blob: 8e8700a8c463503bbb37c0641b238d5cbe425f8b [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.server.wifi.util;
import android.annotation.NonNull;
import android.util.SparseIntArray;
import com.android.server.wifi.proto.nano.WifiMetricsProto.HistogramBucketInt32;
import java.lang.reflect.Array;
import java.util.Arrays;
import java.util.Iterator;
/**
* A histogram that stores the counts of values that fall within buckets, where buckets contain
* the count for a range of values. This implementation is backed by a SparseIntArray, meaning
* values are stored as int and counts are stored as int.
*/
public class IntHistogram implements Iterable<IntHistogram.Bucket> {
/*
* Definitions:
* - value: what you would like to count
* - count: the number of occurrences of values that fall within a bucket
* - key: mBuckets maps key => count, 0 <= key <= mBucketBoundaries.length, keys can be
* uninitialized for buckets that were never incremented
* - bucketIndex: the index of the initialized buckets, 0 <= bucketIndex < mBucket.size(),
* all indices in this range are initialized.
*/
private SparseIntArray mBuckets;
private final int[] mBucketBoundaries;
/**
* A bucket in the histogram, for the range [start, end).
* An exception to this is when {@link Bucket#end} == Integer.MAX_VALUE, when the range will be
* [start, end].
*/
public static class Bucket {
public int start;
public int end;
public int count;
public Bucket(int start, int end, int count) {
this.start = start;
this.end = end;
this.count = count;
}
}
/**
* Constructs a histogram given the boundary values of buckets, as an int[].
* @param bucketBoundaries The boundary values that separate each bucket. The number of
* buckets is bucketBoundaries.length + 1, where the buckets are:
* - < bucketBoundaries[0]
* - [bucketBoundaries[0], bucketBoundaries[1])
* ...
* - >= bucketBoundaries[bucketBoundaries.length() - 1]
* This array must be non-null, non-empty, and strictly monotonically
* increasing i.e. a[i] < a[i+1].
*/
public IntHistogram(@NonNull int[] bucketBoundaries) {
if (bucketBoundaries == null || bucketBoundaries.length == 0) {
throw new IllegalArgumentException("bucketBoundaries must be non-null and non-empty!");
}
for (int i = 0; i < bucketBoundaries.length - 1; i++) {
int cur = bucketBoundaries[i];
int next = bucketBoundaries[i + 1];
if (cur >= next) {
throw new IllegalArgumentException(String.format(
"bucketBoundaries values must be strictly monotonically increasing, but "
+ "value %d at index %d is greater or equal to "
+ "value %d at index %d!",
cur, i, next, i + 1));
}
}
mBucketBoundaries = bucketBoundaries.clone();
mBuckets = new SparseIntArray();
}
/**
* Resets this histogram to the initial state.
*/
public void clear() {
mBuckets.clear();
}
/**
* Returns the number of non-empty buckets, where an empty bucket is a bucket that was never
* added to.
*/
public int numNonEmptyBuckets() {
return mBuckets.size();
}
/**
* Returns the maximum number of possible buckets (dictated by the number of bucket boundaries).
*/
public int numTotalBuckets() {
return mBucketBoundaries.length + 1;
}
/**
* Gets the nth non-empty bucket, where 0 <= n < {@link #numNonEmptyBuckets()}
*/
public Bucket getBucketByIndex(int bucketIndex) {
int bucketKey = mBuckets.keyAt(bucketIndex);
int start = bucketKey == 0
? Integer.MIN_VALUE : mBucketBoundaries[bucketKey - 1];
int end = bucketKey == mBucketBoundaries.length
? Integer.MAX_VALUE : mBucketBoundaries[bucketKey];
int count = mBuckets.valueAt(bucketIndex);
return new Bucket(start, end, count);
}
/**
* Increments the count of the bucket that this value falls into by 1.
*/
public void increment(int value) {
add(value, 1);
}
/**
* Increments the count of the bucket that this value falls into by <code>count</code>.
*/
public void add(int value, int count) {
int bucketKey = getBucketKey(value);
int curBucketValue = mBuckets.get(bucketKey);
mBuckets.put(bucketKey, curBucketValue + count);
}
/**
* Computes the inverse of the cumulative probability distribution for the histogram.
*
* This is the value v such that the probability of a randomly selected datum being
* less than or equal to v is the provided probability. The answer is constrained to
* lie in the interval [minimum..maximum].
*/
public double quantileFunction(double probability, int minimum, int maximum) {
if (minimum > maximum) {
throw new IllegalArgumentException("bad bounds");
}
if (probability < 0.0 || probability > 1.0) {
throw new IllegalArgumentException("bad roll, try again");
}
long sum = 0;
for (Bucket bucket : this) {
sum += bucket.count;
}
final double target = sum * probability;
double partialSum = 0.0;
Bucket hitBucket = null;
for (Bucket bucket : this) {
if (partialSum + bucket.count >= target) {
hitBucket = bucket;
break;
}
partialSum += bucket.count;
}
if (hitBucket == null) {
// No data at all; assume uniform between given limits
return minimum + probability * (maximum - minimum);
}
double highValue = Math.min(hitBucket.end, maximum);
double value = Math.max(hitBucket.start, minimum);
if (value >= highValue - 1.0 || hitBucket.count == 0) return Math.min(value, highValue);
// interpolate to estimate the value
value += (highValue - value) * (target - partialSum) / hitBucket.count;
return Math.min(Math.max(value, minimum), maximum);
}
/**
* Given a value, returns the key of the bucket where it should fall into.
*/
private int getBucketKey(int value) {
// this passes unit tests, so don't worry about it too much
int insertionIndex = Arrays.binarySearch(mBucketBoundaries, value);
return Math.abs(insertionIndex + 1);
}
/**
* Returns a human-readable string representation of the contents of this histogram, suitable
* for dump().
*/
@Override
public String toString() {
if (mBuckets.size() <= 0) {
return "{}";
}
StringBuilder sb = new StringBuilder();
sb.append('{');
for (int bucketIndex = 0; bucketIndex < mBuckets.size(); ++bucketIndex) {
if (bucketIndex > 0) {
sb.append(", ");
}
int bucketKey = mBuckets.keyAt(bucketIndex);
sb.append('[');
if (bucketKey == 0) {
sb.append("Integer.MIN_VALUE");
} else {
sb.append(mBucketBoundaries[bucketKey - 1]);
}
sb.append(',');
if (bucketKey == mBucketBoundaries.length) {
sb.append("Integer.MAX_VALUE]");
} else {
sb.append(mBucketBoundaries[bucketKey]).append(')');
}
sb.append('=').append(mBuckets.valueAt(bucketIndex));
}
sb.append('}');
return sb.toString();
}
/**
* Iterates over initialized buckets.
*/
@Override
public Iterator<Bucket> iterator() {
return new Iterator<Bucket>() {
private int mBucketIndex = 0;
@Override
public boolean hasNext() {
return mBucketIndex < mBuckets.size();
}
@Override
public Bucket next() {
Bucket bucket = getBucketByIndex(mBucketIndex);
mBucketIndex++;
return bucket;
}
};
}
/**
* For backwards compatibility, can specify a conversion function that converts a bucket in this
* histogram to a specified Protobuf type, used by {@link #toProto(Class, ProtobufConverter)}.
* Note that for all new histograms, the standard Protobuf representation type is
* {@link HistogramBucketInt32[]}, which can be generated using {@link #toProto()}.
* @param <T> The type to convert to.
*/
public interface ProtobufConverter<T> {
/**
* Conversion function.
* @param start start of the range of a bucket.
* @param end end of the range of a bucket.
* @param count count of values in this bucket.
* @return A Protobuf representation of this bucket.
*/
T convert(int start, int end, int count);
}
/**
* Converts this histogram to a Protobuf representation. See {@link ProtobufConverter}
* @param protoClass the class object for the Protobuf type.
* @param converter a conversion function.
* @param <T> the type of the Protobuf output.
* @return an array of Protobuf representation of buckets generated by the converter function.
*/
public <T> T[] toProto(Class<T> protoClass, ProtobufConverter<T> converter) {
@SuppressWarnings("unchecked")
T[] output = (T[]) Array.newInstance(protoClass, mBuckets.size());
int i = 0;
for (Bucket bucket : this) {
output[i] = converter.convert(bucket.start, bucket.end, bucket.count);
i++;
}
return output;
}
/**
* Converts this histogram to a standard Protobuf representation.
*/
public HistogramBucketInt32[] toProto() {
return toProto(HistogramBucketInt32.class, (start, end, count) -> {
HistogramBucketInt32 hb = new HistogramBucketInt32();
hb.start = start;
hb.end = end;
hb.count = count;
return hb;
});
}
}