| /* | 
 |  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. | 
 |  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. | 
 |  * | 
 |  * This code is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License version 2 only, as | 
 |  * published by the Free Software Foundation.  Oracle designates this | 
 |  * particular file as subject to the "Classpath" exception as provided | 
 |  * by Oracle in the LICENSE file that accompanied this code. | 
 |  * | 
 |  * This code is distributed in the hope that it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
 |  * version 2 for more details (a copy is included in the LICENSE file that | 
 |  * accompanied this code). | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License version | 
 |  * 2 along with this work; if not, write to the Free Software Foundation, | 
 |  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
 |  * | 
 |  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA | 
 |  * or visit www.oracle.com if you need additional information or have any | 
 |  * questions. | 
 |  */ | 
 |  | 
 | package java.util; | 
 |  | 
 | import java.io.IOException; | 
 | import java.io.InvalidObjectException; | 
 | import java.io.Serializable; | 
 | import java.lang.reflect.ParameterizedType; | 
 | import java.lang.reflect.Type; | 
 | import java.util.function.BiConsumer; | 
 | import java.util.function.BiFunction; | 
 | import java.util.function.Consumer; | 
 | import java.util.function.Function; | 
 |  | 
 | /** | 
 |  * Hash table based implementation of the <tt>Map</tt> interface.  This | 
 |  * implementation provides all of the optional map operations, and permits | 
 |  * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt> | 
 |  * class is roughly equivalent to <tt>Hashtable</tt>, except that it is | 
 |  * unsynchronized and permits nulls.)  This class makes no guarantees as to | 
 |  * the order of the map; in particular, it does not guarantee that the order | 
 |  * will remain constant over time. | 
 |  * | 
 |  * <p>This implementation provides constant-time performance for the basic | 
 |  * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function | 
 |  * disperses the elements properly among the buckets.  Iteration over | 
 |  * collection views requires time proportional to the "capacity" of the | 
 |  * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number | 
 |  * of key-value mappings).  Thus, it's very important not to set the initial | 
 |  * capacity too high (or the load factor too low) if iteration performance is | 
 |  * important. | 
 |  * | 
 |  * <p>An instance of <tt>HashMap</tt> has two parameters that affect its | 
 |  * performance: <i>initial capacity</i> and <i>load factor</i>.  The | 
 |  * <i>capacity</i> is the number of buckets in the hash table, and the initial | 
 |  * capacity is simply the capacity at the time the hash table is created.  The | 
 |  * <i>load factor</i> is a measure of how full the hash table is allowed to | 
 |  * get before its capacity is automatically increased.  When the number of | 
 |  * entries in the hash table exceeds the product of the load factor and the | 
 |  * current capacity, the hash table is <i>rehashed</i> (that is, internal data | 
 |  * structures are rebuilt) so that the hash table has approximately twice the | 
 |  * number of buckets. | 
 |  * | 
 |  * <p>As a general rule, the default load factor (.75) offers a good | 
 |  * tradeoff between time and space costs.  Higher values decrease the | 
 |  * space overhead but increase the lookup cost (reflected in most of | 
 |  * the operations of the <tt>HashMap</tt> class, including | 
 |  * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in | 
 |  * the map and its load factor should be taken into account when | 
 |  * setting its initial capacity, so as to minimize the number of | 
 |  * rehash operations.  If the initial capacity is greater than the | 
 |  * maximum number of entries divided by the load factor, no rehash | 
 |  * operations will ever occur. | 
 |  * | 
 |  * <p>If many mappings are to be stored in a <tt>HashMap</tt> | 
 |  * instance, creating it with a sufficiently large capacity will allow | 
 |  * the mappings to be stored more efficiently than letting it perform | 
 |  * automatic rehashing as needed to grow the table.  Note that using | 
 |  * many keys with the same {@code hashCode()} is a sure way to slow | 
 |  * down performance of any hash table. To ameliorate impact, when keys | 
 |  * are {@link Comparable}, this class may use comparison order among | 
 |  * keys to help break ties. | 
 |  * | 
 |  * <p><strong>Note that this implementation is not synchronized.</strong> | 
 |  * If multiple threads access a hash map concurrently, and at least one of | 
 |  * the threads modifies the map structurally, it <i>must</i> be | 
 |  * synchronized externally.  (A structural modification is any operation | 
 |  * that adds or deletes one or more mappings; merely changing the value | 
 |  * associated with a key that an instance already contains is not a | 
 |  * structural modification.)  This is typically accomplished by | 
 |  * synchronizing on some object that naturally encapsulates the map. | 
 |  * | 
 |  * If no such object exists, the map should be "wrapped" using the | 
 |  * {@link Collections#synchronizedMap Collections.synchronizedMap} | 
 |  * method.  This is best done at creation time, to prevent accidental | 
 |  * unsynchronized access to the map:<pre> | 
 |  *   Map m = Collections.synchronizedMap(new HashMap(...));</pre> | 
 |  * | 
 |  * <p>The iterators returned by all of this class's "collection view methods" | 
 |  * are <i>fail-fast</i>: if the map is structurally modified at any time after | 
 |  * the iterator is created, in any way except through the iterator's own | 
 |  * <tt>remove</tt> method, the iterator will throw a | 
 |  * {@link ConcurrentModificationException}.  Thus, in the face of concurrent | 
 |  * modification, the iterator fails quickly and cleanly, rather than risking | 
 |  * arbitrary, non-deterministic behavior at an undetermined time in the | 
 |  * future. | 
 |  * | 
 |  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed | 
 |  * as it is, generally speaking, impossible to make any hard guarantees in the | 
 |  * presence of unsynchronized concurrent modification.  Fail-fast iterators | 
 |  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis. | 
 |  * Therefore, it would be wrong to write a program that depended on this | 
 |  * exception for its correctness: <i>the fail-fast behavior of iterators | 
 |  * should be used only to detect bugs.</i> | 
 |  * | 
 |  * <p>This class is a member of the | 
 |  * <a href="https://docs.oracle.com/javase/8/docs/technotes/guides/collections/index.html"> | 
 |  * Java Collections Framework</a>. | 
 |  * | 
 |  * @param <K> the type of keys maintained by this map | 
 |  * @param <V> the type of mapped values | 
 |  * | 
 |  * @author  Doug Lea | 
 |  * @author  Josh Bloch | 
 |  * @author  Arthur van Hoff | 
 |  * @author  Neal Gafter | 
 |  * @see     Object#hashCode() | 
 |  * @see     Collection | 
 |  * @see     Map | 
 |  * @see     TreeMap | 
 |  * @see     Hashtable | 
 |  * @since   1.2 | 
 |  */ | 
 | public class HashMap<K,V> extends AbstractMap<K,V> | 
 |     implements Map<K,V>, Cloneable, Serializable { | 
 |  | 
 |     private static final long serialVersionUID = 362498820763181265L; | 
 |  | 
 |     /* | 
 |      * Implementation notes. | 
 |      * | 
 |      * This map usually acts as a binned (bucketed) hash table, but | 
 |      * when bins get too large, they are transformed into bins of | 
 |      * TreeNodes, each structured similarly to those in | 
 |      * java.util.TreeMap. Most methods try to use normal bins, but | 
 |      * relay to TreeNode methods when applicable (simply by checking | 
 |      * instanceof a node).  Bins of TreeNodes may be traversed and | 
 |      * used like any others, but additionally support faster lookup | 
 |      * when overpopulated. However, since the vast majority of bins in | 
 |      * normal use are not overpopulated, checking for existence of | 
 |      * tree bins may be delayed in the course of table methods. | 
 |      * | 
 |      * Tree bins (i.e., bins whose elements are all TreeNodes) are | 
 |      * ordered primarily by hashCode, but in the case of ties, if two | 
 |      * elements are of the same "class C implements Comparable<C>", | 
 |      * type then their compareTo method is used for ordering. (We | 
 |      * conservatively check generic types via reflection to validate | 
 |      * this -- see method comparableClassFor).  The added complexity | 
 |      * of tree bins is worthwhile in providing worst-case O(log n) | 
 |      * operations when keys either have distinct hashes or are | 
 |      * orderable, Thus, performance degrades gracefully under | 
 |      * accidental or malicious usages in which hashCode() methods | 
 |      * return values that are poorly distributed, as well as those in | 
 |      * which many keys share a hashCode, so long as they are also | 
 |      * Comparable. (If neither of these apply, we may waste about a | 
 |      * factor of two in time and space compared to taking no | 
 |      * precautions. But the only known cases stem from poor user | 
 |      * programming practices that are already so slow that this makes | 
 |      * little difference.) | 
 |      * | 
 |      * Because TreeNodes are about twice the size of regular nodes, we | 
 |      * use them only when bins contain enough nodes to warrant use | 
 |      * (see TREEIFY_THRESHOLD). And when they become too small (due to | 
 |      * removal or resizing) they are converted back to plain bins.  In | 
 |      * usages with well-distributed user hashCodes, tree bins are | 
 |      * rarely used.  Ideally, under random hashCodes, the frequency of | 
 |      * nodes in bins follows a Poisson distribution | 
 |      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a | 
 |      * parameter of about 0.5 on average for the default resizing | 
 |      * threshold of 0.75, although with a large variance because of | 
 |      * resizing granularity. Ignoring variance, the expected | 
 |      * occurrences of list size k are (exp(-0.5) * pow(0.5, k) / | 
 |      * factorial(k)). The first values are: | 
 |      * | 
 |      * 0:    0.60653066 | 
 |      * 1:    0.30326533 | 
 |      * 2:    0.07581633 | 
 |      * 3:    0.01263606 | 
 |      * 4:    0.00157952 | 
 |      * 5:    0.00015795 | 
 |      * 6:    0.00001316 | 
 |      * 7:    0.00000094 | 
 |      * 8:    0.00000006 | 
 |      * more: less than 1 in ten million | 
 |      * | 
 |      * The root of a tree bin is normally its first node.  However, | 
 |      * sometimes (currently only upon Iterator.remove), the root might | 
 |      * be elsewhere, but can be recovered following parent links | 
 |      * (method TreeNode.root()). | 
 |      * | 
 |      * All applicable internal methods accept a hash code as an | 
 |      * argument (as normally supplied from a public method), allowing | 
 |      * them to call each other without recomputing user hashCodes. | 
 |      * Most internal methods also accept a "tab" argument, that is | 
 |      * normally the current table, but may be a new or old one when | 
 |      * resizing or converting. | 
 |      * | 
 |      * When bin lists are treeified, split, or untreeified, we keep | 
 |      * them in the same relative access/traversal order (i.e., field | 
 |      * Node.next) to better preserve locality, and to slightly | 
 |      * simplify handling of splits and traversals that invoke | 
 |      * iterator.remove. When using comparators on insertion, to keep a | 
 |      * total ordering (or as close as is required here) across | 
 |      * rebalancings, we compare classes and identityHashCodes as | 
 |      * tie-breakers. | 
 |      * | 
 |      * The use and transitions among plain vs tree modes is | 
 |      * complicated by the existence of subclass LinkedHashMap. See | 
 |      * below for hook methods defined to be invoked upon insertion, | 
 |      * removal and access that allow LinkedHashMap internals to | 
 |      * otherwise remain independent of these mechanics. (This also | 
 |      * requires that a map instance be passed to some utility methods | 
 |      * that may create new nodes.) | 
 |      * | 
 |      * The concurrent-programming-like SSA-based coding style helps | 
 |      * avoid aliasing errors amid all of the twisty pointer operations. | 
 |      */ | 
 |  | 
 |     /** | 
 |      * The default initial capacity - MUST be a power of two. | 
 |      */ | 
 |     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 | 
 |  | 
 |     /** | 
 |      * The maximum capacity, used if a higher value is implicitly specified | 
 |      * by either of the constructors with arguments. | 
 |      * MUST be a power of two <= 1<<30. | 
 |      */ | 
 |     static final int MAXIMUM_CAPACITY = 1 << 30; | 
 |  | 
 |     /** | 
 |      * The load factor used when none specified in constructor. | 
 |      */ | 
 |     static final float DEFAULT_LOAD_FACTOR = 0.75f; | 
 |  | 
 |     /** | 
 |      * The bin count threshold for using a tree rather than list for a | 
 |      * bin.  Bins are converted to trees when adding an element to a | 
 |      * bin with at least this many nodes. The value must be greater | 
 |      * than 2 and should be at least 8 to mesh with assumptions in | 
 |      * tree removal about conversion back to plain bins upon | 
 |      * shrinkage. | 
 |      */ | 
 |     static final int TREEIFY_THRESHOLD = 8; | 
 |  | 
 |     /** | 
 |      * The bin count threshold for untreeifying a (split) bin during a | 
 |      * resize operation. Should be less than TREEIFY_THRESHOLD, and at | 
 |      * most 6 to mesh with shrinkage detection under removal. | 
 |      */ | 
 |     static final int UNTREEIFY_THRESHOLD = 6; | 
 |  | 
 |     /** | 
 |      * The smallest table capacity for which bins may be treeified. | 
 |      * (Otherwise the table is resized if too many nodes in a bin.) | 
 |      * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts | 
 |      * between resizing and treeification thresholds. | 
 |      */ | 
 |     static final int MIN_TREEIFY_CAPACITY = 64; | 
 |  | 
 |     /** | 
 |      * Basic hash bin node, used for most entries.  (See below for | 
 |      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.) | 
 |      */ | 
 |     static class Node<K,V> implements Map.Entry<K,V> { | 
 |         final int hash; | 
 |         final K key; | 
 |         V value; | 
 |         Node<K,V> next; | 
 |  | 
 |         Node(int hash, K key, V value, Node<K,V> next) { | 
 |             this.hash = hash; | 
 |             this.key = key; | 
 |             this.value = value; | 
 |             this.next = next; | 
 |         } | 
 |  | 
 |         public final K getKey()        { return key; } | 
 |         public final V getValue()      { return value; } | 
 |         public final String toString() { return key + "=" + value; } | 
 |  | 
 |         public final int hashCode() { | 
 |             return Objects.hashCode(key) ^ Objects.hashCode(value); | 
 |         } | 
 |  | 
 |         public final V setValue(V newValue) { | 
 |             V oldValue = value; | 
 |             value = newValue; | 
 |             return oldValue; | 
 |         } | 
 |  | 
 |         public final boolean equals(Object o) { | 
 |             if (o == this) | 
 |                 return true; | 
 |             if (o instanceof Map.Entry) { | 
 |                 Map.Entry<?,?> e = (Map.Entry<?,?>)o; | 
 |                 if (Objects.equals(key, e.getKey()) && | 
 |                     Objects.equals(value, e.getValue())) | 
 |                     return true; | 
 |             } | 
 |             return false; | 
 |         } | 
 |     } | 
 |  | 
 |     /* ---------------- Static utilities -------------- */ | 
 |  | 
 |     /** | 
 |      * Computes key.hashCode() and spreads (XORs) higher bits of hash | 
 |      * to lower.  Because the table uses power-of-two masking, sets of | 
 |      * hashes that vary only in bits above the current mask will | 
 |      * always collide. (Among known examples are sets of Float keys | 
 |      * holding consecutive whole numbers in small tables.)  So we | 
 |      * apply a transform that spreads the impact of higher bits | 
 |      * downward. There is a tradeoff between speed, utility, and | 
 |      * quality of bit-spreading. Because many common sets of hashes | 
 |      * are already reasonably distributed (so don't benefit from | 
 |      * spreading), and because we use trees to handle large sets of | 
 |      * collisions in bins, we just XOR some shifted bits in the | 
 |      * cheapest possible way to reduce systematic lossage, as well as | 
 |      * to incorporate impact of the highest bits that would otherwise | 
 |      * never be used in index calculations because of table bounds. | 
 |      */ | 
 |     static final int hash(Object key) { | 
 |         int h; | 
 |         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Returns x's Class if it is of the form "class C implements | 
 |      * Comparable<C>", else null. | 
 |      */ | 
 |     static Class<?> comparableClassFor(Object x) { | 
 |         if (x instanceof Comparable) { | 
 |             Class<?> c; Type[] ts, as; Type t; ParameterizedType p; | 
 |             if ((c = x.getClass()) == String.class) // bypass checks | 
 |                 return c; | 
 |             if ((ts = c.getGenericInterfaces()) != null) { | 
 |                 for (int i = 0; i < ts.length; ++i) { | 
 |                     if (((t = ts[i]) instanceof ParameterizedType) && | 
 |                         ((p = (ParameterizedType)t).getRawType() == | 
 |                          Comparable.class) && | 
 |                         (as = p.getActualTypeArguments()) != null && | 
 |                         as.length == 1 && as[0] == c) // type arg is c | 
 |                         return c; | 
 |                 } | 
 |             } | 
 |         } | 
 |         return null; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Returns k.compareTo(x) if x matches kc (k's screened comparable | 
 |      * class), else 0. | 
 |      */ | 
 |     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable | 
 |     static int compareComparables(Class<?> kc, Object k, Object x) { | 
 |         return (x == null || x.getClass() != kc ? 0 : | 
 |                 ((Comparable)k).compareTo(x)); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Returns a power of two size for the given target capacity. | 
 |      */ | 
 |     static final int tableSizeFor(int cap) { | 
 |         int n = cap - 1; | 
 |         n |= n >>> 1; | 
 |         n |= n >>> 2; | 
 |         n |= n >>> 4; | 
 |         n |= n >>> 8; | 
 |         n |= n >>> 16; | 
 |         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; | 
 |     } | 
 |  | 
 |     /* ---------------- Fields -------------- */ | 
 |  | 
 |     /** | 
 |      * The table, initialized on first use, and resized as | 
 |      * necessary. When allocated, length is always a power of two. | 
 |      * (We also tolerate length zero in some operations to allow | 
 |      * bootstrapping mechanics that are currently not needed.) | 
 |      */ | 
 |     transient Node<K,V>[] table; | 
 |  | 
 |     /** | 
 |      * Holds cached entrySet(). Note that AbstractMap fields are used | 
 |      * for keySet() and values(). | 
 |      */ | 
 |     transient Set<Map.Entry<K,V>> entrySet; | 
 |  | 
 |     /** | 
 |      * The number of key-value mappings contained in this map. | 
 |      */ | 
 |     transient int size; | 
 |  | 
 |     /** | 
 |      * The number of times this HashMap has been structurally modified | 
 |      * Structural modifications are those that change the number of mappings in | 
 |      * the HashMap or otherwise modify its internal structure (e.g., | 
 |      * rehash).  This field is used to make iterators on Collection-views of | 
 |      * the HashMap fail-fast.  (See ConcurrentModificationException). | 
 |      */ | 
 |     transient int modCount; | 
 |  | 
 |     /** | 
 |      * The next size value at which to resize (capacity * load factor). | 
 |      * | 
 |      * @serial | 
 |      */ | 
 |     // (The javadoc description is true upon serialization. | 
 |     // Additionally, if the table array has not been allocated, this | 
 |     // field holds the initial array capacity, or zero signifying | 
 |     // DEFAULT_INITIAL_CAPACITY.) | 
 |     int threshold; | 
 |  | 
 |     /** | 
 |      * The load factor for the hash table. | 
 |      * | 
 |      * @serial | 
 |      */ | 
 |     final float loadFactor; | 
 |  | 
 |     /* ---------------- Public operations -------------- */ | 
 |  | 
 |     /** | 
 |      * Constructs an empty <tt>HashMap</tt> with the specified initial | 
 |      * capacity and load factor. | 
 |      * | 
 |      * @param  initialCapacity the initial capacity | 
 |      * @param  loadFactor      the load factor | 
 |      * @throws IllegalArgumentException if the initial capacity is negative | 
 |      *         or the load factor is nonpositive | 
 |      */ | 
 |     public HashMap(int initialCapacity, float loadFactor) { | 
 |         if (initialCapacity < 0) | 
 |             throw new IllegalArgumentException("Illegal initial capacity: " + | 
 |                                                initialCapacity); | 
 |         if (initialCapacity > MAXIMUM_CAPACITY) | 
 |             initialCapacity = MAXIMUM_CAPACITY; | 
 |         if (loadFactor <= 0 || Float.isNaN(loadFactor)) | 
 |             throw new IllegalArgumentException("Illegal load factor: " + | 
 |                                                loadFactor); | 
 |         this.loadFactor = loadFactor; | 
 |         this.threshold = tableSizeFor(initialCapacity); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Constructs an empty <tt>HashMap</tt> with the specified initial | 
 |      * capacity and the default load factor (0.75). | 
 |      * | 
 |      * @param  initialCapacity the initial capacity. | 
 |      * @throws IllegalArgumentException if the initial capacity is negative. | 
 |      */ | 
 |     public HashMap(int initialCapacity) { | 
 |         this(initialCapacity, DEFAULT_LOAD_FACTOR); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Constructs an empty <tt>HashMap</tt> with the default initial capacity | 
 |      * (16) and the default load factor (0.75). | 
 |      */ | 
 |     public HashMap() { | 
 |         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted | 
 |     } | 
 |  | 
 |     /** | 
 |      * Constructs a new <tt>HashMap</tt> with the same mappings as the | 
 |      * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with | 
 |      * default load factor (0.75) and an initial capacity sufficient to | 
 |      * hold the mappings in the specified <tt>Map</tt>. | 
 |      * | 
 |      * @param   m the map whose mappings are to be placed in this map | 
 |      * @throws  NullPointerException if the specified map is null | 
 |      */ | 
 |     public HashMap(Map<? extends K, ? extends V> m) { | 
 |         this.loadFactor = DEFAULT_LOAD_FACTOR; | 
 |         putMapEntries(m, false); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Implements Map.putAll and Map constructor | 
 |      * | 
 |      * @param m the map | 
 |      * @param evict false when initially constructing this map, else | 
 |      * true (relayed to method afterNodeInsertion). | 
 |      */ | 
 |     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) { | 
 |         int s = m.size(); | 
 |         if (s > 0) { | 
 |             if (table == null) { // pre-size | 
 |                 float ft = ((float)s / loadFactor) + 1.0F; | 
 |                 int t = ((ft < (float)MAXIMUM_CAPACITY) ? | 
 |                          (int)ft : MAXIMUM_CAPACITY); | 
 |                 if (t > threshold) | 
 |                     threshold = tableSizeFor(t); | 
 |             } | 
 |             else if (s > threshold) | 
 |                 resize(); | 
 |             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) { | 
 |                 K key = e.getKey(); | 
 |                 V value = e.getValue(); | 
 |                 putVal(hash(key), key, value, false, evict); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /** | 
 |      * Returns the number of key-value mappings in this map. | 
 |      * | 
 |      * @return the number of key-value mappings in this map | 
 |      */ | 
 |     public int size() { | 
 |         return size; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Returns <tt>true</tt> if this map contains no key-value mappings. | 
 |      * | 
 |      * @return <tt>true</tt> if this map contains no key-value mappings | 
 |      */ | 
 |     public boolean isEmpty() { | 
 |         return size == 0; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Returns the value to which the specified key is mapped, | 
 |      * or {@code null} if this map contains no mapping for the key. | 
 |      * | 
 |      * <p>More formally, if this map contains a mapping from a key | 
 |      * {@code k} to a value {@code v} such that {@code (key==null ? k==null : | 
 |      * key.equals(k))}, then this method returns {@code v}; otherwise | 
 |      * it returns {@code null}.  (There can be at most one such mapping.) | 
 |      * | 
 |      * <p>A return value of {@code null} does not <i>necessarily</i> | 
 |      * indicate that the map contains no mapping for the key; it's also | 
 |      * possible that the map explicitly maps the key to {@code null}. | 
 |      * The {@link #containsKey containsKey} operation may be used to | 
 |      * distinguish these two cases. | 
 |      * | 
 |      * @see #put(Object, Object) | 
 |      */ | 
 |     public V get(Object key) { | 
 |         Node<K,V> e; | 
 |         return (e = getNode(hash(key), key)) == null ? null : e.value; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Implements Map.get and related methods | 
 |      * | 
 |      * @param hash hash for key | 
 |      * @param key the key | 
 |      * @return the node, or null if none | 
 |      */ | 
 |     final Node<K,V> getNode(int hash, Object key) { | 
 |         Node<K,V>[] tab; Node<K,V> first, e; int n; K k; | 
 |         if ((tab = table) != null && (n = tab.length) > 0 && | 
 |             (first = tab[(n - 1) & hash]) != null) { | 
 |             if (first.hash == hash && // always check first node | 
 |                 ((k = first.key) == key || (key != null && key.equals(k)))) | 
 |                 return first; | 
 |             if ((e = first.next) != null) { | 
 |                 if (first instanceof TreeNode) | 
 |                     return ((TreeNode<K,V>)first).getTreeNode(hash, key); | 
 |                 do { | 
 |                     if (e.hash == hash && | 
 |                         ((k = e.key) == key || (key != null && key.equals(k)))) | 
 |                         return e; | 
 |                 } while ((e = e.next) != null); | 
 |             } | 
 |         } | 
 |         return null; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Returns <tt>true</tt> if this map contains a mapping for the | 
 |      * specified key. | 
 |      * | 
 |      * @param   key   The key whose presence in this map is to be tested | 
 |      * @return <tt>true</tt> if this map contains a mapping for the specified | 
 |      * key. | 
 |      */ | 
 |     public boolean containsKey(Object key) { | 
 |         return getNode(hash(key), key) != null; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Associates the specified value with the specified key in this map. | 
 |      * If the map previously contained a mapping for the key, the old | 
 |      * value is replaced. | 
 |      * | 
 |      * @param key key with which the specified value is to be associated | 
 |      * @param value value to be associated with the specified key | 
 |      * @return the previous value associated with <tt>key</tt>, or | 
 |      *         <tt>null</tt> if there was no mapping for <tt>key</tt>. | 
 |      *         (A <tt>null</tt> return can also indicate that the map | 
 |      *         previously associated <tt>null</tt> with <tt>key</tt>.) | 
 |      */ | 
 |     public V put(K key, V value) { | 
 |         return putVal(hash(key), key, value, false, true); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Implements Map.put and related methods | 
 |      * | 
 |      * @param hash hash for key | 
 |      * @param key the key | 
 |      * @param value the value to put | 
 |      * @param onlyIfAbsent if true, don't change existing value | 
 |      * @param evict if false, the table is in creation mode. | 
 |      * @return previous value, or null if none | 
 |      */ | 
 |     final V putVal(int hash, K key, V value, boolean onlyIfAbsent, | 
 |                    boolean evict) { | 
 |         Node<K,V>[] tab; Node<K,V> p; int n, i; | 
 |         if ((tab = table) == null || (n = tab.length) == 0) | 
 |             n = (tab = resize()).length; | 
 |         if ((p = tab[i = (n - 1) & hash]) == null) | 
 |             tab[i] = newNode(hash, key, value, null); | 
 |         else { | 
 |             Node<K,V> e; K k; | 
 |             if (p.hash == hash && | 
 |                 ((k = p.key) == key || (key != null && key.equals(k)))) | 
 |                 e = p; | 
 |             else if (p instanceof TreeNode) | 
 |                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); | 
 |             else { | 
 |                 for (int binCount = 0; ; ++binCount) { | 
 |                     if ((e = p.next) == null) { | 
 |                         p.next = newNode(hash, key, value, null); | 
 |                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st | 
 |                             treeifyBin(tab, hash); | 
 |                         break; | 
 |                     } | 
 |                     if (e.hash == hash && | 
 |                         ((k = e.key) == key || (key != null && key.equals(k)))) | 
 |                         break; | 
 |                     p = e; | 
 |                 } | 
 |             } | 
 |             if (e != null) { // existing mapping for key | 
 |                 V oldValue = e.value; | 
 |                 if (!onlyIfAbsent || oldValue == null) | 
 |                     e.value = value; | 
 |                 afterNodeAccess(e); | 
 |                 return oldValue; | 
 |             } | 
 |         } | 
 |         ++modCount; | 
 |         if (++size > threshold) | 
 |             resize(); | 
 |         afterNodeInsertion(evict); | 
 |         return null; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Initializes or doubles table size.  If null, allocates in | 
 |      * accord with initial capacity target held in field threshold. | 
 |      * Otherwise, because we are using power-of-two expansion, the | 
 |      * elements from each bin must either stay at same index, or move | 
 |      * with a power of two offset in the new table. | 
 |      * | 
 |      * @return the table | 
 |      */ | 
 |     final Node<K,V>[] resize() { | 
 |         Node<K,V>[] oldTab = table; | 
 |         int oldCap = (oldTab == null) ? 0 : oldTab.length; | 
 |         int oldThr = threshold; | 
 |         int newCap, newThr = 0; | 
 |         if (oldCap > 0) { | 
 |             if (oldCap >= MAXIMUM_CAPACITY) { | 
 |                 threshold = Integer.MAX_VALUE; | 
 |                 return oldTab; | 
 |             } | 
 |             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && | 
 |                      oldCap >= DEFAULT_INITIAL_CAPACITY) | 
 |                 newThr = oldThr << 1; // double threshold | 
 |         } | 
 |         else if (oldThr > 0) // initial capacity was placed in threshold | 
 |             newCap = oldThr; | 
 |         else {               // zero initial threshold signifies using defaults | 
 |             newCap = DEFAULT_INITIAL_CAPACITY; | 
 |             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); | 
 |         } | 
 |         if (newThr == 0) { | 
 |             float ft = (float)newCap * loadFactor; | 
 |             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? | 
 |                       (int)ft : Integer.MAX_VALUE); | 
 |         } | 
 |         threshold = newThr; | 
 |         @SuppressWarnings({"rawtypes","unchecked"}) | 
 |             Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; | 
 |         table = newTab; | 
 |         if (oldTab != null) { | 
 |             for (int j = 0; j < oldCap; ++j) { | 
 |                 Node<K,V> e; | 
 |                 if ((e = oldTab[j]) != null) { | 
 |                     oldTab[j] = null; | 
 |                     if (e.next == null) | 
 |                         newTab[e.hash & (newCap - 1)] = e; | 
 |                     else if (e instanceof TreeNode) | 
 |                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); | 
 |                     else { // preserve order | 
 |                         Node<K,V> loHead = null, loTail = null; | 
 |                         Node<K,V> hiHead = null, hiTail = null; | 
 |                         Node<K,V> next; | 
 |                         do { | 
 |                             next = e.next; | 
 |                             if ((e.hash & oldCap) == 0) { | 
 |                                 if (loTail == null) | 
 |                                     loHead = e; | 
 |                                 else | 
 |                                     loTail.next = e; | 
 |                                 loTail = e; | 
 |                             } | 
 |                             else { | 
 |                                 if (hiTail == null) | 
 |                                     hiHead = e; | 
 |                                 else | 
 |                                     hiTail.next = e; | 
 |                                 hiTail = e; | 
 |                             } | 
 |                         } while ((e = next) != null); | 
 |                         if (loTail != null) { | 
 |                             loTail.next = null; | 
 |                             newTab[j] = loHead; | 
 |                         } | 
 |                         if (hiTail != null) { | 
 |                             hiTail.next = null; | 
 |                             newTab[j + oldCap] = hiHead; | 
 |                         } | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |         return newTab; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Replaces all linked nodes in bin at index for given hash unless | 
 |      * table is too small, in which case resizes instead. | 
 |      */ | 
 |     final void treeifyBin(Node<K,V>[] tab, int hash) { | 
 |         int n, index; Node<K,V> e; | 
 |         if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) | 
 |             resize(); | 
 |         else if ((e = tab[index = (n - 1) & hash]) != null) { | 
 |             TreeNode<K,V> hd = null, tl = null; | 
 |             do { | 
 |                 TreeNode<K,V> p = replacementTreeNode(e, null); | 
 |                 if (tl == null) | 
 |                     hd = p; | 
 |                 else { | 
 |                     p.prev = tl; | 
 |                     tl.next = p; | 
 |                 } | 
 |                 tl = p; | 
 |             } while ((e = e.next) != null); | 
 |             if ((tab[index] = hd) != null) | 
 |                 hd.treeify(tab); | 
 |         } | 
 |     } | 
 |  | 
 |     /** | 
 |      * Copies all of the mappings from the specified map to this map. | 
 |      * These mappings will replace any mappings that this map had for | 
 |      * any of the keys currently in the specified map. | 
 |      * | 
 |      * @param m mappings to be stored in this map | 
 |      * @throws NullPointerException if the specified map is null | 
 |      */ | 
 |     public void putAll(Map<? extends K, ? extends V> m) { | 
 |         putMapEntries(m, true); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Removes the mapping for the specified key from this map if present. | 
 |      * | 
 |      * @param  key key whose mapping is to be removed from the map | 
 |      * @return the previous value associated with <tt>key</tt>, or | 
 |      *         <tt>null</tt> if there was no mapping for <tt>key</tt>. | 
 |      *         (A <tt>null</tt> return can also indicate that the map | 
 |      *         previously associated <tt>null</tt> with <tt>key</tt>.) | 
 |      */ | 
 |     public V remove(Object key) { | 
 |         Node<K,V> e; | 
 |         return (e = removeNode(hash(key), key, null, false, true)) == null ? | 
 |             null : e.value; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Implements Map.remove and related methods | 
 |      * | 
 |      * @param hash hash for key | 
 |      * @param key the key | 
 |      * @param value the value to match if matchValue, else ignored | 
 |      * @param matchValue if true only remove if value is equal | 
 |      * @param movable if false do not move other nodes while removing | 
 |      * @return the node, or null if none | 
 |      */ | 
 |     final Node<K,V> removeNode(int hash, Object key, Object value, | 
 |                                boolean matchValue, boolean movable) { | 
 |         Node<K,V>[] tab; Node<K,V> p; int n, index; | 
 |         if ((tab = table) != null && (n = tab.length) > 0 && | 
 |             (p = tab[index = (n - 1) & hash]) != null) { | 
 |             Node<K,V> node = null, e; K k; V v; | 
 |             if (p.hash == hash && | 
 |                 ((k = p.key) == key || (key != null && key.equals(k)))) | 
 |                 node = p; | 
 |             else if ((e = p.next) != null) { | 
 |                 if (p instanceof TreeNode) | 
 |                     node = ((TreeNode<K,V>)p).getTreeNode(hash, key); | 
 |                 else { | 
 |                     do { | 
 |                         if (e.hash == hash && | 
 |                             ((k = e.key) == key || | 
 |                              (key != null && key.equals(k)))) { | 
 |                             node = e; | 
 |                             break; | 
 |                         } | 
 |                         p = e; | 
 |                     } while ((e = e.next) != null); | 
 |                 } | 
 |             } | 
 |             if (node != null && (!matchValue || (v = node.value) == value || | 
 |                                  (value != null && value.equals(v)))) { | 
 |                 if (node instanceof TreeNode) | 
 |                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable); | 
 |                 else if (node == p) | 
 |                     tab[index] = node.next; | 
 |                 else | 
 |                     p.next = node.next; | 
 |                 ++modCount; | 
 |                 --size; | 
 |                 afterNodeRemoval(node); | 
 |                 return node; | 
 |             } | 
 |         } | 
 |         return null; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Removes all of the mappings from this map. | 
 |      * The map will be empty after this call returns. | 
 |      */ | 
 |     public void clear() { | 
 |         Node<K,V>[] tab; | 
 |         modCount++; | 
 |         if ((tab = table) != null && size > 0) { | 
 |             size = 0; | 
 |             for (int i = 0; i < tab.length; ++i) | 
 |                 tab[i] = null; | 
 |         } | 
 |     } | 
 |  | 
 |     /** | 
 |      * Returns <tt>true</tt> if this map maps one or more keys to the | 
 |      * specified value. | 
 |      * | 
 |      * @param value value whose presence in this map is to be tested | 
 |      * @return <tt>true</tt> if this map maps one or more keys to the | 
 |      *         specified value | 
 |      */ | 
 |     public boolean containsValue(Object value) { | 
 |         Node<K,V>[] tab; V v; | 
 |         if ((tab = table) != null && size > 0) { | 
 |             for (int i = 0; i < tab.length; ++i) { | 
 |                 for (Node<K,V> e = tab[i]; e != null; e = e.next) { | 
 |                     if ((v = e.value) == value || | 
 |                         (value != null && value.equals(v))) | 
 |                         return true; | 
 |                 } | 
 |             } | 
 |         } | 
 |         return false; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Returns a {@link Set} view of the keys contained in this map. | 
 |      * The set is backed by the map, so changes to the map are | 
 |      * reflected in the set, and vice-versa.  If the map is modified | 
 |      * while an iteration over the set is in progress (except through | 
 |      * the iterator's own <tt>remove</tt> operation), the results of | 
 |      * the iteration are undefined.  The set supports element removal, | 
 |      * which removes the corresponding mapping from the map, via the | 
 |      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>, | 
 |      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt> | 
 |      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt> | 
 |      * operations. | 
 |      * | 
 |      * @return a set view of the keys contained in this map | 
 |      */ | 
 |     public Set<K> keySet() { | 
 |         Set<K> ks = keySet; | 
 |         if (ks == null) { | 
 |             ks = new KeySet(); | 
 |             keySet = ks; | 
 |         } | 
 |         return ks; | 
 |     } | 
 |  | 
 |     final class KeySet extends AbstractSet<K> { | 
 |         public final int size()                 { return size; } | 
 |         public final void clear()               { HashMap.this.clear(); } | 
 |         public final Iterator<K> iterator()     { return new KeyIterator(); } | 
 |         public final boolean contains(Object o) { return containsKey(o); } | 
 |         public final boolean remove(Object key) { | 
 |             return removeNode(hash(key), key, null, false, true) != null; | 
 |         } | 
 |         public final Spliterator<K> spliterator() { | 
 |             return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0); | 
 |         } | 
 |         public final void forEach(Consumer<? super K> action) { | 
 |             Node<K,V>[] tab; | 
 |             if (action == null) | 
 |                 throw new NullPointerException(); | 
 |             if (size > 0 && (tab = table) != null) { | 
 |                 int mc = modCount; | 
 |                 // Android-changed: Detect changes to modCount early. | 
 |                 for (int i = 0; (i < tab.length && modCount == mc); ++i) { | 
 |                     for (Node<K,V> e = tab[i]; e != null; e = e.next) | 
 |                         action.accept(e.key); | 
 |                 } | 
 |                 if (modCount != mc) | 
 |                     throw new ConcurrentModificationException(); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /** | 
 |      * Returns a {@link Collection} view of the values contained in this map. | 
 |      * The collection is backed by the map, so changes to the map are | 
 |      * reflected in the collection, and vice-versa.  If the map is | 
 |      * modified while an iteration over the collection is in progress | 
 |      * (except through the iterator's own <tt>remove</tt> operation), | 
 |      * the results of the iteration are undefined.  The collection | 
 |      * supports element removal, which removes the corresponding | 
 |      * mapping from the map, via the <tt>Iterator.remove</tt>, | 
 |      * <tt>Collection.remove</tt>, <tt>removeAll</tt>, | 
 |      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not | 
 |      * support the <tt>add</tt> or <tt>addAll</tt> operations. | 
 |      * | 
 |      * @return a view of the values contained in this map | 
 |      */ | 
 |     public Collection<V> values() { | 
 |         Collection<V> vs = values; | 
 |         if (vs == null) { | 
 |             vs = new Values(); | 
 |             values = vs; | 
 |         } | 
 |         return vs; | 
 |     } | 
 |  | 
 |     final class Values extends AbstractCollection<V> { | 
 |         public final int size()                 { return size; } | 
 |         public final void clear()               { HashMap.this.clear(); } | 
 |         public final Iterator<V> iterator()     { return new ValueIterator(); } | 
 |         public final boolean contains(Object o) { return containsValue(o); } | 
 |         public final Spliterator<V> spliterator() { | 
 |             return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0); | 
 |         } | 
 |         public final void forEach(Consumer<? super V> action) { | 
 |             Node<K,V>[] tab; | 
 |             if (action == null) | 
 |                 throw new NullPointerException(); | 
 |             if (size > 0 && (tab = table) != null) { | 
 |                 int mc = modCount; | 
 |                 // Android-changed: Detect changes to modCount early. | 
 |                 for (int i = 0; (i < tab.length && modCount == mc); ++i) { | 
 |                     for (Node<K,V> e = tab[i]; e != null; e = e.next) | 
 |                         action.accept(e.value); | 
 |                 } | 
 |                 if (modCount != mc) | 
 |                     throw new ConcurrentModificationException(); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /** | 
 |      * Returns a {@link Set} view of the mappings contained in this map. | 
 |      * The set is backed by the map, so changes to the map are | 
 |      * reflected in the set, and vice-versa.  If the map is modified | 
 |      * while an iteration over the set is in progress (except through | 
 |      * the iterator's own <tt>remove</tt> operation, or through the | 
 |      * <tt>setValue</tt> operation on a map entry returned by the | 
 |      * iterator) the results of the iteration are undefined.  The set | 
 |      * supports element removal, which removes the corresponding | 
 |      * mapping from the map, via the <tt>Iterator.remove</tt>, | 
 |      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and | 
 |      * <tt>clear</tt> operations.  It does not support the | 
 |      * <tt>add</tt> or <tt>addAll</tt> operations. | 
 |      * | 
 |      * @return a set view of the mappings contained in this map | 
 |      */ | 
 |     public Set<Map.Entry<K,V>> entrySet() { | 
 |         Set<Map.Entry<K,V>> es; | 
 |         return (es = entrySet) == null ? (entrySet = new EntrySet()) : es; | 
 |     } | 
 |  | 
 |     final class EntrySet extends AbstractSet<Map.Entry<K,V>> { | 
 |         public final int size()                 { return size; } | 
 |         public final void clear()               { HashMap.this.clear(); } | 
 |         public final Iterator<Map.Entry<K,V>> iterator() { | 
 |             return new EntryIterator(); | 
 |         } | 
 |         public final boolean contains(Object o) { | 
 |             if (!(o instanceof Map.Entry)) | 
 |                 return false; | 
 |             Map.Entry<?,?> e = (Map.Entry<?,?>) o; | 
 |             Object key = e.getKey(); | 
 |             Node<K,V> candidate = getNode(hash(key), key); | 
 |             return candidate != null && candidate.equals(e); | 
 |         } | 
 |         public final boolean remove(Object o) { | 
 |             if (o instanceof Map.Entry) { | 
 |                 Map.Entry<?,?> e = (Map.Entry<?,?>) o; | 
 |                 Object key = e.getKey(); | 
 |                 Object value = e.getValue(); | 
 |                 return removeNode(hash(key), key, value, true, true) != null; | 
 |             } | 
 |             return false; | 
 |         } | 
 |         public final Spliterator<Map.Entry<K,V>> spliterator() { | 
 |             return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0); | 
 |         } | 
 |         public final void forEach(Consumer<? super Map.Entry<K,V>> action) { | 
 |             Node<K,V>[] tab; | 
 |             if (action == null) | 
 |                 throw new NullPointerException(); | 
 |             if (size > 0 && (tab = table) != null) { | 
 |                 int mc = modCount; | 
 |                 // Android-changed: Detect changes to modCount early. | 
 |                 for (int i = 0; (i < tab.length && modCount == mc); ++i) { | 
 |                     for (Node<K,V> e = tab[i]; e != null; e = e.next) | 
 |                         action.accept(e); | 
 |                 } | 
 |                 if (modCount != mc) | 
 |                     throw new ConcurrentModificationException(); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     // Overrides of JDK8 Map extension methods | 
 |  | 
 |     @Override | 
 |     public V getOrDefault(Object key, V defaultValue) { | 
 |         Node<K,V> e; | 
 |         return (e = getNode(hash(key), key)) == null ? defaultValue : e.value; | 
 |     } | 
 |  | 
 |     @Override | 
 |     public V putIfAbsent(K key, V value) { | 
 |         return putVal(hash(key), key, value, true, true); | 
 |     } | 
 |  | 
 |     @Override | 
 |     public boolean remove(Object key, Object value) { | 
 |         return removeNode(hash(key), key, value, true, true) != null; | 
 |     } | 
 |  | 
 |     @Override | 
 |     public boolean replace(K key, V oldValue, V newValue) { | 
 |         Node<K,V> e; V v; | 
 |         if ((e = getNode(hash(key), key)) != null && | 
 |             ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) { | 
 |             e.value = newValue; | 
 |             afterNodeAccess(e); | 
 |             return true; | 
 |         } | 
 |         return false; | 
 |     } | 
 |  | 
 |     @Override | 
 |     public V replace(K key, V value) { | 
 |         Node<K,V> e; | 
 |         if ((e = getNode(hash(key), key)) != null) { | 
 |             V oldValue = e.value; | 
 |             e.value = value; | 
 |             afterNodeAccess(e); | 
 |             return oldValue; | 
 |         } | 
 |         return null; | 
 |     } | 
 |  | 
 |     @Override | 
 |     public V computeIfAbsent(K key, | 
 |                              Function<? super K, ? extends V> mappingFunction) { | 
 |         if (mappingFunction == null) | 
 |             throw new NullPointerException(); | 
 |         int hash = hash(key); | 
 |         Node<K,V>[] tab; Node<K,V> first; int n, i; | 
 |         int binCount = 0; | 
 |         TreeNode<K,V> t = null; | 
 |         Node<K,V> old = null; | 
 |         if (size > threshold || (tab = table) == null || | 
 |             (n = tab.length) == 0) | 
 |             n = (tab = resize()).length; | 
 |         if ((first = tab[i = (n - 1) & hash]) != null) { | 
 |             if (first instanceof TreeNode) | 
 |                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key); | 
 |             else { | 
 |                 Node<K,V> e = first; K k; | 
 |                 do { | 
 |                     if (e.hash == hash && | 
 |                         ((k = e.key) == key || (key != null && key.equals(k)))) { | 
 |                         old = e; | 
 |                         break; | 
 |                     } | 
 |                     ++binCount; | 
 |                 } while ((e = e.next) != null); | 
 |             } | 
 |             V oldValue; | 
 |             if (old != null && (oldValue = old.value) != null) { | 
 |                 afterNodeAccess(old); | 
 |                 return oldValue; | 
 |             } | 
 |         } | 
 |         V v = mappingFunction.apply(key); | 
 |         if (v == null) { | 
 |             return null; | 
 |         } else if (old != null) { | 
 |             old.value = v; | 
 |             afterNodeAccess(old); | 
 |             return v; | 
 |         } | 
 |         else if (t != null) | 
 |             t.putTreeVal(this, tab, hash, key, v); | 
 |         else { | 
 |             tab[i] = newNode(hash, key, v, first); | 
 |             if (binCount >= TREEIFY_THRESHOLD - 1) | 
 |                 treeifyBin(tab, hash); | 
 |         } | 
 |         ++modCount; | 
 |         ++size; | 
 |         afterNodeInsertion(true); | 
 |         return v; | 
 |     } | 
 |  | 
 |     public V computeIfPresent(K key, | 
 |                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) { | 
 |         if (remappingFunction == null) | 
 |             throw new NullPointerException(); | 
 |         Node<K,V> e; V oldValue; | 
 |         int hash = hash(key); | 
 |         if ((e = getNode(hash, key)) != null && | 
 |             (oldValue = e.value) != null) { | 
 |             V v = remappingFunction.apply(key, oldValue); | 
 |             if (v != null) { | 
 |                 e.value = v; | 
 |                 afterNodeAccess(e); | 
 |                 return v; | 
 |             } | 
 |             else | 
 |                 removeNode(hash, key, null, false, true); | 
 |         } | 
 |         return null; | 
 |     } | 
 |  | 
 |     @Override | 
 |     public V compute(K key, | 
 |                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) { | 
 |         if (remappingFunction == null) | 
 |             throw new NullPointerException(); | 
 |         int hash = hash(key); | 
 |         Node<K,V>[] tab; Node<K,V> first; int n, i; | 
 |         int binCount = 0; | 
 |         TreeNode<K,V> t = null; | 
 |         Node<K,V> old = null; | 
 |         if (size > threshold || (tab = table) == null || | 
 |             (n = tab.length) == 0) | 
 |             n = (tab = resize()).length; | 
 |         if ((first = tab[i = (n - 1) & hash]) != null) { | 
 |             if (first instanceof TreeNode) | 
 |                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key); | 
 |             else { | 
 |                 Node<K,V> e = first; K k; | 
 |                 do { | 
 |                     if (e.hash == hash && | 
 |                         ((k = e.key) == key || (key != null && key.equals(k)))) { | 
 |                         old = e; | 
 |                         break; | 
 |                     } | 
 |                     ++binCount; | 
 |                 } while ((e = e.next) != null); | 
 |             } | 
 |         } | 
 |         V oldValue = (old == null) ? null : old.value; | 
 |         V v = remappingFunction.apply(key, oldValue); | 
 |         if (old != null) { | 
 |             if (v != null) { | 
 |                 old.value = v; | 
 |                 afterNodeAccess(old); | 
 |             } | 
 |             else | 
 |                 removeNode(hash, key, null, false, true); | 
 |         } | 
 |         else if (v != null) { | 
 |             if (t != null) | 
 |                 t.putTreeVal(this, tab, hash, key, v); | 
 |             else { | 
 |                 tab[i] = newNode(hash, key, v, first); | 
 |                 if (binCount >= TREEIFY_THRESHOLD - 1) | 
 |                     treeifyBin(tab, hash); | 
 |             } | 
 |             ++modCount; | 
 |             ++size; | 
 |             afterNodeInsertion(true); | 
 |         } | 
 |         return v; | 
 |     } | 
 |  | 
 |     @Override | 
 |     public V merge(K key, V value, | 
 |                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) { | 
 |         if (value == null) | 
 |             throw new NullPointerException(); | 
 |         if (remappingFunction == null) | 
 |             throw new NullPointerException(); | 
 |         int hash = hash(key); | 
 |         Node<K,V>[] tab; Node<K,V> first; int n, i; | 
 |         int binCount = 0; | 
 |         TreeNode<K,V> t = null; | 
 |         Node<K,V> old = null; | 
 |         if (size > threshold || (tab = table) == null || | 
 |             (n = tab.length) == 0) | 
 |             n = (tab = resize()).length; | 
 |         if ((first = tab[i = (n - 1) & hash]) != null) { | 
 |             if (first instanceof TreeNode) | 
 |                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key); | 
 |             else { | 
 |                 Node<K,V> e = first; K k; | 
 |                 do { | 
 |                     if (e.hash == hash && | 
 |                         ((k = e.key) == key || (key != null && key.equals(k)))) { | 
 |                         old = e; | 
 |                         break; | 
 |                     } | 
 |                     ++binCount; | 
 |                 } while ((e = e.next) != null); | 
 |             } | 
 |         } | 
 |         if (old != null) { | 
 |             V v; | 
 |             if (old.value != null) | 
 |                 v = remappingFunction.apply(old.value, value); | 
 |             else | 
 |                 v = value; | 
 |             if (v != null) { | 
 |                 old.value = v; | 
 |                 afterNodeAccess(old); | 
 |             } | 
 |             else | 
 |                 removeNode(hash, key, null, false, true); | 
 |             return v; | 
 |         } | 
 |         if (value != null) { | 
 |             if (t != null) | 
 |                 t.putTreeVal(this, tab, hash, key, value); | 
 |             else { | 
 |                 tab[i] = newNode(hash, key, value, first); | 
 |                 if (binCount >= TREEIFY_THRESHOLD - 1) | 
 |                     treeifyBin(tab, hash); | 
 |             } | 
 |             ++modCount; | 
 |             ++size; | 
 |             afterNodeInsertion(true); | 
 |         } | 
 |         return value; | 
 |     } | 
 |  | 
 |     @Override | 
 |     public void forEach(BiConsumer<? super K, ? super V> action) { | 
 |         Node<K,V>[] tab; | 
 |         if (action == null) | 
 |             throw new NullPointerException(); | 
 |         if (size > 0 && (tab = table) != null) { | 
 |             int mc = modCount; | 
 |             // Android-changed: Detect changes to modCount early. | 
 |             for (int i = 0; (i < tab.length && mc == modCount); ++i) { | 
 |                 for (Node<K,V> e = tab[i]; e != null; e = e.next) | 
 |                     action.accept(e.key, e.value); | 
 |             } | 
 |             if (modCount != mc) | 
 |                 throw new ConcurrentModificationException(); | 
 |         } | 
 |     } | 
 |  | 
 |     @Override | 
 |     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) { | 
 |         Node<K,V>[] tab; | 
 |         if (function == null) | 
 |             throw new NullPointerException(); | 
 |         if (size > 0 && (tab = table) != null) { | 
 |             int mc = modCount; | 
 |             for (int i = 0; i < tab.length; ++i) { | 
 |                 for (Node<K,V> e = tab[i]; e != null; e = e.next) { | 
 |                     e.value = function.apply(e.key, e.value); | 
 |                 } | 
 |             } | 
 |             if (modCount != mc) | 
 |                 throw new ConcurrentModificationException(); | 
 |         } | 
 |     } | 
 |  | 
 |     /* ------------------------------------------------------------ */ | 
 |     // Cloning and serialization | 
 |  | 
 |     /** | 
 |      * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and | 
 |      * values themselves are not cloned. | 
 |      * | 
 |      * @return a shallow copy of this map | 
 |      */ | 
 |     @SuppressWarnings("unchecked") | 
 |     @Override | 
 |     public Object clone() { | 
 |         HashMap<K,V> result; | 
 |         try { | 
 |             result = (HashMap<K,V>)super.clone(); | 
 |         } catch (CloneNotSupportedException e) { | 
 |             // this shouldn't happen, since we are Cloneable | 
 |             throw new InternalError(e); | 
 |         } | 
 |         result.reinitialize(); | 
 |         result.putMapEntries(this, false); | 
 |         return result; | 
 |     } | 
 |  | 
 |     // These methods are also used when serializing HashSets | 
 |     final float loadFactor() { return loadFactor; } | 
 |     final int capacity() { | 
 |         return (table != null) ? table.length : | 
 |             (threshold > 0) ? threshold : | 
 |             DEFAULT_INITIAL_CAPACITY; | 
 |     } | 
 |  | 
 |     /** | 
 |      * Save the state of the <tt>HashMap</tt> instance to a stream (i.e., | 
 |      * serialize it). | 
 |      * | 
 |      * @serialData The <i>capacity</i> of the HashMap (the length of the | 
 |      *             bucket array) is emitted (int), followed by the | 
 |      *             <i>size</i> (an int, the number of key-value | 
 |      *             mappings), followed by the key (Object) and value (Object) | 
 |      *             for each key-value mapping.  The key-value mappings are | 
 |      *             emitted in no particular order. | 
 |      */ | 
 |     private void writeObject(java.io.ObjectOutputStream s) | 
 |         throws IOException { | 
 |         int buckets = capacity(); | 
 |         // Write out the threshold, loadfactor, and any hidden stuff | 
 |         s.defaultWriteObject(); | 
 |         s.writeInt(buckets); | 
 |         s.writeInt(size); | 
 |         internalWriteEntries(s); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Reconstitute the {@code HashMap} instance from a stream (i.e., | 
 |      * deserialize it). | 
 |      */ | 
 |     private void readObject(java.io.ObjectInputStream s) | 
 |         throws IOException, ClassNotFoundException { | 
 |         // Read in the threshold (ignored), loadfactor, and any hidden stuff | 
 |         s.defaultReadObject(); | 
 |         reinitialize(); | 
 |         if (loadFactor <= 0 || Float.isNaN(loadFactor)) | 
 |             throw new InvalidObjectException("Illegal load factor: " + | 
 |                                              loadFactor); | 
 |         s.readInt();                // Read and ignore number of buckets | 
 |         int mappings = s.readInt(); // Read number of mappings (size) | 
 |         if (mappings < 0) | 
 |             throw new InvalidObjectException("Illegal mappings count: " + | 
 |                                              mappings); | 
 |         else if (mappings > 0) { // (if zero, use defaults) | 
 |             // Size the table using given load factor only if within | 
 |             // range of 0.25...4.0 | 
 |             float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f); | 
 |             float fc = (float)mappings / lf + 1.0f; | 
 |             int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ? | 
 |                        DEFAULT_INITIAL_CAPACITY : | 
 |                        (fc >= MAXIMUM_CAPACITY) ? | 
 |                        MAXIMUM_CAPACITY : | 
 |                        tableSizeFor((int)fc)); | 
 |             float ft = (float)cap * lf; | 
 |             threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ? | 
 |                          (int)ft : Integer.MAX_VALUE); | 
 |             @SuppressWarnings({"rawtypes","unchecked"}) | 
 |                 Node<K,V>[] tab = (Node<K,V>[])new Node[cap]; | 
 |             table = tab; | 
 |  | 
 |             // Read the keys and values, and put the mappings in the HashMap | 
 |             for (int i = 0; i < mappings; i++) { | 
 |                 @SuppressWarnings("unchecked") | 
 |                     K key = (K) s.readObject(); | 
 |                 @SuppressWarnings("unchecked") | 
 |                     V value = (V) s.readObject(); | 
 |                 putVal(hash(key), key, value, false, false); | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /* ------------------------------------------------------------ */ | 
 |     // iterators | 
 |  | 
 |     abstract class HashIterator { | 
 |         Node<K,V> next;        // next entry to return | 
 |         Node<K,V> current;     // current entry | 
 |         int expectedModCount;  // for fast-fail | 
 |         int index;             // current slot | 
 |  | 
 |         HashIterator() { | 
 |             expectedModCount = modCount; | 
 |             Node<K,V>[] t = table; | 
 |             current = next = null; | 
 |             index = 0; | 
 |             if (t != null && size > 0) { // advance to first entry | 
 |                 do {} while (index < t.length && (next = t[index++]) == null); | 
 |             } | 
 |         } | 
 |  | 
 |         public final boolean hasNext() { | 
 |             return next != null; | 
 |         } | 
 |  | 
 |         final Node<K,V> nextNode() { | 
 |             Node<K,V>[] t; | 
 |             Node<K,V> e = next; | 
 |             if (modCount != expectedModCount) | 
 |                 throw new ConcurrentModificationException(); | 
 |             if (e == null) | 
 |                 throw new NoSuchElementException(); | 
 |             if ((next = (current = e).next) == null && (t = table) != null) { | 
 |                 do {} while (index < t.length && (next = t[index++]) == null); | 
 |             } | 
 |             return e; | 
 |         } | 
 |  | 
 |         public final void remove() { | 
 |             Node<K,V> p = current; | 
 |             if (p == null) | 
 |                 throw new IllegalStateException(); | 
 |             if (modCount != expectedModCount) | 
 |                 throw new ConcurrentModificationException(); | 
 |             current = null; | 
 |             K key = p.key; | 
 |             removeNode(hash(key), key, null, false, false); | 
 |             expectedModCount = modCount; | 
 |         } | 
 |     } | 
 |  | 
 |     final class KeyIterator extends HashIterator | 
 |         implements Iterator<K> { | 
 |         public final K next() { return nextNode().key; } | 
 |     } | 
 |  | 
 |     final class ValueIterator extends HashIterator | 
 |         implements Iterator<V> { | 
 |         public final V next() { return nextNode().value; } | 
 |     } | 
 |  | 
 |     final class EntryIterator extends HashIterator | 
 |         implements Iterator<Map.Entry<K,V>> { | 
 |         public final Map.Entry<K,V> next() { return nextNode(); } | 
 |     } | 
 |  | 
 |     /* ------------------------------------------------------------ */ | 
 |     // spliterators | 
 |  | 
 |     static class HashMapSpliterator<K,V> { | 
 |         final HashMap<K,V> map; | 
 |         Node<K,V> current;          // current node | 
 |         int index;                  // current index, modified on advance/split | 
 |         int fence;                  // one past last index | 
 |         int est;                    // size estimate | 
 |         int expectedModCount;       // for comodification checks | 
 |  | 
 |         HashMapSpliterator(HashMap<K,V> m, int origin, | 
 |                            int fence, int est, | 
 |                            int expectedModCount) { | 
 |             this.map = m; | 
 |             this.index = origin; | 
 |             this.fence = fence; | 
 |             this.est = est; | 
 |             this.expectedModCount = expectedModCount; | 
 |         } | 
 |  | 
 |         final int getFence() { // initialize fence and size on first use | 
 |             int hi; | 
 |             if ((hi = fence) < 0) { | 
 |                 HashMap<K,V> m = map; | 
 |                 est = m.size; | 
 |                 expectedModCount = m.modCount; | 
 |                 Node<K,V>[] tab = m.table; | 
 |                 hi = fence = (tab == null) ? 0 : tab.length; | 
 |             } | 
 |             return hi; | 
 |         } | 
 |  | 
 |         public final long estimateSize() { | 
 |             getFence(); // force init | 
 |             return (long) est; | 
 |         } | 
 |     } | 
 |  | 
 |     static final class KeySpliterator<K,V> | 
 |         extends HashMapSpliterator<K,V> | 
 |         implements Spliterator<K> { | 
 |         KeySpliterator(HashMap<K,V> m, int origin, int fence, int est, | 
 |                        int expectedModCount) { | 
 |             super(m, origin, fence, est, expectedModCount); | 
 |         } | 
 |  | 
 |         public KeySpliterator<K,V> trySplit() { | 
 |             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; | 
 |             return (lo >= mid || current != null) ? null : | 
 |                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1, | 
 |                                         expectedModCount); | 
 |         } | 
 |  | 
 |         public void forEachRemaining(Consumer<? super K> action) { | 
 |             int i, hi, mc; | 
 |             if (action == null) | 
 |                 throw new NullPointerException(); | 
 |             HashMap<K,V> m = map; | 
 |             Node<K,V>[] tab = m.table; | 
 |             if ((hi = fence) < 0) { | 
 |                 mc = expectedModCount = m.modCount; | 
 |                 hi = fence = (tab == null) ? 0 : tab.length; | 
 |             } | 
 |             else | 
 |                 mc = expectedModCount; | 
 |             if (tab != null && tab.length >= hi && | 
 |                 (i = index) >= 0 && (i < (index = hi) || current != null)) { | 
 |                 Node<K,V> p = current; | 
 |                 current = null; | 
 |                 do { | 
 |                     if (p == null) | 
 |                         p = tab[i++]; | 
 |                     else { | 
 |                         action.accept(p.key); | 
 |                         p = p.next; | 
 |                     } | 
 |                 } while (p != null || i < hi); | 
 |                 if (m.modCount != mc) | 
 |                     throw new ConcurrentModificationException(); | 
 |             } | 
 |         } | 
 |  | 
 |         public boolean tryAdvance(Consumer<? super K> action) { | 
 |             int hi; | 
 |             if (action == null) | 
 |                 throw new NullPointerException(); | 
 |             Node<K,V>[] tab = map.table; | 
 |             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) { | 
 |                 while (current != null || index < hi) { | 
 |                     if (current == null) | 
 |                         current = tab[index++]; | 
 |                     else { | 
 |                         K k = current.key; | 
 |                         current = current.next; | 
 |                         action.accept(k); | 
 |                         if (map.modCount != expectedModCount) | 
 |                             throw new ConcurrentModificationException(); | 
 |                         return true; | 
 |                     } | 
 |                 } | 
 |             } | 
 |             return false; | 
 |         } | 
 |  | 
 |         public int characteristics() { | 
 |             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) | | 
 |                 Spliterator.DISTINCT; | 
 |         } | 
 |     } | 
 |  | 
 |     static final class ValueSpliterator<K,V> | 
 |         extends HashMapSpliterator<K,V> | 
 |         implements Spliterator<V> { | 
 |         ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est, | 
 |                          int expectedModCount) { | 
 |             super(m, origin, fence, est, expectedModCount); | 
 |         } | 
 |  | 
 |         public ValueSpliterator<K,V> trySplit() { | 
 |             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; | 
 |             return (lo >= mid || current != null) ? null : | 
 |                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1, | 
 |                                           expectedModCount); | 
 |         } | 
 |  | 
 |         public void forEachRemaining(Consumer<? super V> action) { | 
 |             int i, hi, mc; | 
 |             if (action == null) | 
 |                 throw new NullPointerException(); | 
 |             HashMap<K,V> m = map; | 
 |             Node<K,V>[] tab = m.table; | 
 |             if ((hi = fence) < 0) { | 
 |                 mc = expectedModCount = m.modCount; | 
 |                 hi = fence = (tab == null) ? 0 : tab.length; | 
 |             } | 
 |             else | 
 |                 mc = expectedModCount; | 
 |             if (tab != null && tab.length >= hi && | 
 |                 (i = index) >= 0 && (i < (index = hi) || current != null)) { | 
 |                 Node<K,V> p = current; | 
 |                 current = null; | 
 |                 do { | 
 |                     if (p == null) | 
 |                         p = tab[i++]; | 
 |                     else { | 
 |                         action.accept(p.value); | 
 |                         p = p.next; | 
 |                     } | 
 |                 } while (p != null || i < hi); | 
 |                 if (m.modCount != mc) | 
 |                     throw new ConcurrentModificationException(); | 
 |             } | 
 |         } | 
 |  | 
 |         public boolean tryAdvance(Consumer<? super V> action) { | 
 |             int hi; | 
 |             if (action == null) | 
 |                 throw new NullPointerException(); | 
 |             Node<K,V>[] tab = map.table; | 
 |             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) { | 
 |                 while (current != null || index < hi) { | 
 |                     if (current == null) | 
 |                         current = tab[index++]; | 
 |                     else { | 
 |                         V v = current.value; | 
 |                         current = current.next; | 
 |                         action.accept(v); | 
 |                         if (map.modCount != expectedModCount) | 
 |                             throw new ConcurrentModificationException(); | 
 |                         return true; | 
 |                     } | 
 |                 } | 
 |             } | 
 |             return false; | 
 |         } | 
 |  | 
 |         public int characteristics() { | 
 |             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0); | 
 |         } | 
 |     } | 
 |  | 
 |     static final class EntrySpliterator<K,V> | 
 |         extends HashMapSpliterator<K,V> | 
 |         implements Spliterator<Map.Entry<K,V>> { | 
 |         EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est, | 
 |                          int expectedModCount) { | 
 |             super(m, origin, fence, est, expectedModCount); | 
 |         } | 
 |  | 
 |         public EntrySpliterator<K,V> trySplit() { | 
 |             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; | 
 |             return (lo >= mid || current != null) ? null : | 
 |                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1, | 
 |                                           expectedModCount); | 
 |         } | 
 |  | 
 |         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) { | 
 |             int i, hi, mc; | 
 |             if (action == null) | 
 |                 throw new NullPointerException(); | 
 |             HashMap<K,V> m = map; | 
 |             Node<K,V>[] tab = m.table; | 
 |             if ((hi = fence) < 0) { | 
 |                 mc = expectedModCount = m.modCount; | 
 |                 hi = fence = (tab == null) ? 0 : tab.length; | 
 |             } | 
 |             else | 
 |                 mc = expectedModCount; | 
 |             if (tab != null && tab.length >= hi && | 
 |                 (i = index) >= 0 && (i < (index = hi) || current != null)) { | 
 |                 Node<K,V> p = current; | 
 |                 current = null; | 
 |                 do { | 
 |                     if (p == null) | 
 |                         p = tab[i++]; | 
 |                     else { | 
 |                         action.accept(p); | 
 |                         p = p.next; | 
 |                     } | 
 |                 } while (p != null || i < hi); | 
 |                 if (m.modCount != mc) | 
 |                     throw new ConcurrentModificationException(); | 
 |             } | 
 |         } | 
 |  | 
 |         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) { | 
 |             int hi; | 
 |             if (action == null) | 
 |                 throw new NullPointerException(); | 
 |             Node<K,V>[] tab = map.table; | 
 |             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) { | 
 |                 while (current != null || index < hi) { | 
 |                     if (current == null) | 
 |                         current = tab[index++]; | 
 |                     else { | 
 |                         Node<K,V> e = current; | 
 |                         current = current.next; | 
 |                         action.accept(e); | 
 |                         if (map.modCount != expectedModCount) | 
 |                             throw new ConcurrentModificationException(); | 
 |                         return true; | 
 |                     } | 
 |                 } | 
 |             } | 
 |             return false; | 
 |         } | 
 |  | 
 |         public int characteristics() { | 
 |             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) | | 
 |                 Spliterator.DISTINCT; | 
 |         } | 
 |     } | 
 |  | 
 |     /* ------------------------------------------------------------ */ | 
 |     // LinkedHashMap support | 
 |  | 
 |  | 
 |     /* | 
 |      * The following package-protected methods are designed to be | 
 |      * overridden by LinkedHashMap, but not by any other subclass. | 
 |      * Nearly all other internal methods are also package-protected | 
 |      * but are declared final, so can be used by LinkedHashMap, view | 
 |      * classes, and HashSet. | 
 |      */ | 
 |  | 
 |     // Create a regular (non-tree) node | 
 |     Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) { | 
 |         return new Node<>(hash, key, value, next); | 
 |     } | 
 |  | 
 |     // For conversion from TreeNodes to plain nodes | 
 |     Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) { | 
 |         return new Node<>(p.hash, p.key, p.value, next); | 
 |     } | 
 |  | 
 |     // Create a tree bin node | 
 |     TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) { | 
 |         return new TreeNode<>(hash, key, value, next); | 
 |     } | 
 |  | 
 |     // For treeifyBin | 
 |     TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) { | 
 |         return new TreeNode<>(p.hash, p.key, p.value, next); | 
 |     } | 
 |  | 
 |     /** | 
 |      * Reset to initial default state.  Called by clone and readObject. | 
 |      */ | 
 |     void reinitialize() { | 
 |         table = null; | 
 |         entrySet = null; | 
 |         keySet = null; | 
 |         values = null; | 
 |         modCount = 0; | 
 |         threshold = 0; | 
 |         size = 0; | 
 |     } | 
 |  | 
 |     // Callbacks to allow LinkedHashMap post-actions | 
 |     void afterNodeAccess(Node<K,V> p) { } | 
 |     void afterNodeInsertion(boolean evict) { } | 
 |     void afterNodeRemoval(Node<K,V> p) { } | 
 |  | 
 |     // Called only from writeObject, to ensure compatible ordering. | 
 |     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException { | 
 |         Node<K,V>[] tab; | 
 |         if (size > 0 && (tab = table) != null) { | 
 |             for (int i = 0; i < tab.length; ++i) { | 
 |                 for (Node<K,V> e = tab[i]; e != null; e = e.next) { | 
 |                     s.writeObject(e.key); | 
 |                     s.writeObject(e.value); | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     /* ------------------------------------------------------------ */ | 
 |     // Tree bins | 
 |  | 
 |     /** | 
 |      * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn | 
 |      * extends Node) so can be used as extension of either regular or | 
 |      * linked node. | 
 |      */ | 
 |     static final class TreeNode<K,V> extends LinkedHashMap.LinkedHashMapEntry<K,V> { | 
 |         TreeNode<K,V> parent;  // red-black tree links | 
 |         TreeNode<K,V> left; | 
 |         TreeNode<K,V> right; | 
 |         TreeNode<K,V> prev;    // needed to unlink next upon deletion | 
 |         boolean red; | 
 |         TreeNode(int hash, K key, V val, Node<K,V> next) { | 
 |             super(hash, key, val, next); | 
 |         } | 
 |  | 
 |         /** | 
 |          * Returns root of tree containing this node. | 
 |          */ | 
 |         final TreeNode<K,V> root() { | 
 |             for (TreeNode<K,V> r = this, p;;) { | 
 |                 if ((p = r.parent) == null) | 
 |                     return r; | 
 |                 r = p; | 
 |             } | 
 |         } | 
 |  | 
 |         /** | 
 |          * Ensures that the given root is the first node of its bin. | 
 |          */ | 
 |         static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) { | 
 |             int n; | 
 |             if (root != null && tab != null && (n = tab.length) > 0) { | 
 |                 int index = (n - 1) & root.hash; | 
 |                 TreeNode<K,V> first = (TreeNode<K,V>)tab[index]; | 
 |                 if (root != first) { | 
 |                     Node<K,V> rn; | 
 |                     tab[index] = root; | 
 |                     TreeNode<K,V> rp = root.prev; | 
 |                     if ((rn = root.next) != null) | 
 |                         ((TreeNode<K,V>)rn).prev = rp; | 
 |                     if (rp != null) | 
 |                         rp.next = rn; | 
 |                     if (first != null) | 
 |                         first.prev = root; | 
 |                     root.next = first; | 
 |                     root.prev = null; | 
 |                 } | 
 |                 assert checkInvariants(root); | 
 |             } | 
 |         } | 
 |  | 
 |         /** | 
 |          * Finds the node starting at root p with the given hash and key. | 
 |          * The kc argument caches comparableClassFor(key) upon first use | 
 |          * comparing keys. | 
 |          */ | 
 |         final TreeNode<K,V> find(int h, Object k, Class<?> kc) { | 
 |             TreeNode<K,V> p = this; | 
 |             do { | 
 |                 int ph, dir; K pk; | 
 |                 TreeNode<K,V> pl = p.left, pr = p.right, q; | 
 |                 if ((ph = p.hash) > h) | 
 |                     p = pl; | 
 |                 else if (ph < h) | 
 |                     p = pr; | 
 |                 else if ((pk = p.key) == k || (k != null && k.equals(pk))) | 
 |                     return p; | 
 |                 else if (pl == null) | 
 |                     p = pr; | 
 |                 else if (pr == null) | 
 |                     p = pl; | 
 |                 else if ((kc != null || | 
 |                           (kc = comparableClassFor(k)) != null) && | 
 |                          (dir = compareComparables(kc, k, pk)) != 0) | 
 |                     p = (dir < 0) ? pl : pr; | 
 |                 else if ((q = pr.find(h, k, kc)) != null) | 
 |                     return q; | 
 |                 else | 
 |                     p = pl; | 
 |             } while (p != null); | 
 |             return null; | 
 |         } | 
 |  | 
 |         /** | 
 |          * Calls find for root node. | 
 |          */ | 
 |         final TreeNode<K,V> getTreeNode(int h, Object k) { | 
 |             return ((parent != null) ? root() : this).find(h, k, null); | 
 |         } | 
 |  | 
 |         /** | 
 |          * Tie-breaking utility for ordering insertions when equal | 
 |          * hashCodes and non-comparable. We don't require a total | 
 |          * order, just a consistent insertion rule to maintain | 
 |          * equivalence across rebalancings. Tie-breaking further than | 
 |          * necessary simplifies testing a bit. | 
 |          */ | 
 |         static int tieBreakOrder(Object a, Object b) { | 
 |             int d; | 
 |             if (a == null || b == null || | 
 |                 (d = a.getClass().getName(). | 
 |                  compareTo(b.getClass().getName())) == 0) | 
 |                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ? | 
 |                      -1 : 1); | 
 |             return d; | 
 |         } | 
 |  | 
 |         /** | 
 |          * Forms tree of the nodes linked from this node. | 
 |          * @return root of tree | 
 |          */ | 
 |         final void treeify(Node<K,V>[] tab) { | 
 |             TreeNode<K,V> root = null; | 
 |             for (TreeNode<K,V> x = this, next; x != null; x = next) { | 
 |                 next = (TreeNode<K,V>)x.next; | 
 |                 x.left = x.right = null; | 
 |                 if (root == null) { | 
 |                     x.parent = null; | 
 |                     x.red = false; | 
 |                     root = x; | 
 |                 } | 
 |                 else { | 
 |                     K k = x.key; | 
 |                     int h = x.hash; | 
 |                     Class<?> kc = null; | 
 |                     for (TreeNode<K,V> p = root;;) { | 
 |                         int dir, ph; | 
 |                         K pk = p.key; | 
 |                         if ((ph = p.hash) > h) | 
 |                             dir = -1; | 
 |                         else if (ph < h) | 
 |                             dir = 1; | 
 |                         else if ((kc == null && | 
 |                                   (kc = comparableClassFor(k)) == null) || | 
 |                                  (dir = compareComparables(kc, k, pk)) == 0) | 
 |                             dir = tieBreakOrder(k, pk); | 
 |  | 
 |                         TreeNode<K,V> xp = p; | 
 |                         if ((p = (dir <= 0) ? p.left : p.right) == null) { | 
 |                             x.parent = xp; | 
 |                             if (dir <= 0) | 
 |                                 xp.left = x; | 
 |                             else | 
 |                                 xp.right = x; | 
 |                             root = balanceInsertion(root, x); | 
 |                             break; | 
 |                         } | 
 |                     } | 
 |                 } | 
 |             } | 
 |             moveRootToFront(tab, root); | 
 |         } | 
 |  | 
 |         /** | 
 |          * Returns a list of non-TreeNodes replacing those linked from | 
 |          * this node. | 
 |          */ | 
 |         final Node<K,V> untreeify(HashMap<K,V> map) { | 
 |             Node<K,V> hd = null, tl = null; | 
 |             for (Node<K,V> q = this; q != null; q = q.next) { | 
 |                 Node<K,V> p = map.replacementNode(q, null); | 
 |                 if (tl == null) | 
 |                     hd = p; | 
 |                 else | 
 |                     tl.next = p; | 
 |                 tl = p; | 
 |             } | 
 |             return hd; | 
 |         } | 
 |  | 
 |         /** | 
 |          * Tree version of putVal. | 
 |          */ | 
 |         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab, | 
 |                                        int h, K k, V v) { | 
 |             Class<?> kc = null; | 
 |             boolean searched = false; | 
 |             TreeNode<K,V> root = (parent != null) ? root() : this; | 
 |             for (TreeNode<K,V> p = root;;) { | 
 |                 int dir, ph; K pk; | 
 |                 if ((ph = p.hash) > h) | 
 |                     dir = -1; | 
 |                 else if (ph < h) | 
 |                     dir = 1; | 
 |                 else if ((pk = p.key) == k || (k != null && k.equals(pk))) | 
 |                     return p; | 
 |                 else if ((kc == null && | 
 |                           (kc = comparableClassFor(k)) == null) || | 
 |                          (dir = compareComparables(kc, k, pk)) == 0) { | 
 |                     if (!searched) { | 
 |                         TreeNode<K,V> q, ch; | 
 |                         searched = true; | 
 |                         if (((ch = p.left) != null && | 
 |                              (q = ch.find(h, k, kc)) != null) || | 
 |                             ((ch = p.right) != null && | 
 |                              (q = ch.find(h, k, kc)) != null)) | 
 |                             return q; | 
 |                     } | 
 |                     dir = tieBreakOrder(k, pk); | 
 |                 } | 
 |  | 
 |                 TreeNode<K,V> xp = p; | 
 |                 if ((p = (dir <= 0) ? p.left : p.right) == null) { | 
 |                     Node<K,V> xpn = xp.next; | 
 |                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn); | 
 |                     if (dir <= 0) | 
 |                         xp.left = x; | 
 |                     else | 
 |                         xp.right = x; | 
 |                     xp.next = x; | 
 |                     x.parent = x.prev = xp; | 
 |                     if (xpn != null) | 
 |                         ((TreeNode<K,V>)xpn).prev = x; | 
 |                     moveRootToFront(tab, balanceInsertion(root, x)); | 
 |                     return null; | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         /** | 
 |          * Removes the given node, that must be present before this call. | 
 |          * This is messier than typical red-black deletion code because we | 
 |          * cannot swap the contents of an interior node with a leaf | 
 |          * successor that is pinned by "next" pointers that are accessible | 
 |          * independently during traversal. So instead we swap the tree | 
 |          * linkages. If the current tree appears to have too few nodes, | 
 |          * the bin is converted back to a plain bin. (The test triggers | 
 |          * somewhere between 2 and 6 nodes, depending on tree structure). | 
 |          */ | 
 |         final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab, | 
 |                                   boolean movable) { | 
 |             int n; | 
 |             if (tab == null || (n = tab.length) == 0) | 
 |                 return; | 
 |             int index = (n - 1) & hash; | 
 |             TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl; | 
 |             TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev; | 
 |             if (pred == null) | 
 |                 tab[index] = first = succ; | 
 |             else | 
 |                 pred.next = succ; | 
 |             if (succ != null) | 
 |                 succ.prev = pred; | 
 |             if (first == null) | 
 |                 return; | 
 |             if (root.parent != null) | 
 |                 root = root.root(); | 
 |             if (root == null || root.right == null || | 
 |                 (rl = root.left) == null || rl.left == null) { | 
 |                 tab[index] = first.untreeify(map);  // too small | 
 |                 return; | 
 |             } | 
 |             TreeNode<K,V> p = this, pl = left, pr = right, replacement; | 
 |             if (pl != null && pr != null) { | 
 |                 TreeNode<K,V> s = pr, sl; | 
 |                 while ((sl = s.left) != null) // find successor | 
 |                     s = sl; | 
 |                 boolean c = s.red; s.red = p.red; p.red = c; // swap colors | 
 |                 TreeNode<K,V> sr = s.right; | 
 |                 TreeNode<K,V> pp = p.parent; | 
 |                 if (s == pr) { // p was s's direct parent | 
 |                     p.parent = s; | 
 |                     s.right = p; | 
 |                 } | 
 |                 else { | 
 |                     TreeNode<K,V> sp = s.parent; | 
 |                     if ((p.parent = sp) != null) { | 
 |                         if (s == sp.left) | 
 |                             sp.left = p; | 
 |                         else | 
 |                             sp.right = p; | 
 |                     } | 
 |                     if ((s.right = pr) != null) | 
 |                         pr.parent = s; | 
 |                 } | 
 |                 p.left = null; | 
 |                 if ((p.right = sr) != null) | 
 |                     sr.parent = p; | 
 |                 if ((s.left = pl) != null) | 
 |                     pl.parent = s; | 
 |                 if ((s.parent = pp) == null) | 
 |                     root = s; | 
 |                 else if (p == pp.left) | 
 |                     pp.left = s; | 
 |                 else | 
 |                     pp.right = s; | 
 |                 if (sr != null) | 
 |                     replacement = sr; | 
 |                 else | 
 |                     replacement = p; | 
 |             } | 
 |             else if (pl != null) | 
 |                 replacement = pl; | 
 |             else if (pr != null) | 
 |                 replacement = pr; | 
 |             else | 
 |                 replacement = p; | 
 |             if (replacement != p) { | 
 |                 TreeNode<K,V> pp = replacement.parent = p.parent; | 
 |                 if (pp == null) | 
 |                     root = replacement; | 
 |                 else if (p == pp.left) | 
 |                     pp.left = replacement; | 
 |                 else | 
 |                     pp.right = replacement; | 
 |                 p.left = p.right = p.parent = null; | 
 |             } | 
 |  | 
 |             TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement); | 
 |  | 
 |             if (replacement == p) {  // detach | 
 |                 TreeNode<K,V> pp = p.parent; | 
 |                 p.parent = null; | 
 |                 if (pp != null) { | 
 |                     if (p == pp.left) | 
 |                         pp.left = null; | 
 |                     else if (p == pp.right) | 
 |                         pp.right = null; | 
 |                 } | 
 |             } | 
 |             if (movable) | 
 |                 moveRootToFront(tab, r); | 
 |         } | 
 |  | 
 |         /** | 
 |          * Splits nodes in a tree bin into lower and upper tree bins, | 
 |          * or untreeifies if now too small. Called only from resize; | 
 |          * see above discussion about split bits and indices. | 
 |          * | 
 |          * @param map the map | 
 |          * @param tab the table for recording bin heads | 
 |          * @param index the index of the table being split | 
 |          * @param bit the bit of hash to split on | 
 |          */ | 
 |         final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) { | 
 |             TreeNode<K,V> b = this; | 
 |             // Relink into lo and hi lists, preserving order | 
 |             TreeNode<K,V> loHead = null, loTail = null; | 
 |             TreeNode<K,V> hiHead = null, hiTail = null; | 
 |             int lc = 0, hc = 0; | 
 |             for (TreeNode<K,V> e = b, next; e != null; e = next) { | 
 |                 next = (TreeNode<K,V>)e.next; | 
 |                 e.next = null; | 
 |                 if ((e.hash & bit) == 0) { | 
 |                     if ((e.prev = loTail) == null) | 
 |                         loHead = e; | 
 |                     else | 
 |                         loTail.next = e; | 
 |                     loTail = e; | 
 |                     ++lc; | 
 |                 } | 
 |                 else { | 
 |                     if ((e.prev = hiTail) == null) | 
 |                         hiHead = e; | 
 |                     else | 
 |                         hiTail.next = e; | 
 |                     hiTail = e; | 
 |                     ++hc; | 
 |                 } | 
 |             } | 
 |  | 
 |             if (loHead != null) { | 
 |                 if (lc <= UNTREEIFY_THRESHOLD) | 
 |                     tab[index] = loHead.untreeify(map); | 
 |                 else { | 
 |                     tab[index] = loHead; | 
 |                     if (hiHead != null) // (else is already treeified) | 
 |                         loHead.treeify(tab); | 
 |                 } | 
 |             } | 
 |             if (hiHead != null) { | 
 |                 if (hc <= UNTREEIFY_THRESHOLD) | 
 |                     tab[index + bit] = hiHead.untreeify(map); | 
 |                 else { | 
 |                     tab[index + bit] = hiHead; | 
 |                     if (loHead != null) | 
 |                         hiHead.treeify(tab); | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         /* ------------------------------------------------------------ */ | 
 |         // Red-black tree methods, all adapted from CLR | 
 |  | 
 |         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root, | 
 |                                               TreeNode<K,V> p) { | 
 |             TreeNode<K,V> r, pp, rl; | 
 |             if (p != null && (r = p.right) != null) { | 
 |                 if ((rl = p.right = r.left) != null) | 
 |                     rl.parent = p; | 
 |                 if ((pp = r.parent = p.parent) == null) | 
 |                     (root = r).red = false; | 
 |                 else if (pp.left == p) | 
 |                     pp.left = r; | 
 |                 else | 
 |                     pp.right = r; | 
 |                 r.left = p; | 
 |                 p.parent = r; | 
 |             } | 
 |             return root; | 
 |         } | 
 |  | 
 |         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root, | 
 |                                                TreeNode<K,V> p) { | 
 |             TreeNode<K,V> l, pp, lr; | 
 |             if (p != null && (l = p.left) != null) { | 
 |                 if ((lr = p.left = l.right) != null) | 
 |                     lr.parent = p; | 
 |                 if ((pp = l.parent = p.parent) == null) | 
 |                     (root = l).red = false; | 
 |                 else if (pp.right == p) | 
 |                     pp.right = l; | 
 |                 else | 
 |                     pp.left = l; | 
 |                 l.right = p; | 
 |                 p.parent = l; | 
 |             } | 
 |             return root; | 
 |         } | 
 |  | 
 |         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root, | 
 |                                                     TreeNode<K,V> x) { | 
 |             x.red = true; | 
 |             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) { | 
 |                 if ((xp = x.parent) == null) { | 
 |                     x.red = false; | 
 |                     return x; | 
 |                 } | 
 |                 else if (!xp.red || (xpp = xp.parent) == null) | 
 |                     return root; | 
 |                 if (xp == (xppl = xpp.left)) { | 
 |                     if ((xppr = xpp.right) != null && xppr.red) { | 
 |                         xppr.red = false; | 
 |                         xp.red = false; | 
 |                         xpp.red = true; | 
 |                         x = xpp; | 
 |                     } | 
 |                     else { | 
 |                         if (x == xp.right) { | 
 |                             root = rotateLeft(root, x = xp); | 
 |                             xpp = (xp = x.parent) == null ? null : xp.parent; | 
 |                         } | 
 |                         if (xp != null) { | 
 |                             xp.red = false; | 
 |                             if (xpp != null) { | 
 |                                 xpp.red = true; | 
 |                                 root = rotateRight(root, xpp); | 
 |                             } | 
 |                         } | 
 |                     } | 
 |                 } | 
 |                 else { | 
 |                     if (xppl != null && xppl.red) { | 
 |                         xppl.red = false; | 
 |                         xp.red = false; | 
 |                         xpp.red = true; | 
 |                         x = xpp; | 
 |                     } | 
 |                     else { | 
 |                         if (x == xp.left) { | 
 |                             root = rotateRight(root, x = xp); | 
 |                             xpp = (xp = x.parent) == null ? null : xp.parent; | 
 |                         } | 
 |                         if (xp != null) { | 
 |                             xp.red = false; | 
 |                             if (xpp != null) { | 
 |                                 xpp.red = true; | 
 |                                 root = rotateLeft(root, xpp); | 
 |                             } | 
 |                         } | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root, | 
 |                                                    TreeNode<K,V> x) { | 
 |             for (TreeNode<K,V> xp, xpl, xpr;;)  { | 
 |                 if (x == null || x == root) | 
 |                     return root; | 
 |                 else if ((xp = x.parent) == null) { | 
 |                     x.red = false; | 
 |                     return x; | 
 |                 } | 
 |                 else if (x.red) { | 
 |                     x.red = false; | 
 |                     return root; | 
 |                 } | 
 |                 else if ((xpl = xp.left) == x) { | 
 |                     if ((xpr = xp.right) != null && xpr.red) { | 
 |                         xpr.red = false; | 
 |                         xp.red = true; | 
 |                         root = rotateLeft(root, xp); | 
 |                         xpr = (xp = x.parent) == null ? null : xp.right; | 
 |                     } | 
 |                     if (xpr == null) | 
 |                         x = xp; | 
 |                     else { | 
 |                         TreeNode<K,V> sl = xpr.left, sr = xpr.right; | 
 |                         if ((sr == null || !sr.red) && | 
 |                             (sl == null || !sl.red)) { | 
 |                             xpr.red = true; | 
 |                             x = xp; | 
 |                         } | 
 |                         else { | 
 |                             if (sr == null || !sr.red) { | 
 |                                 if (sl != null) | 
 |                                     sl.red = false; | 
 |                                 xpr.red = true; | 
 |                                 root = rotateRight(root, xpr); | 
 |                                 xpr = (xp = x.parent) == null ? | 
 |                                     null : xp.right; | 
 |                             } | 
 |                             if (xpr != null) { | 
 |                                 xpr.red = (xp == null) ? false : xp.red; | 
 |                                 if ((sr = xpr.right) != null) | 
 |                                     sr.red = false; | 
 |                             } | 
 |                             if (xp != null) { | 
 |                                 xp.red = false; | 
 |                                 root = rotateLeft(root, xp); | 
 |                             } | 
 |                             x = root; | 
 |                         } | 
 |                     } | 
 |                 } | 
 |                 else { // symmetric | 
 |                     if (xpl != null && xpl.red) { | 
 |                         xpl.red = false; | 
 |                         xp.red = true; | 
 |                         root = rotateRight(root, xp); | 
 |                         xpl = (xp = x.parent) == null ? null : xp.left; | 
 |                     } | 
 |                     if (xpl == null) | 
 |                         x = xp; | 
 |                     else { | 
 |                         TreeNode<K,V> sl = xpl.left, sr = xpl.right; | 
 |                         if ((sl == null || !sl.red) && | 
 |                             (sr == null || !sr.red)) { | 
 |                             xpl.red = true; | 
 |                             x = xp; | 
 |                         } | 
 |                         else { | 
 |                             if (sl == null || !sl.red) { | 
 |                                 if (sr != null) | 
 |                                     sr.red = false; | 
 |                                 xpl.red = true; | 
 |                                 root = rotateLeft(root, xpl); | 
 |                                 xpl = (xp = x.parent) == null ? | 
 |                                     null : xp.left; | 
 |                             } | 
 |                             if (xpl != null) { | 
 |                                 xpl.red = (xp == null) ? false : xp.red; | 
 |                                 if ((sl = xpl.left) != null) | 
 |                                     sl.red = false; | 
 |                             } | 
 |                             if (xp != null) { | 
 |                                 xp.red = false; | 
 |                                 root = rotateRight(root, xp); | 
 |                             } | 
 |                             x = root; | 
 |                         } | 
 |                     } | 
 |                 } | 
 |             } | 
 |         } | 
 |  | 
 |         /** | 
 |          * Recursive invariant check | 
 |          */ | 
 |         static <K,V> boolean checkInvariants(TreeNode<K,V> t) { | 
 |             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right, | 
 |                 tb = t.prev, tn = (TreeNode<K,V>)t.next; | 
 |             if (tb != null && tb.next != t) | 
 |                 return false; | 
 |             if (tn != null && tn.prev != t) | 
 |                 return false; | 
 |             if (tp != null && t != tp.left && t != tp.right) | 
 |                 return false; | 
 |             if (tl != null && (tl.parent != t || tl.hash > t.hash)) | 
 |                 return false; | 
 |             if (tr != null && (tr.parent != t || tr.hash < t.hash)) | 
 |                 return false; | 
 |             if (t.red && tl != null && tl.red && tr != null && tr.red) | 
 |                 return false; | 
 |             if (tl != null && !checkInvariants(tl)) | 
 |                 return false; | 
 |             if (tr != null && !checkInvariants(tr)) | 
 |                 return false; | 
 |             return true; | 
 |         } | 
 |     } | 
 |  | 
 | } |