element of the wrong type will result in | 
|  | * an immediate {@link ClassCastException}.  Assuming a list contains | 
|  | * no incorrectly typed elements prior to the time a dynamically typesafe | 
|  | * view is generated, and that all subsequent access to the list | 
|  | * takes place through the view, it is <i>guaranteed</i> that the | 
|  | * list cannot contain an incorrectly typed element. | 
|  | * | 
|  | * <p>A discussion of the use of dynamically typesafe views may be | 
|  | * found in the documentation for the {@link #checkedCollection | 
|  | * checkedCollection} method. | 
|  | * | 
|  | * <p>The returned list will be serializable if the specified list | 
|  | * is serializable. | 
|  | * | 
|  | * <p>Since {@code null} is considered to be a value of any reference | 
|  | * type, the returned list permits insertion of null elements whenever | 
|  | * the backing list does. | 
|  | * | 
|  | * @param <E> the class of the objects in the list | 
|  | * @param list the list for which a dynamically typesafe view is to be | 
|  | *             returned | 
|  | * @param type the type of element that {@code list} is permitted to hold | 
|  | * @return a dynamically typesafe view of the specified list | 
|  | * @since 1.5 | 
|  | */ | 
|  | public static <E> List<E> checkedList(List<E> list, Class<E> type) { | 
|  | return (list instanceof RandomAccess ? | 
|  | new CheckedRandomAccessList<>(list, type) : | 
|  | new CheckedList<>(list, type)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class CheckedList<E> | 
|  | extends CheckedCollection<E> | 
|  | implements List<E> | 
|  | { | 
|  | private static final long serialVersionUID = 65247728283967356L; | 
|  | final List<E> list; | 
|  |  | 
|  | CheckedList(List<E> list, Class<E> type) { | 
|  | super(list, type); | 
|  | this.list = list; | 
|  | } | 
|  |  | 
|  | public boolean equals(Object o)  { return o == this || list.equals(o); } | 
|  | public int hashCode()            { return list.hashCode(); } | 
|  | public E get(int index)          { return list.get(index); } | 
|  | public E remove(int index)       { return list.remove(index); } | 
|  | public int indexOf(Object o)     { return list.indexOf(o); } | 
|  | public int lastIndexOf(Object o) { return list.lastIndexOf(o); } | 
|  |  | 
|  | public E set(int index, E element) { | 
|  | return list.set(index, typeCheck(element)); | 
|  | } | 
|  |  | 
|  | public void add(int index, E element) { | 
|  | list.add(index, typeCheck(element)); | 
|  | } | 
|  |  | 
|  | public boolean addAll(int index, Collection<? extends E> c) { | 
|  | return list.addAll(index, checkedCopyOf(c)); | 
|  | } | 
|  | public ListIterator<E> listIterator()   { return listIterator(0); } | 
|  |  | 
|  | public ListIterator<E> listIterator(final int index) { | 
|  | final ListIterator<E> i = list.listIterator(index); | 
|  |  | 
|  | return new ListIterator<E>() { | 
|  | public boolean hasNext()     { return i.hasNext(); } | 
|  | public E next()              { return i.next(); } | 
|  | public boolean hasPrevious() { return i.hasPrevious(); } | 
|  | public E previous()          { return i.previous(); } | 
|  | public int nextIndex()       { return i.nextIndex(); } | 
|  | public int previousIndex()   { return i.previousIndex(); } | 
|  | public void remove()         {        i.remove(); } | 
|  |  | 
|  | public void set(E e) { | 
|  | i.set(typeCheck(e)); | 
|  | } | 
|  |  | 
|  | public void add(E e) { | 
|  | i.add(typeCheck(e)); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void forEachRemaining(Consumer<? super E> action) { | 
|  | i.forEachRemaining(action); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | public List<E> subList(int fromIndex, int toIndex) { | 
|  | return new CheckedList<>(list.subList(fromIndex, toIndex), type); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * {@inheritDoc} | 
|  | * | 
|  | * @throws ClassCastException if the class of an element returned by the | 
|  | *         operator prevents it from being added to this collection. The | 
|  | *         exception may be thrown after some elements of the list have | 
|  | *         already been replaced. | 
|  | */ | 
|  | @Override | 
|  | public void replaceAll(UnaryOperator<E> operator) { | 
|  | Objects.requireNonNull(operator); | 
|  | list.replaceAll(e -> typeCheck(operator.apply(e))); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void sort(Comparator<? super E> c) { | 
|  | list.sort(c); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class CheckedRandomAccessList<E> extends CheckedList<E> | 
|  | implements RandomAccess | 
|  | { | 
|  | private static final long serialVersionUID = 1638200125423088369L; | 
|  |  | 
|  | CheckedRandomAccessList(List<E> list, Class<E> type) { | 
|  | super(list, type); | 
|  | } | 
|  |  | 
|  | public List<E> subList(int fromIndex, int toIndex) { | 
|  | return new CheckedRandomAccessList<>( | 
|  | list.subList(fromIndex, toIndex), type); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a dynamically typesafe view of the specified map. | 
|  | * Any attempt to insert a mapping whose key or value have the wrong | 
|  | * type will result in an immediate {@link ClassCastException}. | 
|  | * Similarly, any attempt to modify the value currently associated with | 
|  | * a key will result in an immediate {@link ClassCastException}, | 
|  | * whether the modification is attempted directly through the map | 
|  | * itself, or through a {@link Map.Entry} instance obtained from the | 
|  | * map's {@link Map#entrySet() entry set} view. | 
|  | * | 
|  | * <p>Assuming a map contains no incorrectly typed keys or values | 
|  | * prior to the time a dynamically typesafe view is generated, and | 
|  | * that all subsequent access to the map takes place through the view | 
|  | * (or one of its collection views), it is <i>guaranteed</i> that the | 
|  | * map cannot contain an incorrectly typed key or value. | 
|  | * | 
|  | * <p>A discussion of the use of dynamically typesafe views may be | 
|  | * found in the documentation for the {@link #checkedCollection | 
|  | * checkedCollection} method. | 
|  | * | 
|  | * <p>The returned map will be serializable if the specified map is | 
|  | * serializable. | 
|  | * | 
|  | * <p>Since {@code null} is considered to be a value of any reference | 
|  | * type, the returned map permits insertion of null keys or values | 
|  | * whenever the backing map does. | 
|  | * | 
|  | * @param <K> the class of the map keys | 
|  | * @param <V> the class of the map values | 
|  | * @param m the map for which a dynamically typesafe view is to be | 
|  | *          returned | 
|  | * @param keyType the type of key that {@code m} is permitted to hold | 
|  | * @param valueType the type of value that {@code m} is permitted to hold | 
|  | * @return a dynamically typesafe view of the specified map | 
|  | * @since 1.5 | 
|  | */ | 
|  | public static <K, V> Map<K, V> checkedMap(Map<K, V> m, | 
|  | Class<K> keyType, | 
|  | Class<V> valueType) { | 
|  | return new CheckedMap<>(m, keyType, valueType); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class CheckedMap<K,V> | 
|  | implements Map<K,V>, Serializable | 
|  | { | 
|  | private static final long serialVersionUID = 5742860141034234728L; | 
|  |  | 
|  | private final Map<K, V> m; | 
|  | final Class<K> keyType; | 
|  | final Class<V> valueType; | 
|  |  | 
|  | private void typeCheck(Object key, Object value) { | 
|  | if (key != null && !keyType.isInstance(key)) | 
|  | throw new ClassCastException(badKeyMsg(key)); | 
|  |  | 
|  | if (value != null && !valueType.isInstance(value)) | 
|  | throw new ClassCastException(badValueMsg(value)); | 
|  | } | 
|  |  | 
|  | private BiFunction<? super K, ? super V, ? extends V> typeCheck( | 
|  | BiFunction<? super K, ? super V, ? extends V> func) { | 
|  | Objects.requireNonNull(func); | 
|  | return (k, v) -> { | 
|  | V newValue = func.apply(k, v); | 
|  | typeCheck(k, newValue); | 
|  | return newValue; | 
|  | }; | 
|  | } | 
|  |  | 
|  | private String badKeyMsg(Object key) { | 
|  | return "Attempt to insert " + key.getClass() + | 
|  | " key into map with key type " + keyType; | 
|  | } | 
|  |  | 
|  | private String badValueMsg(Object value) { | 
|  | return "Attempt to insert " + value.getClass() + | 
|  | " value into map with value type " + valueType; | 
|  | } | 
|  |  | 
|  | CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) { | 
|  | this.m = Objects.requireNonNull(m); | 
|  | this.keyType = Objects.requireNonNull(keyType); | 
|  | this.valueType = Objects.requireNonNull(valueType); | 
|  | } | 
|  |  | 
|  | public int size()                      { return m.size(); } | 
|  | public boolean isEmpty()               { return m.isEmpty(); } | 
|  | public boolean containsKey(Object key) { return m.containsKey(key); } | 
|  | public boolean containsValue(Object v) { return m.containsValue(v); } | 
|  | public V get(Object key)               { return m.get(key); } | 
|  | public V remove(Object key)            { return m.remove(key); } | 
|  | public void clear()                    { m.clear(); } | 
|  | public Set<K> keySet()                 { return m.keySet(); } | 
|  | public Collection<V> values()          { return m.values(); } | 
|  | public boolean equals(Object o)        { return o == this || m.equals(o); } | 
|  | public int hashCode()                  { return m.hashCode(); } | 
|  | public String toString()               { return m.toString(); } | 
|  |  | 
|  | public V put(K key, V value) { | 
|  | typeCheck(key, value); | 
|  | return m.put(key, value); | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | public void putAll(Map<? extends K, ? extends V> t) { | 
|  | // Satisfy the following goals: | 
|  | // - good diagnostics in case of type mismatch | 
|  | // - all-or-nothing semantics | 
|  | // - protection from malicious t | 
|  | // - correct behavior if t is a concurrent map | 
|  | Object[] entries = t.entrySet().toArray(); | 
|  | List<Map.Entry<K,V>> checked = new ArrayList<>(entries.length); | 
|  | for (Object o : entries) { | 
|  | Map.Entry<?,?> e = (Map.Entry<?,?>) o; | 
|  | Object k = e.getKey(); | 
|  | Object v = e.getValue(); | 
|  | typeCheck(k, v); | 
|  | checked.add( | 
|  | new AbstractMap.SimpleImmutableEntry<>((K)k, (V)v)); | 
|  | } | 
|  | for (Map.Entry<K,V> e : checked) | 
|  | m.put(e.getKey(), e.getValue()); | 
|  | } | 
|  |  | 
|  | private transient Set<Map.Entry<K,V>> entrySet; | 
|  |  | 
|  | public Set<Map.Entry<K,V>> entrySet() { | 
|  | if (entrySet==null) | 
|  | entrySet = new CheckedEntrySet<>(m.entrySet(), valueType); | 
|  | return entrySet; | 
|  | } | 
|  |  | 
|  | // Override default methods in Map | 
|  | @Override | 
|  | public void forEach(BiConsumer<? super K, ? super V> action) { | 
|  | m.forEach(action); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { | 
|  | m.replaceAll(typeCheck(function)); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V putIfAbsent(K key, V value) { | 
|  | typeCheck(key, value); | 
|  | return m.putIfAbsent(key, value); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public boolean remove(Object key, Object value) { | 
|  | return m.remove(key, value); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public boolean replace(K key, V oldValue, V newValue) { | 
|  | typeCheck(key, newValue); | 
|  | return m.replace(key, oldValue, newValue); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V replace(K key, V value) { | 
|  | typeCheck(key, value); | 
|  | return m.replace(key, value); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V computeIfAbsent(K key, | 
|  | Function<? super K, ? extends V> mappingFunction) { | 
|  | Objects.requireNonNull(mappingFunction); | 
|  | return m.computeIfAbsent(key, k -> { | 
|  | V value = mappingFunction.apply(k); | 
|  | typeCheck(k, value); | 
|  | return value; | 
|  | }); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V computeIfPresent(K key, | 
|  | BiFunction<? super K, ? super V, ? extends V> remappingFunction) { | 
|  | return m.computeIfPresent(key, typeCheck(remappingFunction)); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V compute(K key, | 
|  | BiFunction<? super K, ? super V, ? extends V> remappingFunction) { | 
|  | return m.compute(key, typeCheck(remappingFunction)); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V merge(K key, V value, | 
|  | BiFunction<? super V, ? super V, ? extends V> remappingFunction) { | 
|  | Objects.requireNonNull(remappingFunction); | 
|  | return m.merge(key, value, (v1, v2) -> { | 
|  | V newValue = remappingFunction.apply(v1, v2); | 
|  | typeCheck(null, newValue); | 
|  | return newValue; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * We need this class in addition to CheckedSet as Map.Entry permits | 
|  | * modification of the backing Map via the setValue operation.  This | 
|  | * class is subtle: there are many possible attacks that must be | 
|  | * thwarted. | 
|  | * | 
|  | * @serial exclude | 
|  | */ | 
|  | static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> { | 
|  | private final Set<Map.Entry<K,V>> s; | 
|  | private final Class<V> valueType; | 
|  |  | 
|  | CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) { | 
|  | this.s = s; | 
|  | this.valueType = valueType; | 
|  | } | 
|  |  | 
|  | public int size()        { return s.size(); } | 
|  | public boolean isEmpty() { return s.isEmpty(); } | 
|  | public String toString() { return s.toString(); } | 
|  | public int hashCode()    { return s.hashCode(); } | 
|  | public void clear()      {        s.clear(); } | 
|  |  | 
|  | public boolean add(Map.Entry<K, V> e) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | public Iterator<Map.Entry<K,V>> iterator() { | 
|  | final Iterator<Map.Entry<K, V>> i = s.iterator(); | 
|  | final Class<V> valueType = this.valueType; | 
|  |  | 
|  | return new Iterator<Map.Entry<K,V>>() { | 
|  | public boolean hasNext() { return i.hasNext(); } | 
|  | public void remove()     { i.remove(); } | 
|  |  | 
|  | public Map.Entry<K,V> next() { | 
|  | return checkedEntry(i.next(), valueType); | 
|  | } | 
|  | // Android-note: Oversight of Iterator.forEachRemaining(). | 
|  | // http://b/110351017 | 
|  | }; | 
|  | } | 
|  |  | 
|  | // Android-changed: Ignore IsInstanceOfClass warning. b/73288967, b/73344263. | 
|  | // @SuppressWarnings("unchecked") | 
|  | @SuppressWarnings({ "unchecked", "IsInstanceOfClass" }) | 
|  | public Object[] toArray() { | 
|  | Object[] source = s.toArray(); | 
|  |  | 
|  | /* | 
|  | * Ensure that we don't get an ArrayStoreException even if | 
|  | * s.toArray returns an array of something other than Object | 
|  | */ | 
|  | Object[] dest = (CheckedEntry.class.isInstance( | 
|  | source.getClass().getComponentType()) ? source : | 
|  | new Object[source.length]); | 
|  |  | 
|  | for (int i = 0; i < source.length; i++) | 
|  | dest[i] = checkedEntry((Map.Entry<K,V>)source[i], | 
|  | valueType); | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | public <T> T[] toArray(T[] a) { | 
|  | // We don't pass a to s.toArray, to avoid window of | 
|  | // vulnerability wherein an unscrupulous multithreaded client | 
|  | // could get his hands on raw (unwrapped) Entries from s. | 
|  | T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0)); | 
|  |  | 
|  | for (int i=0; i<arr.length; i++) | 
|  | arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i], | 
|  | valueType); | 
|  | if (arr.length > a.length) | 
|  | return arr; | 
|  |  | 
|  | System.arraycopy(arr, 0, a, 0, arr.length); | 
|  | if (a.length > arr.length) | 
|  | a[arr.length] = null; | 
|  | return a; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * This method is overridden to protect the backing set against | 
|  | * an object with a nefarious equals function that senses | 
|  | * that the equality-candidate is Map.Entry and calls its | 
|  | * setValue method. | 
|  | */ | 
|  | public boolean contains(Object o) { | 
|  | if (!(o instanceof Map.Entry)) | 
|  | return false; | 
|  | Map.Entry<?,?> e = (Map.Entry<?,?>) o; | 
|  | return s.contains( | 
|  | (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * The bulk collection methods are overridden to protect | 
|  | * against an unscrupulous collection whose contains(Object o) | 
|  | * method senses when o is a Map.Entry, and calls o.setValue. | 
|  | */ | 
|  | public boolean containsAll(Collection<?> c) { | 
|  | for (Object o : c) | 
|  | if (!contains(o)) // Invokes safe contains() above | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | public boolean remove(Object o) { | 
|  | if (!(o instanceof Map.Entry)) | 
|  | return false; | 
|  | return s.remove(new AbstractMap.SimpleImmutableEntry | 
|  | <>((Map.Entry<?,?>)o)); | 
|  | } | 
|  |  | 
|  | public boolean removeAll(Collection<?> c) { | 
|  | return batchRemove(c, false); | 
|  | } | 
|  | public boolean retainAll(Collection<?> c) { | 
|  | return batchRemove(c, true); | 
|  | } | 
|  | private boolean batchRemove(Collection<?> c, boolean complement) { | 
|  | Objects.requireNonNull(c); | 
|  | boolean modified = false; | 
|  | Iterator<Map.Entry<K,V>> it = iterator(); | 
|  | while (it.hasNext()) { | 
|  | if (c.contains(it.next()) != complement) { | 
|  | it.remove(); | 
|  | modified = true; | 
|  | } | 
|  | } | 
|  | return modified; | 
|  | } | 
|  |  | 
|  | public boolean equals(Object o) { | 
|  | if (o == this) | 
|  | return true; | 
|  | if (!(o instanceof Set)) | 
|  | return false; | 
|  | Set<?> that = (Set<?>) o; | 
|  | return that.size() == s.size() | 
|  | && containsAll(that); // Invokes safe containsAll() above | 
|  | } | 
|  |  | 
|  | static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e, | 
|  | Class<T> valueType) { | 
|  | return new CheckedEntry<>(e, valueType); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * This "wrapper class" serves two purposes: it prevents | 
|  | * the client from modifying the backing Map, by short-circuiting | 
|  | * the setValue method, and it protects the backing Map against | 
|  | * an ill-behaved Map.Entry that attempts to modify another | 
|  | * Map.Entry when asked to perform an equality check. | 
|  | */ | 
|  | private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> { | 
|  | private final Map.Entry<K, V> e; | 
|  | private final Class<T> valueType; | 
|  |  | 
|  | CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) { | 
|  | this.e = Objects.requireNonNull(e); | 
|  | this.valueType = Objects.requireNonNull(valueType); | 
|  | } | 
|  |  | 
|  | public K getKey()        { return e.getKey(); } | 
|  | public V getValue()      { return e.getValue(); } | 
|  | public int hashCode()    { return e.hashCode(); } | 
|  | public String toString() { return e.toString(); } | 
|  |  | 
|  | public V setValue(V value) { | 
|  | if (value != null && !valueType.isInstance(value)) | 
|  | throw new ClassCastException(badValueMsg(value)); | 
|  | return e.setValue(value); | 
|  | } | 
|  |  | 
|  | private String badValueMsg(Object value) { | 
|  | return "Attempt to insert " + value.getClass() + | 
|  | " value into map with value type " + valueType; | 
|  | } | 
|  |  | 
|  | public boolean equals(Object o) { | 
|  | if (o == this) | 
|  | return true; | 
|  | if (!(o instanceof Map.Entry)) | 
|  | return false; | 
|  | return e.equals(new AbstractMap.SimpleImmutableEntry | 
|  | <>((Map.Entry<?,?>)o)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a dynamically typesafe view of the specified sorted map. | 
|  | * Any attempt to insert a mapping whose key or value have the wrong | 
|  | * type will result in an immediate {@link ClassCastException}. | 
|  | * Similarly, any attempt to modify the value currently associated with | 
|  | * a key will result in an immediate {@link ClassCastException}, | 
|  | * whether the modification is attempted directly through the map | 
|  | * itself, or through a {@link Map.Entry} instance obtained from the | 
|  | * map's {@link Map#entrySet() entry set} view. | 
|  | * | 
|  | * <p>Assuming a map contains no incorrectly typed keys or values | 
|  | * prior to the time a dynamically typesafe view is generated, and | 
|  | * that all subsequent access to the map takes place through the view | 
|  | * (or one of its collection views), it is <i>guaranteed</i> that the | 
|  | * map cannot contain an incorrectly typed key or value. | 
|  | * | 
|  | * <p>A discussion of the use of dynamically typesafe views may be | 
|  | * found in the documentation for the {@link #checkedCollection | 
|  | * checkedCollection} method. | 
|  | * | 
|  | * <p>The returned map will be serializable if the specified map is | 
|  | * serializable. | 
|  | * | 
|  | * <p>Since {@code null} is considered to be a value of any reference | 
|  | * type, the returned map permits insertion of null keys or values | 
|  | * whenever the backing map does. | 
|  | * | 
|  | * @param <K> the class of the map keys | 
|  | * @param <V> the class of the map values | 
|  | * @param m the map for which a dynamically typesafe view is to be | 
|  | *          returned | 
|  | * @param keyType the type of key that {@code m} is permitted to hold | 
|  | * @param valueType the type of value that {@code m} is permitted to hold | 
|  | * @return a dynamically typesafe view of the specified map | 
|  | * @since 1.5 | 
|  | */ | 
|  | public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m, | 
|  | Class<K> keyType, | 
|  | Class<V> valueType) { | 
|  | return new CheckedSortedMap<>(m, keyType, valueType); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class CheckedSortedMap<K,V> extends CheckedMap<K,V> | 
|  | implements SortedMap<K,V>, Serializable | 
|  | { | 
|  | private static final long serialVersionUID = 1599671320688067438L; | 
|  |  | 
|  | private final SortedMap<K, V> sm; | 
|  |  | 
|  | CheckedSortedMap(SortedMap<K, V> m, | 
|  | Class<K> keyType, Class<V> valueType) { | 
|  | super(m, keyType, valueType); | 
|  | sm = m; | 
|  | } | 
|  |  | 
|  | public Comparator<? super K> comparator() { return sm.comparator(); } | 
|  | public K firstKey()                       { return sm.firstKey(); } | 
|  | public K lastKey()                        { return sm.lastKey(); } | 
|  |  | 
|  | public SortedMap<K,V> subMap(K fromKey, K toKey) { | 
|  | return checkedSortedMap(sm.subMap(fromKey, toKey), | 
|  | keyType, valueType); | 
|  | } | 
|  | public SortedMap<K,V> headMap(K toKey) { | 
|  | return checkedSortedMap(sm.headMap(toKey), keyType, valueType); | 
|  | } | 
|  | public SortedMap<K,V> tailMap(K fromKey) { | 
|  | return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a dynamically typesafe view of the specified navigable map. | 
|  | * Any attempt to insert a mapping whose key or value have the wrong | 
|  | * type will result in an immediate {@link ClassCastException}. | 
|  | * Similarly, any attempt to modify the value currently associated with | 
|  | * a key will result in an immediate {@link ClassCastException}, | 
|  | * whether the modification is attempted directly through the map | 
|  | * itself, or through a {@link Map.Entry} instance obtained from the | 
|  | * map's {@link Map#entrySet() entry set} view. | 
|  | * | 
|  | * <p>Assuming a map contains no incorrectly typed keys or values | 
|  | * prior to the time a dynamically typesafe view is generated, and | 
|  | * that all subsequent access to the map takes place through the view | 
|  | * (or one of its collection views), it is <em>guaranteed</em> that the | 
|  | * map cannot contain an incorrectly typed key or value. | 
|  | * | 
|  | * <p>A discussion of the use of dynamically typesafe views may be | 
|  | * found in the documentation for the {@link #checkedCollection | 
|  | * checkedCollection} method. | 
|  | * | 
|  | * <p>The returned map will be serializable if the specified map is | 
|  | * serializable. | 
|  | * | 
|  | * <p>Since {@code null} is considered to be a value of any reference | 
|  | * type, the returned map permits insertion of null keys or values | 
|  | * whenever the backing map does. | 
|  | * | 
|  | * @param <K> type of map keys | 
|  | * @param <V> type of map values | 
|  | * @param m the map for which a dynamically typesafe view is to be | 
|  | *          returned | 
|  | * @param keyType the type of key that {@code m} is permitted to hold | 
|  | * @param valueType the type of value that {@code m} is permitted to hold | 
|  | * @return a dynamically typesafe view of the specified map | 
|  | * @since 1.8 | 
|  | */ | 
|  | public static <K,V> NavigableMap<K,V> checkedNavigableMap(NavigableMap<K, V> m, | 
|  | Class<K> keyType, | 
|  | Class<V> valueType) { | 
|  | return new CheckedNavigableMap<>(m, keyType, valueType); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class CheckedNavigableMap<K,V> extends CheckedSortedMap<K,V> | 
|  | implements NavigableMap<K,V>, Serializable | 
|  | { | 
|  | private static final long serialVersionUID = -4852462692372534096L; | 
|  |  | 
|  | private final NavigableMap<K, V> nm; | 
|  |  | 
|  | CheckedNavigableMap(NavigableMap<K, V> m, | 
|  | Class<K> keyType, Class<V> valueType) { | 
|  | super(m, keyType, valueType); | 
|  | nm = m; | 
|  | } | 
|  |  | 
|  | public Comparator<? super K> comparator()   { return nm.comparator(); } | 
|  | public K firstKey()                           { return nm.firstKey(); } | 
|  | public K lastKey()                             { return nm.lastKey(); } | 
|  |  | 
|  | public Entry<K, V> lowerEntry(K key) { | 
|  | Entry<K,V> lower = nm.lowerEntry(key); | 
|  | return (null != lower) | 
|  | ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(lower, valueType) | 
|  | : null; | 
|  | } | 
|  |  | 
|  | public K lowerKey(K key)                   { return nm.lowerKey(key); } | 
|  |  | 
|  | public Entry<K, V> floorEntry(K key) { | 
|  | Entry<K,V> floor = nm.floorEntry(key); | 
|  | return (null != floor) | 
|  | ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(floor, valueType) | 
|  | : null; | 
|  | } | 
|  |  | 
|  | public K floorKey(K key)                   { return nm.floorKey(key); } | 
|  |  | 
|  | public Entry<K, V> ceilingEntry(K key) { | 
|  | Entry<K,V> ceiling = nm.ceilingEntry(key); | 
|  | return (null != ceiling) | 
|  | ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(ceiling, valueType) | 
|  | : null; | 
|  | } | 
|  |  | 
|  | public K ceilingKey(K key)               { return nm.ceilingKey(key); } | 
|  |  | 
|  | public Entry<K, V> higherEntry(K key) { | 
|  | Entry<K,V> higher = nm.higherEntry(key); | 
|  | return (null != higher) | 
|  | ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(higher, valueType) | 
|  | : null; | 
|  | } | 
|  |  | 
|  | public K higherKey(K key)                 { return nm.higherKey(key); } | 
|  |  | 
|  | public Entry<K, V> firstEntry() { | 
|  | Entry<K,V> first = nm.firstEntry(); | 
|  | return (null != first) | 
|  | ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(first, valueType) | 
|  | : null; | 
|  | } | 
|  |  | 
|  | public Entry<K, V> lastEntry() { | 
|  | Entry<K,V> last = nm.lastEntry(); | 
|  | return (null != last) | 
|  | ? new CheckedMap.CheckedEntrySet.CheckedEntry<>(last, valueType) | 
|  | : null; | 
|  | } | 
|  |  | 
|  | public Entry<K, V> pollFirstEntry() { | 
|  | Entry<K,V> entry = nm.pollFirstEntry(); | 
|  | return (null == entry) | 
|  | ? null | 
|  | : new CheckedMap.CheckedEntrySet.CheckedEntry<>(entry, valueType); | 
|  | } | 
|  |  | 
|  | public Entry<K, V> pollLastEntry() { | 
|  | Entry<K,V> entry = nm.pollLastEntry(); | 
|  | return (null == entry) | 
|  | ? null | 
|  | : new CheckedMap.CheckedEntrySet.CheckedEntry<>(entry, valueType); | 
|  | } | 
|  |  | 
|  | public NavigableMap<K, V> descendingMap() { | 
|  | return checkedNavigableMap(nm.descendingMap(), keyType, valueType); | 
|  | } | 
|  |  | 
|  | public NavigableSet<K> keySet() { | 
|  | return navigableKeySet(); | 
|  | } | 
|  |  | 
|  | public NavigableSet<K> navigableKeySet() { | 
|  | return checkedNavigableSet(nm.navigableKeySet(), keyType); | 
|  | } | 
|  |  | 
|  | public NavigableSet<K> descendingKeySet() { | 
|  | return checkedNavigableSet(nm.descendingKeySet(), keyType); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public NavigableMap<K,V> subMap(K fromKey, K toKey) { | 
|  | return checkedNavigableMap(nm.subMap(fromKey, true, toKey, false), | 
|  | keyType, valueType); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public NavigableMap<K,V> headMap(K toKey) { | 
|  | return checkedNavigableMap(nm.headMap(toKey, false), keyType, valueType); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public NavigableMap<K,V> tailMap(K fromKey) { | 
|  | return checkedNavigableMap(nm.tailMap(fromKey, true), keyType, valueType); | 
|  | } | 
|  |  | 
|  | public NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive, K toKey, boolean toInclusive) { | 
|  | return checkedNavigableMap(nm.subMap(fromKey, fromInclusive, toKey, toInclusive), keyType, valueType); | 
|  | } | 
|  |  | 
|  | public NavigableMap<K, V> headMap(K toKey, boolean inclusive) { | 
|  | return checkedNavigableMap(nm.headMap(toKey, inclusive), keyType, valueType); | 
|  | } | 
|  |  | 
|  | public NavigableMap<K, V> tailMap(K fromKey, boolean inclusive) { | 
|  | return checkedNavigableMap(nm.tailMap(fromKey, inclusive), keyType, valueType); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Empty collections | 
|  |  | 
|  | /** | 
|  | * Returns an iterator that has no elements.  More precisely, | 
|  | * | 
|  | * <ul> | 
|  | * <li>{@link Iterator#hasNext hasNext} always returns {@code | 
|  | * false}.</li> | 
|  | * <li>{@link Iterator#next next} always throws {@link | 
|  | * NoSuchElementException}.</li> | 
|  | * <li>{@link Iterator#remove remove} always throws {@link | 
|  | * IllegalStateException}.</li> | 
|  | * </ul> | 
|  | * | 
|  | * <p>Implementations of this method are permitted, but not | 
|  | * required, to return the same object from multiple invocations. | 
|  | * | 
|  | * @param <T> type of elements, if there were any, in the iterator | 
|  | * @return an empty iterator | 
|  | * @since 1.7 | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static <T> Iterator<T> emptyIterator() { | 
|  | return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR; | 
|  | } | 
|  |  | 
|  | private static class EmptyIterator<E> implements Iterator<E> { | 
|  | static final EmptyIterator<Object> EMPTY_ITERATOR | 
|  | = new EmptyIterator<>(); | 
|  |  | 
|  | public boolean hasNext() { return false; } | 
|  | public E next() { throw new NoSuchElementException(); } | 
|  | public void remove() { throw new IllegalStateException(); } | 
|  | @Override | 
|  | public void forEachRemaining(Consumer<? super E> action) { | 
|  | Objects.requireNonNull(action); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a list iterator that has no elements.  More precisely, | 
|  | * | 
|  | * <ul> | 
|  | * <li>{@link Iterator#hasNext hasNext} and {@link | 
|  | * ListIterator#hasPrevious hasPrevious} always return {@code | 
|  | * false}.</li> | 
|  | * <li>{@link Iterator#next next} and {@link ListIterator#previous | 
|  | * previous} always throw {@link NoSuchElementException}.</li> | 
|  | * <li>{@link Iterator#remove remove} and {@link ListIterator#set | 
|  | * set} always throw {@link IllegalStateException}.</li> | 
|  | * <li>{@link ListIterator#add add} always throws {@link | 
|  | * UnsupportedOperationException}.</li> | 
|  | * <li>{@link ListIterator#nextIndex nextIndex} always returns | 
|  | * {@code 0}.</li> | 
|  | * <li>{@link ListIterator#previousIndex previousIndex} always | 
|  | * returns {@code -1}.</li> | 
|  | * </ul> | 
|  | * | 
|  | * <p>Implementations of this method are permitted, but not | 
|  | * required, to return the same object from multiple invocations. | 
|  | * | 
|  | * @param <T> type of elements, if there were any, in the iterator | 
|  | * @return an empty list iterator | 
|  | * @since 1.7 | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static <T> ListIterator<T> emptyListIterator() { | 
|  | return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR; | 
|  | } | 
|  |  | 
|  | private static class EmptyListIterator<E> | 
|  | extends EmptyIterator<E> | 
|  | implements ListIterator<E> | 
|  | { | 
|  | static final EmptyListIterator<Object> EMPTY_ITERATOR | 
|  | = new EmptyListIterator<>(); | 
|  |  | 
|  | public boolean hasPrevious() { return false; } | 
|  | public E previous() { throw new NoSuchElementException(); } | 
|  | public int nextIndex()     { return 0; } | 
|  | public int previousIndex() { return -1; } | 
|  | public void set(E e) { throw new IllegalStateException(); } | 
|  | public void add(E e) { throw new UnsupportedOperationException(); } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an enumeration that has no elements.  More precisely, | 
|  | * | 
|  | * <ul> | 
|  | * <li>{@link Enumeration#hasMoreElements hasMoreElements} always | 
|  | * returns {@code false}.</li> | 
|  | * <li> {@link Enumeration#nextElement nextElement} always throws | 
|  | * {@link NoSuchElementException}.</li> | 
|  | * </ul> | 
|  | * | 
|  | * <p>Implementations of this method are permitted, but not | 
|  | * required, to return the same object from multiple invocations. | 
|  | * | 
|  | * @param  <T> the class of the objects in the enumeration | 
|  | * @return an empty enumeration | 
|  | * @since 1.7 | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static <T> Enumeration<T> emptyEnumeration() { | 
|  | return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION; | 
|  | } | 
|  |  | 
|  | private static class EmptyEnumeration<E> implements Enumeration<E> { | 
|  | static final EmptyEnumeration<Object> EMPTY_ENUMERATION | 
|  | = new EmptyEnumeration<>(); | 
|  |  | 
|  | public boolean hasMoreElements() { return false; } | 
|  | public E nextElement() { throw new NoSuchElementException(); } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * The empty set (immutable).  This set is serializable. | 
|  | * | 
|  | * @see #emptySet() | 
|  | */ | 
|  | @SuppressWarnings("rawtypes") | 
|  | public static final Set EMPTY_SET = new EmptySet<>(); | 
|  |  | 
|  | /** | 
|  | * Returns an empty set (immutable).  This set is serializable. | 
|  | * Unlike the like-named field, this method is parameterized. | 
|  | * | 
|  | * <p>This example illustrates the type-safe way to obtain an empty set: | 
|  | * <pre> | 
|  | *     Set<String> s = Collections.emptySet(); | 
|  | * </pre> | 
|  | * @implNote Implementations of this method need not create a separate | 
|  | * {@code Set} object for each call.  Using this method is likely to have | 
|  | * comparable cost to using the like-named field.  (Unlike this method, the | 
|  | * field does not provide type safety.) | 
|  | * | 
|  | * @param  <T> the class of the objects in the set | 
|  | * @return the empty set | 
|  | * | 
|  | * @see #EMPTY_SET | 
|  | * @since 1.5 | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static final <T> Set<T> emptySet() { | 
|  | return (Set<T>) EMPTY_SET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class EmptySet<E> | 
|  | extends AbstractSet<E> | 
|  | implements Serializable | 
|  | { | 
|  | private static final long serialVersionUID = 1582296315990362920L; | 
|  |  | 
|  | public Iterator<E> iterator() { return emptyIterator(); } | 
|  |  | 
|  | public int size() {return 0;} | 
|  | public boolean isEmpty() {return true;} | 
|  |  | 
|  | public boolean contains(Object obj) {return false;} | 
|  | public boolean containsAll(Collection<?> c) { return c.isEmpty(); } | 
|  |  | 
|  | public Object[] toArray() { return new Object[0]; } | 
|  |  | 
|  | public <T> T[] toArray(T[] a) { | 
|  | if (a.length > 0) | 
|  | a[0] = null; | 
|  | return a; | 
|  | } | 
|  |  | 
|  | // Override default methods in Collection | 
|  | @Override | 
|  | public void forEach(Consumer<? super E> action) { | 
|  | Objects.requireNonNull(action); | 
|  | } | 
|  | @Override | 
|  | public boolean removeIf(Predicate<? super E> filter) { | 
|  | Objects.requireNonNull(filter); | 
|  | return false; | 
|  | } | 
|  | @Override | 
|  | public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); } | 
|  |  | 
|  | // Preserves singleton property | 
|  | private Object readResolve() { | 
|  | return EMPTY_SET; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an empty sorted set (immutable).  This set is serializable. | 
|  | * | 
|  | * <p>This example illustrates the type-safe way to obtain an empty | 
|  | * sorted set: | 
|  | * <pre> {@code | 
|  | *     SortedSet<String> s = Collections.emptySortedSet(); | 
|  | * }</pre> | 
|  | * | 
|  | * @implNote Implementations of this method need not create a separate | 
|  | * {@code SortedSet} object for each call. | 
|  | * | 
|  | * @param <E> type of elements, if there were any, in the set | 
|  | * @return the empty sorted set | 
|  | * @since 1.8 | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static <E> SortedSet<E> emptySortedSet() { | 
|  | return (SortedSet<E>) UnmodifiableNavigableSet.EMPTY_NAVIGABLE_SET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an empty navigable set (immutable).  This set is serializable. | 
|  | * | 
|  | * <p>This example illustrates the type-safe way to obtain an empty | 
|  | * navigable set: | 
|  | * <pre> {@code | 
|  | *     NavigableSet<String> s = Collections.emptyNavigableSet(); | 
|  | * }</pre> | 
|  | * | 
|  | * @implNote Implementations of this method need not | 
|  | * create a separate {@code NavigableSet} object for each call. | 
|  | * | 
|  | * @param <E> type of elements, if there were any, in the set | 
|  | * @return the empty navigable set | 
|  | * @since 1.8 | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static <E> NavigableSet<E> emptyNavigableSet() { | 
|  | return (NavigableSet<E>) UnmodifiableNavigableSet.EMPTY_NAVIGABLE_SET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * The empty list (immutable).  This list is serializable. | 
|  | * | 
|  | * @see #emptyList() | 
|  | */ | 
|  | @SuppressWarnings("rawtypes") | 
|  | public static final List EMPTY_LIST = new EmptyList<>(); | 
|  |  | 
|  | /** | 
|  | * Returns an empty list (immutable).  This list is serializable. | 
|  | * | 
|  | * <p>This example illustrates the type-safe way to obtain an empty list: | 
|  | * <pre> | 
|  | *     List<String> s = Collections.emptyList(); | 
|  | * </pre> | 
|  | * | 
|  | * @implNote | 
|  | * Implementations of this method need not create a separate <tt>List</tt> | 
|  | * object for each call.   Using this method is likely to have comparable | 
|  | * cost to using the like-named field.  (Unlike this method, the field does | 
|  | * not provide type safety.) | 
|  | * | 
|  | * @param <T> type of elements, if there were any, in the list | 
|  | * @return an empty immutable list | 
|  | * | 
|  | * @see #EMPTY_LIST | 
|  | * @since 1.5 | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static final <T> List<T> emptyList() { | 
|  | return (List<T>) EMPTY_LIST; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class EmptyList<E> | 
|  | extends AbstractList<E> | 
|  | implements RandomAccess, Serializable { | 
|  | private static final long serialVersionUID = 8842843931221139166L; | 
|  |  | 
|  | public Iterator<E> iterator() { | 
|  | return emptyIterator(); | 
|  | } | 
|  | public ListIterator<E> listIterator() { | 
|  | return emptyListIterator(); | 
|  | } | 
|  |  | 
|  | public int size() {return 0;} | 
|  | public boolean isEmpty() {return true;} | 
|  |  | 
|  | public boolean contains(Object obj) {return false;} | 
|  | public boolean containsAll(Collection<?> c) { return c.isEmpty(); } | 
|  |  | 
|  | public Object[] toArray() { return new Object[0]; } | 
|  |  | 
|  | public <T> T[] toArray(T[] a) { | 
|  | if (a.length > 0) | 
|  | a[0] = null; | 
|  | return a; | 
|  | } | 
|  |  | 
|  | public E get(int index) { | 
|  | throw new IndexOutOfBoundsException("Index: "+index); | 
|  | } | 
|  |  | 
|  | public boolean equals(Object o) { | 
|  | return (o instanceof List) && ((List<?>)o).isEmpty(); | 
|  | } | 
|  |  | 
|  | public int hashCode() { return 1; } | 
|  |  | 
|  | @Override | 
|  | public boolean removeIf(Predicate<? super E> filter) { | 
|  | Objects.requireNonNull(filter); | 
|  | return false; | 
|  | } | 
|  | @Override | 
|  | public void replaceAll(UnaryOperator<E> operator) { | 
|  | Objects.requireNonNull(operator); | 
|  | } | 
|  | @Override | 
|  | public void sort(Comparator<? super E> c) { | 
|  | } | 
|  |  | 
|  | // Override default methods in Collection | 
|  | @Override | 
|  | public void forEach(Consumer<? super E> action) { | 
|  | Objects.requireNonNull(action); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public Spliterator<E> spliterator() { return Spliterators.emptySpliterator(); } | 
|  |  | 
|  | // Preserves singleton property | 
|  | private Object readResolve() { | 
|  | return EMPTY_LIST; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * The empty map (immutable).  This map is serializable. | 
|  | * | 
|  | * @see #emptyMap() | 
|  | * @since 1.3 | 
|  | */ | 
|  | @SuppressWarnings("rawtypes") | 
|  | public static final Map EMPTY_MAP = new EmptyMap<>(); | 
|  |  | 
|  | /** | 
|  | * Returns an empty map (immutable).  This map is serializable. | 
|  | * | 
|  | * <p>This example illustrates the type-safe way to obtain an empty map: | 
|  | * <pre> | 
|  | *     Map<String, Date> s = Collections.emptyMap(); | 
|  | * </pre> | 
|  | * @implNote Implementations of this method need not create a separate | 
|  | * {@code Map} object for each call.  Using this method is likely to have | 
|  | * comparable cost to using the like-named field.  (Unlike this method, the | 
|  | * field does not provide type safety.) | 
|  | * | 
|  | * @param <K> the class of the map keys | 
|  | * @param <V> the class of the map values | 
|  | * @return an empty map | 
|  | * @see #EMPTY_MAP | 
|  | * @since 1.5 | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static final <K,V> Map<K,V> emptyMap() { | 
|  | return (Map<K,V>) EMPTY_MAP; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an empty sorted map (immutable).  This map is serializable. | 
|  | * | 
|  | * <p>This example illustrates the type-safe way to obtain an empty map: | 
|  | * <pre> {@code | 
|  | *     SortedMap<String, Date> s = Collections.emptySortedMap(); | 
|  | * }</pre> | 
|  | * | 
|  | * @implNote Implementations of this method need not create a separate | 
|  | * {@code SortedMap} object for each call. | 
|  | * | 
|  | * @param <K> the class of the map keys | 
|  | * @param <V> the class of the map values | 
|  | * @return an empty sorted map | 
|  | * @since 1.8 | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static final <K,V> SortedMap<K,V> emptySortedMap() { | 
|  | return (SortedMap<K,V>) UnmodifiableNavigableMap.EMPTY_NAVIGABLE_MAP; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an empty navigable map (immutable).  This map is serializable. | 
|  | * | 
|  | * <p>This example illustrates the type-safe way to obtain an empty map: | 
|  | * <pre> {@code | 
|  | *     NavigableMap<String, Date> s = Collections.emptyNavigableMap(); | 
|  | * }</pre> | 
|  | * | 
|  | * @implNote Implementations of this method need not create a separate | 
|  | * {@code NavigableMap} object for each call. | 
|  | * | 
|  | * @param <K> the class of the map keys | 
|  | * @param <V> the class of the map values | 
|  | * @return an empty navigable map | 
|  | * @since 1.8 | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static final <K,V> NavigableMap<K,V> emptyNavigableMap() { | 
|  | return (NavigableMap<K,V>) UnmodifiableNavigableMap.EMPTY_NAVIGABLE_MAP; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class EmptyMap<K,V> | 
|  | extends AbstractMap<K,V> | 
|  | implements Serializable | 
|  | { | 
|  | private static final long serialVersionUID = 6428348081105594320L; | 
|  |  | 
|  | public int size()                          {return 0;} | 
|  | public boolean isEmpty()                   {return true;} | 
|  | public boolean containsKey(Object key)     {return false;} | 
|  | public boolean containsValue(Object value) {return false;} | 
|  | public V get(Object key)                   {return null;} | 
|  | public Set<K> keySet()                     {return emptySet();} | 
|  | public Collection<V> values()              {return emptySet();} | 
|  | public Set<Map.Entry<K,V>> entrySet()      {return emptySet();} | 
|  |  | 
|  | public boolean equals(Object o) { | 
|  | return (o instanceof Map) && ((Map<?,?>)o).isEmpty(); | 
|  | } | 
|  |  | 
|  | public int hashCode()                      {return 0;} | 
|  |  | 
|  | // Override default methods in Map | 
|  | @Override | 
|  | @SuppressWarnings("unchecked") | 
|  | public V getOrDefault(Object k, V defaultValue) { | 
|  | return defaultValue; | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void forEach(BiConsumer<? super K, ? super V> action) { | 
|  | Objects.requireNonNull(action); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { | 
|  | Objects.requireNonNull(function); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V putIfAbsent(K key, V value) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public boolean remove(Object key, Object value) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public boolean replace(K key, V oldValue, V newValue) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V replace(K key, V value) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V computeIfAbsent(K key, | 
|  | Function<? super K, ? extends V> mappingFunction) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V computeIfPresent(K key, | 
|  | BiFunction<? super K, ? super V, ? extends V> remappingFunction) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V compute(K key, | 
|  | BiFunction<? super K, ? super V, ? extends V> remappingFunction) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V merge(K key, V value, | 
|  | BiFunction<? super V, ? super V, ? extends V> remappingFunction) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | // Preserves singleton property | 
|  | private Object readResolve() { | 
|  | return EMPTY_MAP; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Singleton collections | 
|  |  | 
|  | /** | 
|  | * Returns an immutable set containing only the specified object. | 
|  | * The returned set is serializable. | 
|  | * | 
|  | * @param  <T> the class of the objects in the set | 
|  | * @param o the sole object to be stored in the returned set. | 
|  | * @return an immutable set containing only the specified object. | 
|  | */ | 
|  | public static <T> Set<T> singleton(T o) { | 
|  | return new SingletonSet<>(o); | 
|  | } | 
|  |  | 
|  | static <E> Iterator<E> singletonIterator(final E e) { | 
|  | return new Iterator<E>() { | 
|  | private boolean hasNext = true; | 
|  | public boolean hasNext() { | 
|  | return hasNext; | 
|  | } | 
|  | public E next() { | 
|  | if (hasNext) { | 
|  | hasNext = false; | 
|  | return e; | 
|  | } | 
|  | throw new NoSuchElementException(); | 
|  | } | 
|  | public void remove() { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | @Override | 
|  | public void forEachRemaining(Consumer<? super E> action) { | 
|  | Objects.requireNonNull(action); | 
|  | if (hasNext) { | 
|  | action.accept(e); | 
|  | hasNext = false; | 
|  | } | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Creates a {@code Spliterator} with only the specified element | 
|  | * | 
|  | * @param <T> Type of elements | 
|  | * @return A singleton {@code Spliterator} | 
|  | */ | 
|  | static <T> Spliterator<T> singletonSpliterator(final T element) { | 
|  | return new Spliterator<T>() { | 
|  | long est = 1; | 
|  |  | 
|  | @Override | 
|  | public Spliterator<T> trySplit() { | 
|  | return null; | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public boolean tryAdvance(Consumer<? super T> consumer) { | 
|  | Objects.requireNonNull(consumer); | 
|  | if (est > 0) { | 
|  | est--; | 
|  | consumer.accept(element); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void forEachRemaining(Consumer<? super T> consumer) { | 
|  | tryAdvance(consumer); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public long estimateSize() { | 
|  | return est; | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public int characteristics() { | 
|  | int value = (element != null) ? Spliterator.NONNULL : 0; | 
|  |  | 
|  | return value | Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.IMMUTABLE | | 
|  | Spliterator.DISTINCT | Spliterator.ORDERED; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class SingletonSet<E> | 
|  | extends AbstractSet<E> | 
|  | implements Serializable | 
|  | { | 
|  | private static final long serialVersionUID = 3193687207550431679L; | 
|  |  | 
|  | private final E element; | 
|  |  | 
|  | SingletonSet(E e) {element = e;} | 
|  |  | 
|  | public Iterator<E> iterator() { | 
|  | return singletonIterator(element); | 
|  | } | 
|  |  | 
|  | public int size() {return 1;} | 
|  |  | 
|  | public boolean contains(Object o) {return eq(o, element);} | 
|  |  | 
|  | // Override default methods for Collection | 
|  | @Override | 
|  | public void forEach(Consumer<? super E> action) { | 
|  | action.accept(element); | 
|  | } | 
|  | @Override | 
|  | public Spliterator<E> spliterator() { | 
|  | return singletonSpliterator(element); | 
|  | } | 
|  | @Override | 
|  | public boolean removeIf(Predicate<? super E> filter) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an immutable list containing only the specified object. | 
|  | * The returned list is serializable. | 
|  | * | 
|  | * @param  <T> the class of the objects in the list | 
|  | * @param o the sole object to be stored in the returned list. | 
|  | * @return an immutable list containing only the specified object. | 
|  | * @since 1.3 | 
|  | */ | 
|  | public static <T> List<T> singletonList(T o) { | 
|  | return new SingletonList<>(o); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class SingletonList<E> | 
|  | extends AbstractList<E> | 
|  | implements RandomAccess, Serializable { | 
|  |  | 
|  | private static final long serialVersionUID = 3093736618740652951L; | 
|  |  | 
|  | private final E element; | 
|  |  | 
|  | SingletonList(E obj)                {element = obj;} | 
|  |  | 
|  | public Iterator<E> iterator() { | 
|  | return singletonIterator(element); | 
|  | } | 
|  |  | 
|  | public int size()                   {return 1;} | 
|  |  | 
|  | public boolean contains(Object obj) {return eq(obj, element);} | 
|  |  | 
|  | public E get(int index) { | 
|  | if (index != 0) | 
|  | throw new IndexOutOfBoundsException("Index: "+index+", Size: 1"); | 
|  | return element; | 
|  | } | 
|  |  | 
|  | // Override default methods for Collection | 
|  | @Override | 
|  | public void forEach(Consumer<? super E> action) { | 
|  | action.accept(element); | 
|  | } | 
|  | @Override | 
|  | public boolean removeIf(Predicate<? super E> filter) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | @Override | 
|  | public void replaceAll(UnaryOperator<E> operator) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | @Override | 
|  | public void sort(Comparator<? super E> c) { | 
|  | } | 
|  | @Override | 
|  | public Spliterator<E> spliterator() { | 
|  | return singletonSpliterator(element); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an immutable map, mapping only the specified key to the | 
|  | * specified value.  The returned map is serializable. | 
|  | * | 
|  | * @param <K> the class of the map keys | 
|  | * @param <V> the class of the map values | 
|  | * @param key the sole key to be stored in the returned map. | 
|  | * @param value the value to which the returned map maps <tt>key</tt>. | 
|  | * @return an immutable map containing only the specified key-value | 
|  | *         mapping. | 
|  | * @since 1.3 | 
|  | */ | 
|  | public static <K,V> Map<K,V> singletonMap(K key, V value) { | 
|  | return new SingletonMap<>(key, value); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class SingletonMap<K,V> | 
|  | extends AbstractMap<K,V> | 
|  | implements Serializable { | 
|  | private static final long serialVersionUID = -6979724477215052911L; | 
|  |  | 
|  | private final K k; | 
|  | private final V v; | 
|  |  | 
|  | SingletonMap(K key, V value) { | 
|  | k = key; | 
|  | v = value; | 
|  | } | 
|  |  | 
|  | public int size()                                           {return 1;} | 
|  | public boolean isEmpty()                                {return false;} | 
|  | public boolean containsKey(Object key)             {return eq(key, k);} | 
|  | public boolean containsValue(Object value)       {return eq(value, v);} | 
|  | public V get(Object key)              {return (eq(key, k) ? v : null);} | 
|  |  | 
|  | private transient Set<K> keySet; | 
|  | private transient Set<Map.Entry<K,V>> entrySet; | 
|  | private transient Collection<V> values; | 
|  |  | 
|  | public Set<K> keySet() { | 
|  | if (keySet==null) | 
|  | keySet = singleton(k); | 
|  | return keySet; | 
|  | } | 
|  |  | 
|  | public Set<Map.Entry<K,V>> entrySet() { | 
|  | if (entrySet==null) | 
|  | entrySet = Collections.<Map.Entry<K,V>>singleton( | 
|  | new SimpleImmutableEntry<>(k, v)); | 
|  | return entrySet; | 
|  | } | 
|  |  | 
|  | public Collection<V> values() { | 
|  | if (values==null) | 
|  | values = singleton(v); | 
|  | return values; | 
|  | } | 
|  |  | 
|  | // Override default methods in Map | 
|  | @Override | 
|  | public V getOrDefault(Object key, V defaultValue) { | 
|  | return eq(key, k) ? v : defaultValue; | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void forEach(BiConsumer<? super K, ? super V> action) { | 
|  | action.accept(k, v); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V putIfAbsent(K key, V value) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public boolean remove(Object key, Object value) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public boolean replace(K key, V oldValue, V newValue) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V replace(K key, V value) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V computeIfAbsent(K key, | 
|  | Function<? super K, ? extends V> mappingFunction) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V computeIfPresent(K key, | 
|  | BiFunction<? super K, ? super V, ? extends V> remappingFunction) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V compute(K key, | 
|  | BiFunction<? super K, ? super V, ? extends V> remappingFunction) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public V merge(K key, V value, | 
|  | BiFunction<? super V, ? super V, ? extends V> remappingFunction) { | 
|  | throw new UnsupportedOperationException(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Miscellaneous | 
|  |  | 
|  | /** | 
|  | * Returns an immutable list consisting of <tt>n</tt> copies of the | 
|  | * specified object.  The newly allocated data object is tiny (it contains | 
|  | * a single reference to the data object).  This method is useful in | 
|  | * combination with the <tt>List.addAll</tt> method to grow lists. | 
|  | * The returned list is serializable. | 
|  | * | 
|  | * @param  <T> the class of the object to copy and of the objects | 
|  | *         in the returned list. | 
|  | * @param  n the number of elements in the returned list. | 
|  | * @param  o the element to appear repeatedly in the returned list. | 
|  | * @return an immutable list consisting of <tt>n</tt> copies of the | 
|  | *         specified object. | 
|  | * @throws IllegalArgumentException if {@code n < 0} | 
|  | * @see    List#addAll(Collection) | 
|  | * @see    List#addAll(int, Collection) | 
|  | */ | 
|  | public static <T> List<T> nCopies(int n, T o) { | 
|  | if (n < 0) | 
|  | throw new IllegalArgumentException("List length = " + n); | 
|  | return new CopiesList<>(n, o); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class CopiesList<E> | 
|  | extends AbstractList<E> | 
|  | implements RandomAccess, Serializable | 
|  | { | 
|  | private static final long serialVersionUID = 2739099268398711800L; | 
|  |  | 
|  | final int n; | 
|  | final E element; | 
|  |  | 
|  | CopiesList(int n, E e) { | 
|  | assert n >= 0; | 
|  | this.n = n; | 
|  | element = e; | 
|  | } | 
|  |  | 
|  | public int size() { | 
|  | return n; | 
|  | } | 
|  |  | 
|  | public boolean contains(Object obj) { | 
|  | return n != 0 && eq(obj, element); | 
|  | } | 
|  |  | 
|  | public int indexOf(Object o) { | 
|  | return contains(o) ? 0 : -1; | 
|  | } | 
|  |  | 
|  | public int lastIndexOf(Object o) { | 
|  | return contains(o) ? n - 1 : -1; | 
|  | } | 
|  |  | 
|  | public E get(int index) { | 
|  | if (index < 0 || index >= n) | 
|  | throw new IndexOutOfBoundsException("Index: "+index+ | 
|  | ", Size: "+n); | 
|  | return element; | 
|  | } | 
|  |  | 
|  | public Object[] toArray() { | 
|  | final Object[] a = new Object[n]; | 
|  | if (element != null) | 
|  | Arrays.fill(a, 0, n, element); | 
|  | return a; | 
|  | } | 
|  |  | 
|  | @SuppressWarnings("unchecked") | 
|  | public <T> T[] toArray(T[] a) { | 
|  | final int n = this.n; | 
|  | if (a.length < n) { | 
|  | a = (T[])java.lang.reflect.Array | 
|  | .newInstance(a.getClass().getComponentType(), n); | 
|  | if (element != null) | 
|  | Arrays.fill(a, 0, n, element); | 
|  | } else { | 
|  | Arrays.fill(a, 0, n, element); | 
|  | if (a.length > n) | 
|  | a[n] = null; | 
|  | } | 
|  | return a; | 
|  | } | 
|  |  | 
|  | public List<E> subList(int fromIndex, int toIndex) { | 
|  | if (fromIndex < 0) | 
|  | throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); | 
|  | if (toIndex > n) | 
|  | throw new IndexOutOfBoundsException("toIndex = " + toIndex); | 
|  | if (fromIndex > toIndex) | 
|  | throw new IllegalArgumentException("fromIndex(" + fromIndex + | 
|  | ") > toIndex(" + toIndex + ")"); | 
|  | return new CopiesList<>(toIndex - fromIndex, element); | 
|  | } | 
|  |  | 
|  | // Override default methods in Collection | 
|  | @Override | 
|  | public Stream<E> stream() { | 
|  | return IntStream.range(0, n).mapToObj(i -> element); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public Stream<E> parallelStream() { | 
|  | return IntStream.range(0, n).parallel().mapToObj(i -> element); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public Spliterator<E> spliterator() { | 
|  | return stream().spliterator(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a comparator that imposes the reverse of the <em>natural | 
|  | * ordering</em> on a collection of objects that implement the | 
|  | * {@code Comparable} interface.  (The natural ordering is the ordering | 
|  | * imposed by the objects' own {@code compareTo} method.)  This enables a | 
|  | * simple idiom for sorting (or maintaining) collections (or arrays) of | 
|  | * objects that implement the {@code Comparable} interface in | 
|  | * reverse-natural-order.  For example, suppose {@code a} is an array of | 
|  | * strings. Then: <pre> | 
|  | *          Arrays.sort(a, Collections.reverseOrder()); | 
|  | * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p> | 
|  | * | 
|  | * The returned comparator is serializable. | 
|  | * | 
|  | * @param  <T> the class of the objects compared by the comparator | 
|  | * @return A comparator that imposes the reverse of the <i>natural | 
|  | *         ordering</i> on a collection of objects that implement | 
|  | *         the <tt>Comparable</tt> interface. | 
|  | * @see Comparable | 
|  | */ | 
|  | @SuppressWarnings("unchecked") | 
|  | public static <T> Comparator<T> reverseOrder() { | 
|  | return (Comparator<T>) ReverseComparator.REVERSE_ORDER; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class ReverseComparator | 
|  | implements Comparator<Comparable<Object>>, Serializable { | 
|  |  | 
|  | private static final long serialVersionUID = 7207038068494060240L; | 
|  |  | 
|  | static final ReverseComparator REVERSE_ORDER | 
|  | = new ReverseComparator(); | 
|  |  | 
|  | public int compare(Comparable<Object> c1, Comparable<Object> c2) { | 
|  | return c2.compareTo(c1); | 
|  | } | 
|  |  | 
|  | private Object readResolve() { return Collections.reverseOrder(); } | 
|  |  | 
|  | @Override | 
|  | public Comparator<Comparable<Object>> reversed() { | 
|  | return Comparator.naturalOrder(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a comparator that imposes the reverse ordering of the specified | 
|  | * comparator.  If the specified comparator is {@code null}, this method is | 
|  | * equivalent to {@link #reverseOrder()} (in other words, it returns a | 
|  | * comparator that imposes the reverse of the <em>natural ordering</em> on | 
|  | * a collection of objects that implement the Comparable interface). | 
|  | * | 
|  | * <p>The returned comparator is serializable (assuming the specified | 
|  | * comparator is also serializable or {@code null}). | 
|  | * | 
|  | * @param <T> the class of the objects compared by the comparator | 
|  | * @param cmp a comparator who's ordering is to be reversed by the returned | 
|  | * comparator or {@code null} | 
|  | * @return A comparator that imposes the reverse ordering of the | 
|  | *         specified comparator. | 
|  | * @since 1.5 | 
|  | */ | 
|  | public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) { | 
|  | if (cmp == null) | 
|  | return reverseOrder(); | 
|  |  | 
|  | if (cmp instanceof ReverseComparator2) | 
|  | return ((ReverseComparator2<T>)cmp).cmp; | 
|  |  | 
|  | return new ReverseComparator2<>(cmp); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class ReverseComparator2<T> implements Comparator<T>, | 
|  | Serializable | 
|  | { | 
|  | private static final long serialVersionUID = 4374092139857L; | 
|  |  | 
|  | /** | 
|  | * The comparator specified in the static factory.  This will never | 
|  | * be null, as the static factory returns a ReverseComparator | 
|  | * instance if its argument is null. | 
|  | * | 
|  | * @serial | 
|  | */ | 
|  | final Comparator<T> cmp; | 
|  |  | 
|  | ReverseComparator2(Comparator<T> cmp) { | 
|  | assert cmp != null; | 
|  | this.cmp = cmp; | 
|  | } | 
|  |  | 
|  | public int compare(T t1, T t2) { | 
|  | return cmp.compare(t2, t1); | 
|  | } | 
|  |  | 
|  | public boolean equals(Object o) { | 
|  | return (o == this) || | 
|  | (o instanceof ReverseComparator2 && | 
|  | cmp.equals(((ReverseComparator2)o).cmp)); | 
|  | } | 
|  |  | 
|  | public int hashCode() { | 
|  | return cmp.hashCode() ^ Integer.MIN_VALUE; | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public Comparator<T> reversed() { | 
|  | return cmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an enumeration over the specified collection.  This provides | 
|  | * interoperability with legacy APIs that require an enumeration | 
|  | * as input. | 
|  | * | 
|  | * @param  <T> the class of the objects in the collection | 
|  | * @param c the collection for which an enumeration is to be returned. | 
|  | * @return an enumeration over the specified collection. | 
|  | * @see Enumeration | 
|  | */ | 
|  | public static <T> Enumeration<T> enumeration(final Collection<T> c) { | 
|  | return new Enumeration<T>() { | 
|  | private final Iterator<T> i = c.iterator(); | 
|  |  | 
|  | public boolean hasMoreElements() { | 
|  | return i.hasNext(); | 
|  | } | 
|  |  | 
|  | public T nextElement() { | 
|  | return i.next(); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns an array list containing the elements returned by the | 
|  | * specified enumeration in the order they are returned by the | 
|  | * enumeration.  This method provides interoperability between | 
|  | * legacy APIs that return enumerations and new APIs that require | 
|  | * collections. | 
|  | * | 
|  | * @param <T> the class of the objects returned by the enumeration | 
|  | * @param e enumeration providing elements for the returned | 
|  | *          array list | 
|  | * @return an array list containing the elements returned | 
|  | *         by the specified enumeration. | 
|  | * @since 1.4 | 
|  | * @see Enumeration | 
|  | * @see ArrayList | 
|  | */ | 
|  | public static <T> ArrayList<T> list(Enumeration<T> e) { | 
|  | ArrayList<T> l = new ArrayList<>(); | 
|  | while (e.hasMoreElements()) | 
|  | l.add(e.nextElement()); | 
|  | return l; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns true if the specified arguments are equal, or both null. | 
|  | * | 
|  | * NB: Do not replace with Object.equals until JDK-8015417 is resolved. | 
|  | */ | 
|  | static boolean eq(Object o1, Object o2) { | 
|  | return o1==null ? o2==null : o1.equals(o2); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns the number of elements in the specified collection equal to the | 
|  | * specified object.  More formally, returns the number of elements | 
|  | * <tt>e</tt> in the collection such that | 
|  | * <tt>(o == null ? e == null : o.equals(e))</tt>. | 
|  | * | 
|  | * @param c the collection in which to determine the frequency | 
|  | *     of <tt>o</tt> | 
|  | * @param o the object whose frequency is to be determined | 
|  | * @return the number of elements in {@code c} equal to {@code o} | 
|  | * @throws NullPointerException if <tt>c</tt> is null | 
|  | * @since 1.5 | 
|  | */ | 
|  | public static int frequency(Collection<?> c, Object o) { | 
|  | int result = 0; | 
|  | if (o == null) { | 
|  | for (Object e : c) | 
|  | if (e == null) | 
|  | result++; | 
|  | } else { | 
|  | for (Object e : c) | 
|  | if (o.equals(e)) | 
|  | result++; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns {@code true} if the two specified collections have no | 
|  | * elements in common. | 
|  | * | 
|  | * <p>Care must be exercised if this method is used on collections that | 
|  | * do not comply with the general contract for {@code Collection}. | 
|  | * Implementations may elect to iterate over either collection and test | 
|  | * for containment in the other collection (or to perform any equivalent | 
|  | * computation).  If either collection uses a nonstandard equality test | 
|  | * (as does a {@link SortedSet} whose ordering is not <em>compatible with | 
|  | * equals</em>, or the key set of an {@link IdentityHashMap}), both | 
|  | * collections must use the same nonstandard equality test, or the | 
|  | * result of this method is undefined. | 
|  | * | 
|  | * <p>Care must also be exercised when using collections that have | 
|  | * restrictions on the elements that they may contain. Collection | 
|  | * implementations are allowed to throw exceptions for any operation | 
|  | * involving elements they deem ineligible. For absolute safety the | 
|  | * specified collections should contain only elements which are | 
|  | * eligible elements for both collections. | 
|  | * | 
|  | * <p>Note that it is permissible to pass the same collection in both | 
|  | * parameters, in which case the method will return {@code true} if and | 
|  | * only if the collection is empty. | 
|  | * | 
|  | * @param c1 a collection | 
|  | * @param c2 a collection | 
|  | * @return {@code true} if the two specified collections have no | 
|  | * elements in common. | 
|  | * @throws NullPointerException if either collection is {@code null}. | 
|  | * @throws NullPointerException if one collection contains a {@code null} | 
|  | * element and {@code null} is not an eligible element for the other collection. | 
|  | * (<a href="Collection.html#optional-restrictions">optional</a>) | 
|  | * @throws ClassCastException if one collection contains an element that is | 
|  | * of a type which is ineligible for the other collection. | 
|  | * (<a href="Collection.html#optional-restrictions">optional</a>) | 
|  | * @since 1.5 | 
|  | */ | 
|  | public static boolean disjoint(Collection<?> c1, Collection<?> c2) { | 
|  | // The collection to be used for contains(). Preference is given to | 
|  | // the collection who's contains() has lower O() complexity. | 
|  | Collection<?> contains = c2; | 
|  | // The collection to be iterated. If the collections' contains() impl | 
|  | // are of different O() complexity, the collection with slower | 
|  | // contains() will be used for iteration. For collections who's | 
|  | // contains() are of the same complexity then best performance is | 
|  | // achieved by iterating the smaller collection. | 
|  | Collection<?> iterate = c1; | 
|  |  | 
|  | // Performance optimization cases. The heuristics: | 
|  | //   1. Generally iterate over c1. | 
|  | //   2. If c1 is a Set then iterate over c2. | 
|  | //   3. If either collection is empty then result is always true. | 
|  | //   4. Iterate over the smaller Collection. | 
|  | if (c1 instanceof Set) { | 
|  | // Use c1 for contains as a Set's contains() is expected to perform | 
|  | // better than O(N/2) | 
|  | iterate = c2; | 
|  | contains = c1; | 
|  | } else if (!(c2 instanceof Set)) { | 
|  | // Both are mere Collections. Iterate over smaller collection. | 
|  | // Example: If c1 contains 3 elements and c2 contains 50 elements and | 
|  | // assuming contains() requires ceiling(N/2) comparisons then | 
|  | // checking for all c1 elements in c2 would require 75 comparisons | 
|  | // (3 * ceiling(50/2)) vs. checking all c2 elements in c1 requiring | 
|  | // 100 comparisons (50 * ceiling(3/2)). | 
|  | int c1size = c1.size(); | 
|  | int c2size = c2.size(); | 
|  | if (c1size == 0 || c2size == 0) { | 
|  | // At least one collection is empty. Nothing will match. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (c1size > c2size) { | 
|  | iterate = c2; | 
|  | contains = c1; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (Object e : iterate) { | 
|  | if (contains.contains(e)) { | 
|  | // Found a common element. Collections are not disjoint. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // No common elements were found. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Adds all of the specified elements to the specified collection. | 
|  | * Elements to be added may be specified individually or as an array. | 
|  | * The behavior of this convenience method is identical to that of | 
|  | * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely | 
|  | * to run significantly faster under most implementations. | 
|  | * | 
|  | * <p>When elements are specified individually, this method provides a | 
|  | * convenient way to add a few elements to an existing collection: | 
|  | * <pre> | 
|  | *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon"); | 
|  | * </pre> | 
|  | * | 
|  | * @param  <T> the class of the elements to add and of the collection | 
|  | * @param c the collection into which <tt>elements</tt> are to be inserted | 
|  | * @param elements the elements to insert into <tt>c</tt> | 
|  | * @return <tt>true</tt> if the collection changed as a result of the call | 
|  | * @throws UnsupportedOperationException if <tt>c</tt> does not support | 
|  | *         the <tt>add</tt> operation | 
|  | * @throws NullPointerException if <tt>elements</tt> contains one or more | 
|  | *         null values and <tt>c</tt> does not permit null elements, or | 
|  | *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt> | 
|  | * @throws IllegalArgumentException if some property of a value in | 
|  | *         <tt>elements</tt> prevents it from being added to <tt>c</tt> | 
|  | * @see Collection#addAll(Collection) | 
|  | * @since 1.5 | 
|  | */ | 
|  | @SafeVarargs | 
|  | public static <T> boolean addAll(Collection<? super T> c, T... elements) { | 
|  | boolean result = false; | 
|  | for (T element : elements) | 
|  | result |= c.add(element); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a set backed by the specified map.  The resulting set displays | 
|  | * the same ordering, concurrency, and performance characteristics as the | 
|  | * backing map.  In essence, this factory method provides a {@link Set} | 
|  | * implementation corresponding to any {@link Map} implementation.  There | 
|  | * is no need to use this method on a {@link Map} implementation that | 
|  | * already has a corresponding {@link Set} implementation (such as {@link | 
|  | * HashMap} or {@link TreeMap}). | 
|  | * | 
|  | * <p>Each method invocation on the set returned by this method results in | 
|  | * exactly one method invocation on the backing map or its <tt>keySet</tt> | 
|  | * view, with one exception.  The <tt>addAll</tt> method is implemented | 
|  | * as a sequence of <tt>put</tt> invocations on the backing map. | 
|  | * | 
|  | * <p>The specified map must be empty at the time this method is invoked, | 
|  | * and should not be accessed directly after this method returns.  These | 
|  | * conditions are ensured if the map is created empty, passed directly | 
|  | * to this method, and no reference to the map is retained, as illustrated | 
|  | * in the following code fragment: | 
|  | * <pre> | 
|  | *    Set<Object> weakHashSet = Collections.newSetFromMap( | 
|  | *        new WeakHashMap<Object, Boolean>()); | 
|  | * </pre> | 
|  | * | 
|  | * @param <E> the class of the map keys and of the objects in the | 
|  | *        returned set | 
|  | * @param map the backing map | 
|  | * @return the set backed by the map | 
|  | * @throws IllegalArgumentException if <tt>map</tt> is not empty | 
|  | * @since 1.6 | 
|  | */ | 
|  | public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) { | 
|  | return new SetFromMap<>(map); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | private static class SetFromMap<E> extends AbstractSet<E> | 
|  | implements Set<E>, Serializable | 
|  | { | 
|  | private final Map<E, Boolean> m;  // The backing map | 
|  | private transient Set<E> s;       // Its keySet | 
|  |  | 
|  | SetFromMap(Map<E, Boolean> map) { | 
|  | if (!map.isEmpty()) | 
|  | throw new IllegalArgumentException("Map is non-empty"); | 
|  | m = map; | 
|  | s = map.keySet(); | 
|  | } | 
|  |  | 
|  | public void clear()               {        m.clear(); } | 
|  | public int size()                 { return m.size(); } | 
|  | public boolean isEmpty()          { return m.isEmpty(); } | 
|  | public boolean contains(Object o) { return m.containsKey(o); } | 
|  | public boolean remove(Object o)   { return m.remove(o) != null; } | 
|  | public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; } | 
|  | public Iterator<E> iterator()     { return s.iterator(); } | 
|  | public Object[] toArray()         { return s.toArray(); } | 
|  | public <T> T[] toArray(T[] a)     { return s.toArray(a); } | 
|  | public String toString()          { return s.toString(); } | 
|  | public int hashCode()             { return s.hashCode(); } | 
|  | public boolean equals(Object o)   { return o == this || s.equals(o); } | 
|  | public boolean containsAll(Collection<?> c) {return s.containsAll(c);} | 
|  | public boolean removeAll(Collection<?> c)   {return s.removeAll(c);} | 
|  | public boolean retainAll(Collection<?> c)   {return s.retainAll(c);} | 
|  | // addAll is the only inherited implementation | 
|  |  | 
|  | // Override default methods in Collection | 
|  | @Override | 
|  | public void forEach(Consumer<? super E> action) { | 
|  | s.forEach(action); | 
|  | } | 
|  | @Override | 
|  | public boolean removeIf(Predicate<? super E> filter) { | 
|  | return s.removeIf(filter); | 
|  | } | 
|  |  | 
|  | @Override | 
|  | public Spliterator<E> spliterator() {return s.spliterator();} | 
|  | @Override | 
|  | public Stream<E> stream()           {return s.stream();} | 
|  | @Override | 
|  | public Stream<E> parallelStream()   {return s.parallelStream();} | 
|  |  | 
|  | private static final long serialVersionUID = 2454657854757543876L; | 
|  |  | 
|  | private void readObject(java.io.ObjectInputStream stream) | 
|  | throws IOException, ClassNotFoundException | 
|  | { | 
|  | stream.defaultReadObject(); | 
|  | s = m.keySet(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo) | 
|  | * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>, | 
|  | * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This | 
|  | * view can be useful when you would like to use a method | 
|  | * requiring a <tt>Queue</tt> but you need Lifo ordering. | 
|  | * | 
|  | * <p>Each method invocation on the queue returned by this method | 
|  | * results in exactly one method invocation on the backing deque, with | 
|  | * one exception.  The {@link Queue#addAll addAll} method is | 
|  | * implemented as a sequence of {@link Deque#addFirst addFirst} | 
|  | * invocations on the backing deque. | 
|  | * | 
|  | * @param  <T> the class of the objects in the deque | 
|  | * @param deque the deque | 
|  | * @return the queue | 
|  | * @since  1.6 | 
|  | */ | 
|  | public static <T> Queue<T> asLifoQueue(Deque<T> deque) { | 
|  | return new AsLIFOQueue<>(deque); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @serial include | 
|  | */ | 
|  | static class AsLIFOQueue<E> extends AbstractQueue<E> | 
|  | implements Queue<E>, Serializable { | 
|  | private static final long serialVersionUID = 1802017725587941708L; | 
|  | private final Deque<E> q; | 
|  | AsLIFOQueue(Deque<E> q)           { this.q = q; } | 
|  | public boolean add(E e)           { q.addFirst(e); return true; } | 
|  | public boolean offer(E e)         { return q.offerFirst(e); } | 
|  | public E poll()                   { return q.pollFirst(); } | 
|  | public E remove()                 { return q.removeFirst(); } | 
|  | public E peek()                   { return q.peekFirst(); } | 
|  | public E element()                { return q.getFirst(); } | 
|  | public void clear()               {        q.clear(); } | 
|  | public int size()                 { return q.size(); } | 
|  | public boolean isEmpty()          { return q.isEmpty(); } | 
|  | public boolean contains(Object o) { return q.contains(o); } | 
|  | public boolean remove(Object o)   { return q.remove(o); } | 
|  | public Iterator<E> iterator()     { return q.iterator(); } | 
|  | public Object[] toArray()         { return q.toArray(); } | 
|  | public <T> T[] toArray(T[] a)     { return q.toArray(a); } | 
|  | public String toString()          { return q.toString(); } | 
|  | public boolean containsAll(Collection<?> c) {return q.containsAll(c);} | 
|  | public boolean removeAll(Collection<?> c)   {return q.removeAll(c);} | 
|  | public boolean retainAll(Collection<?> c)   {return q.retainAll(c);} | 
|  | // We use inherited addAll; forwarding addAll would be wrong | 
|  |  | 
|  | // Override default methods in Collection | 
|  | @Override | 
|  | public void forEach(Consumer<? super E> action) {q.forEach(action);} | 
|  | @Override | 
|  | public boolean removeIf(Predicate<? super E> filter) { | 
|  | return q.removeIf(filter); | 
|  | } | 
|  | @Override | 
|  | public Spliterator<E> spliterator() {return q.spliterator();} | 
|  | @Override | 
|  | public Stream<E> stream()           {return q.stream();} | 
|  | @Override | 
|  | public Stream<E> parallelStream()   {return q.parallelStream();} | 
|  | } | 
|  | } |