blob: 973c06dc9f6f0c043f685f92c24ec2a3948a09ae [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.server.wifi;
import static android.net.wifi.WifiInfo.DEFAULT_MAC_ADDRESS;
import static android.net.wifi.WifiInfo.INVALID_RSSI;
import android.annotation.NonNull;
import android.annotation.Nullable;
import android.net.MacAddress;
import android.net.wifi.SupplicantState;
import android.net.wifi.WifiSsid;
import android.util.ArrayMap;
import android.util.Base64;
import android.util.Log;
import android.util.Pair;
import com.android.internal.annotations.VisibleForTesting;
import com.android.internal.util.Preconditions;
import com.android.server.wifi.WifiScoreCardProto.AccessPoint;
import com.android.server.wifi.WifiScoreCardProto.Event;
import com.android.server.wifi.WifiScoreCardProto.Network;
import com.android.server.wifi.WifiScoreCardProto.NetworkList;
import com.android.server.wifi.WifiScoreCardProto.SecurityType;
import com.android.server.wifi.WifiScoreCardProto.Signal;
import com.android.server.wifi.WifiScoreCardProto.UnivariateStatistic;
import com.android.server.wifi.util.NativeUtil;
import com.google.protobuf.ByteString;
import com.google.protobuf.InvalidProtocolBufferException;
import java.nio.ByteBuffer;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Map;
import java.util.Objects;
import java.util.concurrent.atomic.AtomicReference;
import javax.annotation.concurrent.NotThreadSafe;
/**
* Retains statistical information about the performance of various
* access points, as experienced by this device.
*
* The purpose is to better inform future network selection and switching
* by this device.
*/
@NotThreadSafe
public class WifiScoreCard {
public static final String DUMP_ARG = "WifiScoreCard";
private static final String TAG = "WifiScoreCard";
private static final boolean DBG = false;
private final Clock mClock;
private final String mL2KeySeed;
private MemoryStore mMemoryStore;
/** Our view of the memory store */
public interface MemoryStore {
/** Requests a read, with asynchronous reply */
void read(String key, BlobListener blobListener);
/** Requests a write, does not wait for completion */
void write(String key, byte[] value);
}
/** Asynchronous response to a read request */
public interface BlobListener {
/** Provides the previously stored value, or null if none */
void onBlobRetrieved(@Nullable byte[] value);
}
/**
* Installs a memory store.
*
* Normally this happens just once, shortly after we start. But wifi can
* come up before the disk is ready, and we might not yet have a valid wall
* clock when we start up, so we need to be prepared to begin recording data
* even if the MemoryStore is not yet available.
*
* When the store is installed for the first time, we want to merge any
* recently recorded data together with data already in the store. But if
* the store restarts and has to be reinstalled, we don't want to do
* this merge, because that would risk double-counting the old data.
*
*/
public void installMemoryStore(@NonNull MemoryStore memoryStore) {
Preconditions.checkNotNull(memoryStore);
if (mMemoryStore == null) {
mMemoryStore = memoryStore;
Log.i(TAG, "Installing MemoryStore");
requestReadForAllChanged();
} else {
mMemoryStore = memoryStore;
Log.e(TAG, "Reinstalling MemoryStore");
// Our caller will call doWrites() eventually, so nothing more to do here.
}
}
/**
* Timestamp of the start of the most recent connection attempt.
*
* Based on mClock.getElapsedSinceBootMillis().
*
* This is for calculating the time to connect and the duration of the connection.
* Any negative value means we are not currently connected.
*/
private long mTsConnectionAttemptStart = TS_NONE;
private static final long TS_NONE = -1;
/**
* Timestamp captured when we find out about a firmware roam
*/
private long mTsRoam = TS_NONE;
/**
* Becomes true the first time we see a poll with a valid RSSI in a connection
*/
private boolean mPolled = false;
/**
* Records validation success for the current connection.
*
* We want to gather statistics only on the first success.
*/
private boolean mValidated = false;
/**
* A note to ourself that we are attempting a network switch
*/
private boolean mAttemptingSwitch = false;
/**
* @param clock is the time source
* @param l2KeySeed is for making our L2Keys usable only on this device
*/
public WifiScoreCard(Clock clock, String l2KeySeed) {
mClock = clock;
mL2KeySeed = l2KeySeed;
mDummyPerBssid = new PerBssid("", MacAddress.fromString(DEFAULT_MAC_ADDRESS));
}
/**
* Gets the L2Key and GroupHint associated with the connection.
*/
public @NonNull Pair<String, String> getL2KeyAndGroupHint(ExtendedWifiInfo wifiInfo) {
PerBssid perBssid = lookupBssid(wifiInfo.getSSID(), wifiInfo.getBSSID());
if (perBssid == mDummyPerBssid) {
return new Pair<>(null, null);
}
final long groupIdHash = computeHashLong(perBssid.ssid, mDummyPerBssid.bssid);
return new Pair<>(perBssid.l2Key, groupHintFromLong(groupIdHash));
}
/**
* Resets the connection state
*/
public void resetConnectionState() {
if (DBG && mTsConnectionAttemptStart > TS_NONE && !mAttemptingSwitch) {
Log.v(TAG, "resetConnectionState", new Exception());
}
resetConnectionStateInternal(true);
}
/**
* @param calledFromResetConnectionState says the call is from outside the class,
* indicating that we need to resepect the value of mAttemptingSwitch.
*/
private void resetConnectionStateInternal(boolean calledFromResetConnectionState) {
if (!calledFromResetConnectionState) {
mAttemptingSwitch = false;
}
if (!mAttemptingSwitch) {
mTsConnectionAttemptStart = TS_NONE;
}
mTsRoam = TS_NONE;
mPolled = false;
mValidated = false;
}
/**
* Updates the score card using relevant parts of WifiInfo
*
* @param wifiInfo object holding relevant values.
*/
private void update(WifiScoreCardProto.Event event, ExtendedWifiInfo wifiInfo) {
PerBssid perBssid = lookupBssid(wifiInfo.getSSID(), wifiInfo.getBSSID());
perBssid.updateEventStats(event,
wifiInfo.getFrequency(),
wifiInfo.getRssi(),
wifiInfo.getLinkSpeed());
perBssid.setNetworkConfigId(wifiInfo.getNetworkId());
if (DBG) Log.d(TAG, event.toString() + " ID: " + perBssid.id + " " + wifiInfo);
}
/**
* Updates the score card after a signal poll
*
* @param wifiInfo object holding relevant values
*/
public void noteSignalPoll(ExtendedWifiInfo wifiInfo) {
if (!mPolled && wifiInfo.getRssi() != INVALID_RSSI) {
update(Event.FIRST_POLL_AFTER_CONNECTION, wifiInfo);
mPolled = true;
}
update(Event.SIGNAL_POLL, wifiInfo);
if (mTsRoam > TS_NONE && wifiInfo.getRssi() != INVALID_RSSI) {
long duration = mClock.getElapsedSinceBootMillis() - mTsRoam;
if (duration >= SUCCESS_MILLIS_SINCE_ROAM) {
update(Event.ROAM_SUCCESS, wifiInfo);
mTsRoam = TS_NONE;
doWrites();
}
}
}
/** Wait a few seconds before considering the roam successful */
private static final long SUCCESS_MILLIS_SINCE_ROAM = 4_000;
/**
* Updates the score card after IP configuration
*
* @param wifiInfo object holding relevant values
*/
public void noteIpConfiguration(ExtendedWifiInfo wifiInfo) {
update(Event.IP_CONFIGURATION_SUCCESS, wifiInfo);
mAttemptingSwitch = false;
doWrites();
}
/**
* Updates the score card after network validation success.
*
* @param wifiInfo object holding relevant values
*/
public void noteValidationSuccess(ExtendedWifiInfo wifiInfo) {
if (mValidated) return; // Only once per connection
update(Event.VALIDATION_SUCCESS, wifiInfo);
mValidated = true;
}
/**
* Records the start of a connection attempt
*
* @param wifiInfo may have state about an existing connection
*/
public void noteConnectionAttempt(ExtendedWifiInfo wifiInfo) {
// We may or may not be currently connected. If not, simply record the start.
// But if we are connected, wrap up the old one first.
if (mTsConnectionAttemptStart > TS_NONE) {
if (mPolled) {
update(Event.LAST_POLL_BEFORE_SWITCH, wifiInfo);
}
mAttemptingSwitch = true;
}
mTsConnectionAttemptStart = mClock.getElapsedSinceBootMillis();
mPolled = false;
if (DBG) Log.d(TAG, "CONNECTION_ATTEMPT" + (mAttemptingSwitch ? " X " : " ") + wifiInfo);
}
/**
* Records a newly assigned NetworkAgent netId.
*/
public void noteNetworkAgentCreated(ExtendedWifiInfo wifiInfo, int networkAgentId) {
PerBssid perBssid = lookupBssid(wifiInfo.getSSID(), wifiInfo.getBSSID());
if (DBG) {
Log.d(TAG, "NETWORK_AGENT_ID: " + networkAgentId + " ID: " + perBssid.id);
}
perBssid.mNetworkAgentId = networkAgentId;
}
/**
* Updates the score card after a failed connection attempt
*
* @param wifiInfo object holding relevant values
*/
public void noteConnectionFailure(ExtendedWifiInfo wifiInfo,
int codeMetrics, int codeMetricsProto) {
if (DBG) {
Log.d(TAG, "noteConnectionFailure(..., " + codeMetrics + ", " + codeMetricsProto + ")");
}
// TODO(b/112196799) Need to sort out the reasons better. Also, we get here
// when we disconnect from below, so it should sometimes get counted as a
// disconnection rather than a connection failure.
update(Event.CONNECTION_FAILURE, wifiInfo);
resetConnectionStateInternal(false);
}
/**
* Updates the score card after network reachability failure
*
* @param wifiInfo object holding relevant values
*/
public void noteIpReachabilityLost(ExtendedWifiInfo wifiInfo) {
update(Event.IP_REACHABILITY_LOST, wifiInfo);
if (mTsRoam > TS_NONE) {
mTsConnectionAttemptStart = mTsRoam; // just to update elapsed
update(Event.ROAM_FAILURE, wifiInfo);
}
resetConnectionStateInternal(false);
doWrites();
}
/**
* Updates the score card before a roam
*
* We may have already done a firmware roam, but wifiInfo has not yet
* been updated, so we still have the old state.
*
* @param wifiInfo object holding relevant values
*/
public void noteRoam(ExtendedWifiInfo wifiInfo) {
update(Event.LAST_POLL_BEFORE_ROAM, wifiInfo);
mTsRoam = mClock.getElapsedSinceBootMillis();
}
/**
* Called when the supplicant state is about to change, before wifiInfo is updated
*
* @param wifiInfo object holding old values
* @param state the new supplicant state
*/
public void noteSupplicantStateChanging(ExtendedWifiInfo wifiInfo, SupplicantState state) {
if (DBG) {
Log.d(TAG, "Changing state to " + state + " " + wifiInfo);
}
}
/**
* Called after the supplicant state changed
*
* @param wifiInfo object holding old values
*/
public void noteSupplicantStateChanged(ExtendedWifiInfo wifiInfo) {
if (DBG) {
Log.d(TAG, "STATE " + wifiInfo);
}
}
/**
* Updates the score card after wifi is disabled
*
* @param wifiInfo object holding relevant values
*/
public void noteWifiDisabled(ExtendedWifiInfo wifiInfo) {
update(Event.WIFI_DISABLED, wifiInfo);
resetConnectionStateInternal(false);
doWrites();
}
final class PerBssid {
public int id;
public final String l2Key;
public final String ssid;
public final MacAddress bssid;
public boolean changed;
private SecurityType mSecurityType = null;
private int mNetworkAgentId = Integer.MIN_VALUE;
private int mNetworkConfigId = Integer.MIN_VALUE;
private final Map<Pair<Event, Integer>, PerSignal>
mSignalForEventAndFrequency = new ArrayMap<>();
PerBssid(String ssid, MacAddress bssid) {
this.ssid = ssid;
this.bssid = bssid;
final long hash = computeHashLong(ssid, bssid);
this.l2Key = l2KeyFromLong(hash);
this.id = idFromLong(hash);
this.changed = false;
}
void updateEventStats(Event event, int frequency, int rssi, int linkspeed) {
PerSignal perSignal = lookupSignal(event, frequency);
if (rssi != INVALID_RSSI) {
perSignal.rssi.update(rssi);
}
if (linkspeed > 0) {
perSignal.linkspeed.update(linkspeed);
}
if (perSignal.elapsedMs != null && mTsConnectionAttemptStart > TS_NONE) {
long millis = mClock.getElapsedSinceBootMillis() - mTsConnectionAttemptStart;
if (millis >= 0) {
perSignal.elapsedMs.update(millis);
}
}
changed = true;
}
PerSignal lookupSignal(Event event, int frequency) {
finishPendingRead();
Pair<Event, Integer> key = new Pair<>(event, frequency);
PerSignal ans = mSignalForEventAndFrequency.get(key);
if (ans == null) {
ans = new PerSignal(event, frequency);
mSignalForEventAndFrequency.put(key, ans);
}
return ans;
}
SecurityType getSecurityType() {
finishPendingRead();
return mSecurityType;
}
void setSecurityType(SecurityType securityType) {
finishPendingRead();
if (!Objects.equals(securityType, mSecurityType)) {
mSecurityType = securityType;
changed = true;
}
}
void setNetworkConfigId(int networkConfigId) {
// Not serialized, so don't need to set changed, etc.
if (networkConfigId >= 0) {
mNetworkConfigId = networkConfigId;
}
}
AccessPoint toAccessPoint() {
return toAccessPoint(false);
}
AccessPoint toAccessPoint(boolean obfuscate) {
finishPendingRead();
AccessPoint.Builder builder = AccessPoint.newBuilder();
builder.setId(id);
if (!obfuscate) {
builder.setBssid(ByteString.copyFrom(bssid.toByteArray()));
}
if (mSecurityType != null) {
builder.setSecurityType(mSecurityType);
}
for (PerSignal sig: mSignalForEventAndFrequency.values()) {
builder.addEventStats(sig.toSignal());
}
return builder.build();
}
PerBssid merge(AccessPoint ap) {
if (ap.hasId() && this.id != ap.getId()) {
return this;
}
if (ap.hasSecurityType()) {
SecurityType prev = ap.getSecurityType();
if (mSecurityType == null) {
mSecurityType = prev;
} else if (!mSecurityType.equals(prev)) {
if (DBG) {
Log.i(TAG, "ID: " + id
+ "SecurityType changed: " + prev + " to " + mSecurityType);
}
changed = true;
}
}
for (Signal signal: ap.getEventStatsList()) {
Pair<Event, Integer> key = new Pair<>(signal.getEvent(), signal.getFrequency());
PerSignal perSignal = mSignalForEventAndFrequency.get(key);
if (perSignal == null) {
mSignalForEventAndFrequency.put(key, new PerSignal(signal));
// No need to set changed for this, since we are in sync with what's stored
} else {
perSignal.merge(signal);
changed = true;
}
}
return this;
}
String getL2Key() {
return l2Key.toString();
}
/**
* Called when the (asynchronous) answer to a read request comes back.
*/
void lazyMerge(byte[] serialized) {
if (serialized == null) return;
byte[] old = mPendingReadFromStore.getAndSet(serialized);
if (old != null) {
Log.e(TAG, "More answers than we expected!");
}
}
/**
* Handles (when convenient) the arrival of previously stored data.
*
* The response from IpMemoryStore arrives on a different thread, so we
* defer handling it until here, when we're on our favorite thread and
* in a good position to deal with it. We may have already collected some
* data before now, so we need to be prepared to merge the new and old together.
*/
void finishPendingRead() {
final byte[] serialized = mPendingReadFromStore.getAndSet(null);
if (serialized == null) return;
AccessPoint ap;
try {
ap = AccessPoint.parseFrom(serialized);
} catch (InvalidProtocolBufferException e) {
Log.e(TAG, "Failed to deserialize", e);
return;
}
merge(ap);
}
private final AtomicReference<byte[]> mPendingReadFromStore = new AtomicReference<>();
}
// Returned by lookupBssid when the BSSID is not available,
// for instance when we are not associated.
private final PerBssid mDummyPerBssid;
private final Map<MacAddress, PerBssid> mApForBssid = new ArrayMap<>();
// TODO should be private, but WifiCandidates needs it
@NonNull PerBssid lookupBssid(String ssid, String bssid) {
MacAddress mac;
if (ssid == null || WifiSsid.NONE.equals(ssid) || bssid == null) {
return mDummyPerBssid;
}
try {
mac = MacAddress.fromString(bssid);
} catch (IllegalArgumentException e) {
return mDummyPerBssid;
}
PerBssid ans = mApForBssid.get(mac);
if (ans == null || !ans.ssid.equals(ssid)) {
ans = new PerBssid(ssid, mac);
PerBssid old = mApForBssid.put(mac, ans);
if (old != null) {
Log.i(TAG, "Discarding stats for score card (ssid changed) ID: " + old.id);
}
requestReadForPerBssid(ans);
}
return ans;
}
private void requestReadForPerBssid(final PerBssid perBssid) {
if (mMemoryStore != null) {
mMemoryStore.read(perBssid.getL2Key(), (value) -> perBssid.lazyMerge(value));
}
}
private void requestReadForAllChanged() {
for (PerBssid perBssid : mApForBssid.values()) {
if (perBssid.changed) {
requestReadForPerBssid(perBssid);
}
}
}
/**
* Issues write requests for all changed entries.
*
* This should be called from time to time to save the state to persistent
* storage. Since we always check internal state first, this does not need
* to be called very often, but it should be called before shutdown.
*
* @returns number of writes issued.
*/
public int doWrites() {
if (mMemoryStore == null) return 0;
int count = 0;
int bytes = 0;
for (PerBssid perBssid : mApForBssid.values()) {
if (perBssid.changed) {
perBssid.finishPendingRead();
byte[] serialized = perBssid.toAccessPoint(/* No BSSID */ true).toByteArray();
mMemoryStore.write(perBssid.getL2Key(), serialized);
perBssid.changed = false;
count++;
bytes += serialized.length;
}
}
if (DBG && count > 0) {
Log.v(TAG, "Write count: " + count + ", bytes: " + bytes);
}
return count;
}
private long computeHashLong(String ssid, MacAddress mac) {
byte[][] parts = {
// Our seed keeps the L2Keys specific to this device
mL2KeySeed.getBytes(),
// ssid is either quoted utf8 or hex-encoded bytes; turn it into plain bytes.
NativeUtil.byteArrayFromArrayList(NativeUtil.decodeSsid(ssid)),
// And the BSSID
mac.toByteArray()
};
// Assemble the parts into one, with single-byte lengths before each.
int n = 0;
for (int i = 0; i < parts.length; i++) {
n += 1 + parts[i].length;
}
byte[] mashed = new byte[n];
int p = 0;
for (int i = 0; i < parts.length; i++) {
byte[] part = parts[i];
mashed[p++] = (byte) part.length;
for (int j = 0; j < part.length; j++) {
mashed[p++] = part[j];
}
}
// Finally, turn that into a long
MessageDigest md;
try {
md = MessageDigest.getInstance("SHA-256");
} catch (NoSuchAlgorithmException e) {
Log.e(TAG, "SHA-256 not supported.");
return 0;
}
ByteBuffer buffer = ByteBuffer.wrap(md.digest(mashed));
return buffer.getLong();
}
private static int idFromLong(long hash) {
return (int) hash & 0x7fffffff;
}
private static String l2KeyFromLong(long hash) {
return "W" + Long.toHexString(hash);
}
private static String groupHintFromLong(long hash) {
return "G" + Long.toHexString(hash);
}
@VisibleForTesting
PerBssid fetchByBssid(MacAddress mac) {
return mApForBssid.get(mac);
}
@VisibleForTesting
PerBssid perBssidFromAccessPoint(String ssid, AccessPoint ap) {
MacAddress bssid = MacAddress.fromBytes(ap.getBssid().toByteArray());
return new PerBssid(ssid, bssid).merge(ap);
}
final class PerSignal {
public final Event event;
public final int frequency;
public final PerUnivariateStatistic rssi;
public final PerUnivariateStatistic linkspeed;
@Nullable public final PerUnivariateStatistic elapsedMs;
PerSignal(Event event, int frequency) {
this.event = event;
this.frequency = frequency;
this.rssi = new PerUnivariateStatistic();
this.linkspeed = new PerUnivariateStatistic();
switch (event) {
case FIRST_POLL_AFTER_CONNECTION:
case IP_CONFIGURATION_SUCCESS:
case VALIDATION_SUCCESS:
case CONNECTION_FAILURE:
case WIFI_DISABLED:
case ROAM_FAILURE:
this.elapsedMs = new PerUnivariateStatistic();
break;
default:
this.elapsedMs = null;
break;
}
}
PerSignal(Signal signal) {
this.event = signal.getEvent();
this.frequency = signal.getFrequency();
this.rssi = new PerUnivariateStatistic(signal.getRssi());
this.linkspeed = new PerUnivariateStatistic(signal.getLinkspeed());
if (signal.hasElapsedMs()) {
this.elapsedMs = new PerUnivariateStatistic(signal.getElapsedMs());
} else {
this.elapsedMs = null;
}
}
void merge(Signal signal) {
Preconditions.checkArgument(event == signal.getEvent());
Preconditions.checkArgument(frequency == signal.getFrequency());
rssi.merge(signal.getRssi());
linkspeed.merge(signal.getLinkspeed());
if (signal.hasElapsedMs()) {
elapsedMs.merge(signal.getElapsedMs());
}
}
Signal toSignal() {
Signal.Builder builder = Signal.newBuilder();
builder.setEvent(event)
.setFrequency(frequency)
.setRssi(rssi.toUnivariateStatistic())
.setLinkspeed(linkspeed.toUnivariateStatistic());
if (elapsedMs != null) {
builder.setElapsedMs(elapsedMs.toUnivariateStatistic());
}
return builder.build();
}
}
final class PerUnivariateStatistic {
public long count = 0;
public double sum = 0.0;
public double sumOfSquares = 0.0;
public double minValue = Double.POSITIVE_INFINITY;
public double maxValue = Double.NEGATIVE_INFINITY;
public double historicalMean = 0.0;
public double historicalVariance = Double.POSITIVE_INFINITY;
PerUnivariateStatistic() {}
PerUnivariateStatistic(UnivariateStatistic stats) {
if (stats.hasCount()) {
this.count = stats.getCount();
this.sum = stats.getSum();
this.sumOfSquares = stats.getSumOfSquares();
}
if (stats.hasMinValue()) {
this.minValue = stats.getMinValue();
}
if (stats.hasMaxValue()) {
this.maxValue = stats.getMaxValue();
}
if (stats.hasHistoricalMean()) {
this.historicalMean = stats.getHistoricalMean();
}
if (stats.hasHistoricalVariance()) {
this.historicalVariance = stats.getHistoricalVariance();
}
}
void update(double value) {
count++;
sum += value;
sumOfSquares += value * value;
minValue = Math.min(minValue, value);
maxValue = Math.max(maxValue, value);
}
void age() {
//TODO Fold the current stats into the historical stats
}
void merge(UnivariateStatistic stats) {
if (stats.hasCount()) {
count += stats.getCount();
sum += stats.getSum();
sumOfSquares += stats.getSumOfSquares();
}
if (stats.hasMinValue()) {
minValue = Math.min(minValue, stats.getMinValue());
}
if (stats.hasMaxValue()) {
maxValue = Math.max(maxValue, stats.getMaxValue());
}
if (stats.hasHistoricalVariance()) {
if (historicalVariance < Double.POSITIVE_INFINITY) {
// Combine the estimates; c.f.
// Maybeck, Stochasic Models, Estimation, and Control, Vol. 1
// equations (1-3) and (1-4)
double numer1 = stats.getHistoricalVariance();
double numer2 = historicalVariance;
double denom = numer1 + numer2;
historicalMean = (numer1 * historicalMean
+ numer2 * stats.getHistoricalMean())
/ denom;
historicalVariance = numer1 * numer2 / denom;
} else {
historicalMean = stats.getHistoricalMean();
historicalVariance = stats.getHistoricalVariance();
}
}
}
UnivariateStatistic toUnivariateStatistic() {
UnivariateStatistic.Builder builder = UnivariateStatistic.newBuilder();
if (count != 0) {
builder.setCount(count)
.setSum(sum)
.setSumOfSquares(sumOfSquares)
.setMinValue(minValue)
.setMaxValue(maxValue);
}
if (historicalVariance < Double.POSITIVE_INFINITY) {
builder.setHistoricalMean(historicalMean)
.setHistoricalVariance(historicalVariance);
}
return builder.build();
}
}
/**
* Returns the current scorecard in the form of a protobuf com_android_server_wifi.NetworkList
*
* Synchronization is the caller's responsibility.
*
* @param obfuscate - if true, ssids and bssids are omitted (short id only)
*/
public byte[] getNetworkListByteArray(boolean obfuscate) {
Map<String, Network.Builder> networks = new ArrayMap<>();
for (PerBssid perBssid: mApForBssid.values()) {
String key = perBssid.ssid;
Network.Builder network = networks.get(key);
if (network == null) {
network = Network.newBuilder();
networks.put(key, network);
if (!obfuscate) {
network.setSsid(perBssid.ssid);
}
if (perBssid.mSecurityType != null) {
network.setSecurityType(perBssid.mSecurityType);
}
if (perBssid.mNetworkAgentId >= network.getNetworkAgentId()) {
network.setNetworkAgentId(perBssid.mNetworkAgentId);
}
if (perBssid.mNetworkConfigId >= network.getNetworkConfigId()) {
network.setNetworkConfigId(perBssid.mNetworkConfigId);
}
}
network.addAccessPoints(perBssid.toAccessPoint(obfuscate));
}
NetworkList.Builder builder = NetworkList.newBuilder();
for (Network.Builder network: networks.values()) {
builder.addNetworks(network);
}
return builder.build().toByteArray();
}
/**
* Returns the current scorecard as a base64-encoded protobuf
*
* Synchronization is the caller's responsibility.
*
* @param obfuscate - if true, bssids are omitted (short id only)
*/
public String getNetworkListBase64(boolean obfuscate) {
byte[] raw = getNetworkListByteArray(obfuscate);
return Base64.encodeToString(raw, Base64.DEFAULT);
}
/**
* Clears the internal state.
*
* This is called in response to a factoryReset call from Settings.
* The memory store will be called after we are called, to wipe the stable
* storage as well. Since we will have just removed all of our networks,
* it is very unlikely that we're connected, or will connect immediately.
* Any in-flight reads will land in the objects we are dropping here, and
* the memory store should drop the in-flight writes. Ideally we would
* avoid issuing reads until we were sure that the memory store had
* received the factoryReset.
*/
public void clear() {
mApForBssid.clear();
resetConnectionStateInternal(false);
}
}