blob: bf088e0a2755438006de8ecd1f87aea65f9e5cf3 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License
*/
package com.android.internal.util;
import android.annotation.ColorInt;
import android.annotation.FloatRange;
import android.annotation.IntRange;
import android.annotation.NonNull;
import android.app.Notification;
import android.content.Context;
import android.content.res.ColorStateList;
import android.content.res.Resources;
import android.graphics.Bitmap;
import android.graphics.Color;
import android.graphics.drawable.AnimationDrawable;
import android.graphics.drawable.BitmapDrawable;
import android.graphics.drawable.Drawable;
import android.graphics.drawable.Icon;
import android.graphics.drawable.VectorDrawable;
import android.text.SpannableStringBuilder;
import android.text.Spanned;
import android.text.style.BackgroundColorSpan;
import android.text.style.CharacterStyle;
import android.text.style.ForegroundColorSpan;
import android.text.style.TextAppearanceSpan;
import android.util.Log;
import android.util.Pair;
import java.util.Arrays;
import java.util.WeakHashMap;
/**
* Helper class to process legacy (Holo) notifications to make them look like material notifications.
*
* @hide
*/
public class ContrastColorUtil {
private static final String TAG = "ContrastColorUtil";
private static final boolean DEBUG = false;
private static final Object sLock = new Object();
private static ContrastColorUtil sInstance;
private final ImageUtils mImageUtils = new ImageUtils();
private final WeakHashMap<Bitmap, Pair<Boolean, Integer>> mGrayscaleBitmapCache =
new WeakHashMap<Bitmap, Pair<Boolean, Integer>>();
private final int mGrayscaleIconMaxSize; // @dimen/notification_large_icon_width (64dp)
public static ContrastColorUtil getInstance(Context context) {
synchronized (sLock) {
if (sInstance == null) {
sInstance = new ContrastColorUtil(context);
}
return sInstance;
}
}
private ContrastColorUtil(Context context) {
mGrayscaleIconMaxSize = context.getResources().getDimensionPixelSize(
com.android.internal.R.dimen.notification_large_icon_width);
}
/**
* Checks whether a Bitmap is a small grayscale icon.
* Grayscale here means "very close to a perfect gray"; icon means "no larger than 64dp".
*
* @param bitmap The bitmap to test.
* @return True if the bitmap is grayscale; false if it is color or too large to examine.
*/
public boolean isGrayscaleIcon(Bitmap bitmap) {
// quick test: reject large bitmaps
if (bitmap.getWidth() > mGrayscaleIconMaxSize
|| bitmap.getHeight() > mGrayscaleIconMaxSize) {
return false;
}
synchronized (sLock) {
Pair<Boolean, Integer> cached = mGrayscaleBitmapCache.get(bitmap);
if (cached != null) {
if (cached.second == bitmap.getGenerationId()) {
return cached.first;
}
}
}
boolean result;
int generationId;
synchronized (mImageUtils) {
result = mImageUtils.isGrayscale(bitmap);
// generationId and the check whether the Bitmap is grayscale can't be read atomically
// here. However, since the thread is in the process of posting the notification, we can
// assume that it doesn't modify the bitmap while we are checking the pixels.
generationId = bitmap.getGenerationId();
}
synchronized (sLock) {
mGrayscaleBitmapCache.put(bitmap, Pair.create(result, generationId));
}
return result;
}
/**
* Checks whether a Drawable is a small grayscale icon.
* Grayscale here means "very close to a perfect gray"; icon means "no larger than 64dp".
*
* @param d The drawable to test.
* @return True if the bitmap is grayscale; false if it is color or too large to examine.
*/
public boolean isGrayscaleIcon(Drawable d) {
if (d == null) {
return false;
} else if (d instanceof BitmapDrawable) {
BitmapDrawable bd = (BitmapDrawable) d;
return bd.getBitmap() != null && isGrayscaleIcon(bd.getBitmap());
} else if (d instanceof AnimationDrawable) {
AnimationDrawable ad = (AnimationDrawable) d;
int count = ad.getNumberOfFrames();
return count > 0 && isGrayscaleIcon(ad.getFrame(0));
} else if (d instanceof VectorDrawable) {
// We just assume you're doing the right thing if using vectors
return true;
} else {
return false;
}
}
public boolean isGrayscaleIcon(Context context, Icon icon) {
if (icon == null) {
return false;
}
switch (icon.getType()) {
case Icon.TYPE_BITMAP:
return isGrayscaleIcon(icon.getBitmap());
case Icon.TYPE_RESOURCE:
return isGrayscaleIcon(context, icon.getResId());
default:
return false;
}
}
/**
* Checks whether a drawable with a resoure id is a small grayscale icon.
* Grayscale here means "very close to a perfect gray"; icon means "no larger than 64dp".
*
* @param context The context to load the drawable from.
* @return True if the bitmap is grayscale; false if it is color or too large to examine.
*/
public boolean isGrayscaleIcon(Context context, int drawableResId) {
if (drawableResId != 0) {
try {
return isGrayscaleIcon(context.getDrawable(drawableResId));
} catch (Resources.NotFoundException ex) {
Log.e(TAG, "Drawable not found: " + drawableResId);
return false;
}
} else {
return false;
}
}
/**
* Inverts all the grayscale colors set by {@link android.text.style.TextAppearanceSpan}s on
* the text.
*
* @param charSequence The text to process.
* @return The color inverted text.
*/
public CharSequence invertCharSequenceColors(CharSequence charSequence) {
if (charSequence instanceof Spanned) {
Spanned ss = (Spanned) charSequence;
Object[] spans = ss.getSpans(0, ss.length(), Object.class);
SpannableStringBuilder builder = new SpannableStringBuilder(ss.toString());
for (Object span : spans) {
Object resultSpan = span;
if (resultSpan instanceof CharacterStyle) {
resultSpan = ((CharacterStyle) span).getUnderlying();
}
if (resultSpan instanceof TextAppearanceSpan) {
TextAppearanceSpan processedSpan = processTextAppearanceSpan(
(TextAppearanceSpan) span);
if (processedSpan != resultSpan) {
resultSpan = processedSpan;
} else {
// we need to still take the orgininal for wrapped spans
resultSpan = span;
}
} else if (resultSpan instanceof ForegroundColorSpan) {
ForegroundColorSpan originalSpan = (ForegroundColorSpan) resultSpan;
int foregroundColor = originalSpan.getForegroundColor();
resultSpan = new ForegroundColorSpan(processColor(foregroundColor));
} else {
resultSpan = span;
}
builder.setSpan(resultSpan, ss.getSpanStart(span), ss.getSpanEnd(span),
ss.getSpanFlags(span));
}
return builder;
}
return charSequence;
}
private TextAppearanceSpan processTextAppearanceSpan(TextAppearanceSpan span) {
ColorStateList colorStateList = span.getTextColor();
if (colorStateList != null) {
int[] colors = colorStateList.getColors();
boolean changed = false;
for (int i = 0; i < colors.length; i++) {
if (ImageUtils.isGrayscale(colors[i])) {
// Allocate a new array so we don't change the colors in the old color state
// list.
if (!changed) {
colors = Arrays.copyOf(colors, colors.length);
}
colors[i] = processColor(colors[i]);
changed = true;
}
}
if (changed) {
return new TextAppearanceSpan(
span.getFamily(), span.getTextStyle(), span.getTextSize(),
new ColorStateList(colorStateList.getStates(), colors),
span.getLinkTextColor());
}
}
return span;
}
/**
* Clears all color spans of a text
* @param charSequence the input text
* @return the same text but without color spans
*/
public static CharSequence clearColorSpans(CharSequence charSequence) {
if (charSequence instanceof Spanned) {
Spanned ss = (Spanned) charSequence;
Object[] spans = ss.getSpans(0, ss.length(), Object.class);
SpannableStringBuilder builder = new SpannableStringBuilder(ss.toString());
for (Object span : spans) {
Object resultSpan = span;
if (resultSpan instanceof CharacterStyle) {
resultSpan = ((CharacterStyle) span).getUnderlying();
}
if (resultSpan instanceof TextAppearanceSpan) {
TextAppearanceSpan originalSpan = (TextAppearanceSpan) resultSpan;
if (originalSpan.getTextColor() != null) {
resultSpan = new TextAppearanceSpan(
originalSpan.getFamily(),
originalSpan.getTextStyle(),
originalSpan.getTextSize(),
null,
originalSpan.getLinkTextColor());
}
} else if (resultSpan instanceof ForegroundColorSpan
|| (resultSpan instanceof BackgroundColorSpan)) {
continue;
} else {
resultSpan = span;
}
builder.setSpan(resultSpan, ss.getSpanStart(span), ss.getSpanEnd(span),
ss.getSpanFlags(span));
}
return builder;
}
return charSequence;
}
private int processColor(int color) {
return Color.argb(Color.alpha(color),
255 - Color.red(color),
255 - Color.green(color),
255 - Color.blue(color));
}
/**
* Finds a suitable color such that there's enough contrast.
*
* @param color the color to start searching from.
* @param other the color to ensure contrast against. Assumed to be lighter than {@param color}
* @param findFg if true, we assume {@param color} is a foreground, otherwise a background.
* @param minRatio the minimum contrast ratio required.
* @return a color with the same hue as {@param color}, potentially darkened to meet the
* contrast ratio.
*/
public static int findContrastColor(int color, int other, boolean findFg, double minRatio) {
int fg = findFg ? color : other;
int bg = findFg ? other : color;
if (ColorUtilsFromCompat.calculateContrast(fg, bg) >= minRatio) {
return color;
}
double[] lab = new double[3];
ColorUtilsFromCompat.colorToLAB(findFg ? fg : bg, lab);
double low = 0, high = lab[0];
final double a = lab[1], b = lab[2];
for (int i = 0; i < 15 && high - low > 0.00001; i++) {
final double l = (low + high) / 2;
if (findFg) {
fg = ColorUtilsFromCompat.LABToColor(l, a, b);
} else {
bg = ColorUtilsFromCompat.LABToColor(l, a, b);
}
if (ColorUtilsFromCompat.calculateContrast(fg, bg) > minRatio) {
low = l;
} else {
high = l;
}
}
return ColorUtilsFromCompat.LABToColor(low, a, b);
}
/**
* Finds a suitable alpha such that there's enough contrast.
*
* @param color the color to start searching from.
* @param backgroundColor the color to ensure contrast against.
* @param minRatio the minimum contrast ratio required.
* @return the same color as {@param color} with potentially modified alpha to meet contrast
*/
public static int findAlphaToMeetContrast(int color, int backgroundColor, double minRatio) {
int fg = color;
int bg = backgroundColor;
if (ColorUtilsFromCompat.calculateContrast(fg, bg) >= minRatio) {
return color;
}
int startAlpha = Color.alpha(color);
int r = Color.red(color);
int g = Color.green(color);
int b = Color.blue(color);
int low = startAlpha, high = 255;
for (int i = 0; i < 15 && high - low > 0; i++) {
final int alpha = (low + high) / 2;
fg = Color.argb(alpha, r, g, b);
if (ColorUtilsFromCompat.calculateContrast(fg, bg) > minRatio) {
high = alpha;
} else {
low = alpha;
}
}
return Color.argb(high, r, g, b);
}
/**
* Finds a suitable color such that there's enough contrast.
*
* @param color the color to start searching from.
* @param other the color to ensure contrast against. Assumed to be darker than {@param color}
* @param findFg if true, we assume {@param color} is a foreground, otherwise a background.
* @param minRatio the minimum contrast ratio required.
* @return a color with the same hue as {@param color}, potentially darkened to meet the
* contrast ratio.
*/
public static int findContrastColorAgainstDark(int color, int other, boolean findFg,
double minRatio) {
int fg = findFg ? color : other;
int bg = findFg ? other : color;
if (ColorUtilsFromCompat.calculateContrast(fg, bg) >= minRatio) {
return color;
}
float[] hsl = new float[3];
ColorUtilsFromCompat.colorToHSL(findFg ? fg : bg, hsl);
float low = hsl[2], high = 1;
for (int i = 0; i < 15 && high - low > 0.00001; i++) {
final float l = (low + high) / 2;
hsl[2] = l;
if (findFg) {
fg = ColorUtilsFromCompat.HSLToColor(hsl);
} else {
bg = ColorUtilsFromCompat.HSLToColor(hsl);
}
if (ColorUtilsFromCompat.calculateContrast(fg, bg) > minRatio) {
high = l;
} else {
low = l;
}
}
return findFg ? fg : bg;
}
public static int ensureTextContrastOnBlack(int color) {
return findContrastColorAgainstDark(color, Color.BLACK, true /* fg */, 12);
}
/**
* Finds a large text color with sufficient contrast over bg that has the same or darker hue as
* the original color, depending on the value of {@code isBgDarker}.
*
* @param isBgDarker {@code true} if {@code bg} is darker than {@code color}.
*/
public static int ensureLargeTextContrast(int color, int bg, boolean isBgDarker) {
return isBgDarker
? findContrastColorAgainstDark(color, bg, true, 3)
: findContrastColor(color, bg, true, 3);
}
/**
* Finds a text color with sufficient contrast over bg that has the same or darker hue as the
* original color, depending on the value of {@code isBgDarker}.
*
* @param isBgDarker {@code true} if {@code bg} is darker than {@code color}.
*/
public static int ensureTextContrast(int color, int bg, boolean isBgDarker) {
return ensureContrast(color, bg, isBgDarker, 4.5);
}
/**
* Finds a color with sufficient contrast over bg that has the same or darker hue as the
* original color, depending on the value of {@code isBgDarker}.
*
* @param color the color to start searching from
* @param bg the color to ensure contrast against
* @param isBgDarker {@code true} if {@code bg} is darker than {@code color}
* @param minRatio the minimum contrast ratio required
*/
public static int ensureContrast(int color, int bg, boolean isBgDarker, double minRatio) {
return isBgDarker
? findContrastColorAgainstDark(color, bg, true, minRatio)
: findContrastColor(color, bg, true, minRatio);
}
/** Finds a background color for a text view with given text color and hint text color, that
* has the same hue as the original color.
*/
public static int ensureTextBackgroundColor(int color, int textColor, int hintColor) {
color = findContrastColor(color, hintColor, false, 3.0);
return findContrastColor(color, textColor, false, 4.5);
}
private static String contrastChange(int colorOld, int colorNew, int bg) {
return String.format("from %.2f:1 to %.2f:1",
ColorUtilsFromCompat.calculateContrast(colorOld, bg),
ColorUtilsFromCompat.calculateContrast(colorNew, bg));
}
/**
* Resolves {@param color} to an actual color if it is {@link Notification#COLOR_DEFAULT}
*/
public static int resolveColor(Context context, int color, boolean defaultBackgroundIsDark) {
if (color == Notification.COLOR_DEFAULT) {
int res = defaultBackgroundIsDark
? com.android.internal.R.color.notification_default_color_dark
: com.android.internal.R.color.notification_default_color_light;
return context.getColor(res);
}
return color;
}
/**
* Resolves a Notification's color such that it has enough contrast to be used as the
* color for the Notification's action and header text on a background that is lighter than
* {@code notificationColor}.
*
* @see {@link #resolveContrastColor(Context, int, boolean)}
*/
public static int resolveContrastColor(Context context, int notificationColor,
int backgroundColor) {
return ContrastColorUtil.resolveContrastColor(context, notificationColor,
backgroundColor, false /* isDark */);
}
/**
* Resolves a Notification's color such that it has enough contrast to be used as the
* color for the Notification's action and header text.
*
* @param notificationColor the color of the notification or {@link Notification#COLOR_DEFAULT}
* @param backgroundColor the background color to ensure the contrast against.
* @param isDark whether or not the {@code notificationColor} will be placed on a background
* that is darker than the color itself
* @return a color of the same hue with enough contrast against the backgrounds.
*/
public static int resolveContrastColor(Context context, int notificationColor,
int backgroundColor, boolean isDark) {
final int resolvedColor = resolveColor(context, notificationColor, isDark);
int color = resolvedColor;
color = ContrastColorUtil.ensureTextContrast(color, backgroundColor, isDark);
if (color != resolvedColor) {
if (DEBUG){
Log.w(TAG, String.format(
"Enhanced contrast of notification for %s"
+ " and %s (over background) by changing #%s to %s",
context.getPackageName(),
ContrastColorUtil.contrastChange(resolvedColor, color, backgroundColor),
Integer.toHexString(resolvedColor), Integer.toHexString(color)));
}
}
return color;
}
/**
* Change a color by a specified value
* @param baseColor the base color to lighten
* @param amount the amount to lighten the color from 0 to 100. This corresponds to the L
* increase in the LAB color space. A negative value will darken the color and
* a positive will lighten it.
* @return the changed color
*/
public static int changeColorLightness(int baseColor, int amount) {
final double[] result = ColorUtilsFromCompat.getTempDouble3Array();
ColorUtilsFromCompat.colorToLAB(baseColor, result);
result[0] = Math.max(Math.min(100, result[0] + amount), 0);
return ColorUtilsFromCompat.LABToColor(result[0], result[1], result[2]);
}
public static int resolvePrimaryColor(Context context, int backgroundColor,
boolean defaultBackgroundIsDark) {
boolean useDark = shouldUseDark(backgroundColor, defaultBackgroundIsDark);
if (useDark) {
return context.getColor(
com.android.internal.R.color.notification_primary_text_color_light);
} else {
return context.getColor(
com.android.internal.R.color.notification_primary_text_color_dark);
}
}
public static int resolveSecondaryColor(Context context, int backgroundColor,
boolean defaultBackgroundIsDark) {
boolean useDark = shouldUseDark(backgroundColor, defaultBackgroundIsDark);
if (useDark) {
return context.getColor(
com.android.internal.R.color.notification_secondary_text_color_light);
} else {
return context.getColor(
com.android.internal.R.color.notification_secondary_text_color_dark);
}
}
public static int resolveDefaultColor(Context context, int backgroundColor,
boolean defaultBackgroundIsDark) {
boolean useDark = shouldUseDark(backgroundColor, defaultBackgroundIsDark);
if (useDark) {
return context.getColor(
com.android.internal.R.color.notification_default_color_light);
} else {
return context.getColor(
com.android.internal.R.color.notification_default_color_dark);
}
}
/**
* Get a color that stays in the same tint, but darkens or lightens it by a certain
* amount.
* This also looks at the lightness of the provided color and shifts it appropriately.
*
* @param color the base color to use
* @param amount the amount from 1 to 100 how much to modify the color
* @return the new color that was modified
*/
public static int getShiftedColor(int color, int amount) {
final double[] result = ColorUtilsFromCompat.getTempDouble3Array();
ColorUtilsFromCompat.colorToLAB(color, result);
if (result[0] >= 4) {
result[0] = Math.max(0, result[0] - amount);
} else {
result[0] = Math.min(100, result[0] + amount);
}
return ColorUtilsFromCompat.LABToColor(result[0], result[1], result[2]);
}
/**
* Blends the provided color with white to create a muted version.
*
* @param color the color to mute
* @param alpha the amount from 0 to 1 to set the alpha component of the white scrim
* @return the new color that was modified
*/
public static int getMutedColor(int color, float alpha) {
int whiteScrim = ColorUtilsFromCompat.setAlphaComponent(
Color.WHITE, (int) (255 * alpha));
return compositeColors(whiteScrim, color);
}
private static boolean shouldUseDark(int backgroundColor, boolean defaultBackgroundIsDark) {
if (backgroundColor == Notification.COLOR_DEFAULT) {
return !defaultBackgroundIsDark;
}
return ColorUtilsFromCompat.calculateLuminance(backgroundColor) > 0.5;
}
public static double calculateLuminance(int backgroundColor) {
return ColorUtilsFromCompat.calculateLuminance(backgroundColor);
}
public static double calculateContrast(int foregroundColor, int backgroundColor) {
return ColorUtilsFromCompat.calculateContrast(foregroundColor, backgroundColor);
}
public static boolean satisfiesTextContrast(int backgroundColor, int foregroundColor) {
return ContrastColorUtil.calculateContrast(foregroundColor, backgroundColor) >= 4.5;
}
/**
* Composite two potentially translucent colors over each other and returns the result.
*/
public static int compositeColors(int foreground, int background) {
return ColorUtilsFromCompat.compositeColors(foreground, background);
}
public static boolean isColorLight(int backgroundColor) {
return calculateLuminance(backgroundColor) > 0.5f;
}
/**
* Framework copy of functions needed from android.support.v4.graphics.ColorUtils.
*/
private static class ColorUtilsFromCompat {
private static final double XYZ_WHITE_REFERENCE_X = 95.047;
private static final double XYZ_WHITE_REFERENCE_Y = 100;
private static final double XYZ_WHITE_REFERENCE_Z = 108.883;
private static final double XYZ_EPSILON = 0.008856;
private static final double XYZ_KAPPA = 903.3;
private static final int MIN_ALPHA_SEARCH_MAX_ITERATIONS = 10;
private static final int MIN_ALPHA_SEARCH_PRECISION = 1;
private static final ThreadLocal<double[]> TEMP_ARRAY = new ThreadLocal<>();
private ColorUtilsFromCompat() {}
/**
* Composite two potentially translucent colors over each other and returns the result.
*/
public static int compositeColors(@ColorInt int foreground, @ColorInt int background) {
int bgAlpha = Color.alpha(background);
int fgAlpha = Color.alpha(foreground);
int a = compositeAlpha(fgAlpha, bgAlpha);
int r = compositeComponent(Color.red(foreground), fgAlpha,
Color.red(background), bgAlpha, a);
int g = compositeComponent(Color.green(foreground), fgAlpha,
Color.green(background), bgAlpha, a);
int b = compositeComponent(Color.blue(foreground), fgAlpha,
Color.blue(background), bgAlpha, a);
return Color.argb(a, r, g, b);
}
private static int compositeAlpha(int foregroundAlpha, int backgroundAlpha) {
return 0xFF - (((0xFF - backgroundAlpha) * (0xFF - foregroundAlpha)) / 0xFF);
}
private static int compositeComponent(int fgC, int fgA, int bgC, int bgA, int a) {
if (a == 0) return 0;
return ((0xFF * fgC * fgA) + (bgC * bgA * (0xFF - fgA))) / (a * 0xFF);
}
/**
* Set the alpha component of {@code color} to be {@code alpha}.
*/
@ColorInt
public static int setAlphaComponent(@ColorInt int color,
@IntRange(from = 0x0, to = 0xFF) int alpha) {
if (alpha < 0 || alpha > 255) {
throw new IllegalArgumentException("alpha must be between 0 and 255.");
}
return (color & 0x00ffffff) | (alpha << 24);
}
/**
* Returns the luminance of a color as a float between {@code 0.0} and {@code 1.0}.
* <p>Defined as the Y component in the XYZ representation of {@code color}.</p>
*/
@FloatRange(from = 0.0, to = 1.0)
public static double calculateLuminance(@ColorInt int color) {
final double[] result = getTempDouble3Array();
colorToXYZ(color, result);
// Luminance is the Y component
return result[1] / 100;
}
/**
* Returns the contrast ratio between {@code foreground} and {@code background}.
* {@code background} must be opaque.
* <p>
* Formula defined
* <a href="http://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef">here</a>.
*/
public static double calculateContrast(@ColorInt int foreground, @ColorInt int background) {
if (Color.alpha(background) != 255) {
Log.wtf(TAG, "background can not be translucent: #"
+ Integer.toHexString(background));
}
if (Color.alpha(foreground) < 255) {
// If the foreground is translucent, composite the foreground over the background
foreground = compositeColors(foreground, background);
}
final double luminance1 = calculateLuminance(foreground) + 0.05;
final double luminance2 = calculateLuminance(background) + 0.05;
// Now return the lighter luminance divided by the darker luminance
return Math.max(luminance1, luminance2) / Math.min(luminance1, luminance2);
}
/**
* Convert the ARGB color to its CIE Lab representative components.
*
* @param color the ARGB color to convert. The alpha component is ignored
* @param outLab 3-element array which holds the resulting LAB components
*/
public static void colorToLAB(@ColorInt int color, @NonNull double[] outLab) {
RGBToLAB(Color.red(color), Color.green(color), Color.blue(color), outLab);
}
/**
* Convert RGB components to its CIE Lab representative components.
*
* <ul>
* <li>outLab[0] is L [0 ...100)</li>
* <li>outLab[1] is a [-128...127)</li>
* <li>outLab[2] is b [-128...127)</li>
* </ul>
*
* @param r red component value [0..255]
* @param g green component value [0..255]
* @param b blue component value [0..255]
* @param outLab 3-element array which holds the resulting LAB components
*/
public static void RGBToLAB(@IntRange(from = 0x0, to = 0xFF) int r,
@IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b,
@NonNull double[] outLab) {
// First we convert RGB to XYZ
RGBToXYZ(r, g, b, outLab);
// outLab now contains XYZ
XYZToLAB(outLab[0], outLab[1], outLab[2], outLab);
// outLab now contains LAB representation
}
/**
* Convert the ARGB color to it's CIE XYZ representative components.
*
* <p>The resulting XYZ representation will use the D65 illuminant and the CIE
* 2° Standard Observer (1931).</p>
*
* <ul>
* <li>outXyz[0] is X [0 ...95.047)</li>
* <li>outXyz[1] is Y [0...100)</li>
* <li>outXyz[2] is Z [0...108.883)</li>
* </ul>
*
* @param color the ARGB color to convert. The alpha component is ignored
* @param outXyz 3-element array which holds the resulting LAB components
*/
public static void colorToXYZ(@ColorInt int color, @NonNull double[] outXyz) {
RGBToXYZ(Color.red(color), Color.green(color), Color.blue(color), outXyz);
}
/**
* Convert RGB components to it's CIE XYZ representative components.
*
* <p>The resulting XYZ representation will use the D65 illuminant and the CIE
* 2° Standard Observer (1931).</p>
*
* <ul>
* <li>outXyz[0] is X [0 ...95.047)</li>
* <li>outXyz[1] is Y [0...100)</li>
* <li>outXyz[2] is Z [0...108.883)</li>
* </ul>
*
* @param r red component value [0..255]
* @param g green component value [0..255]
* @param b blue component value [0..255]
* @param outXyz 3-element array which holds the resulting XYZ components
*/
public static void RGBToXYZ(@IntRange(from = 0x0, to = 0xFF) int r,
@IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b,
@NonNull double[] outXyz) {
if (outXyz.length != 3) {
throw new IllegalArgumentException("outXyz must have a length of 3.");
}
double sr = r / 255.0;
sr = sr < 0.04045 ? sr / 12.92 : Math.pow((sr + 0.055) / 1.055, 2.4);
double sg = g / 255.0;
sg = sg < 0.04045 ? sg / 12.92 : Math.pow((sg + 0.055) / 1.055, 2.4);
double sb = b / 255.0;
sb = sb < 0.04045 ? sb / 12.92 : Math.pow((sb + 0.055) / 1.055, 2.4);
outXyz[0] = 100 * (sr * 0.4124 + sg * 0.3576 + sb * 0.1805);
outXyz[1] = 100 * (sr * 0.2126 + sg * 0.7152 + sb * 0.0722);
outXyz[2] = 100 * (sr * 0.0193 + sg * 0.1192 + sb * 0.9505);
}
/**
* Converts a color from CIE XYZ to CIE Lab representation.
*
* <p>This method expects the XYZ representation to use the D65 illuminant and the CIE
* 2° Standard Observer (1931).</p>
*
* <ul>
* <li>outLab[0] is L [0 ...100)</li>
* <li>outLab[1] is a [-128...127)</li>
* <li>outLab[2] is b [-128...127)</li>
* </ul>
*
* @param x X component value [0...95.047)
* @param y Y component value [0...100)
* @param z Z component value [0...108.883)
* @param outLab 3-element array which holds the resulting Lab components
*/
public static void XYZToLAB(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x,
@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y,
@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z,
@NonNull double[] outLab) {
if (outLab.length != 3) {
throw new IllegalArgumentException("outLab must have a length of 3.");
}
x = pivotXyzComponent(x / XYZ_WHITE_REFERENCE_X);
y = pivotXyzComponent(y / XYZ_WHITE_REFERENCE_Y);
z = pivotXyzComponent(z / XYZ_WHITE_REFERENCE_Z);
outLab[0] = Math.max(0, 116 * y - 16);
outLab[1] = 500 * (x - y);
outLab[2] = 200 * (y - z);
}
/**
* Converts a color from CIE Lab to CIE XYZ representation.
*
* <p>The resulting XYZ representation will use the D65 illuminant and the CIE
* 2° Standard Observer (1931).</p>
*
* <ul>
* <li>outXyz[0] is X [0 ...95.047)</li>
* <li>outXyz[1] is Y [0...100)</li>
* <li>outXyz[2] is Z [0...108.883)</li>
* </ul>
*
* @param l L component value [0...100)
* @param a A component value [-128...127)
* @param b B component value [-128...127)
* @param outXyz 3-element array which holds the resulting XYZ components
*/
public static void LABToXYZ(@FloatRange(from = 0f, to = 100) final double l,
@FloatRange(from = -128, to = 127) final double a,
@FloatRange(from = -128, to = 127) final double b,
@NonNull double[] outXyz) {
final double fy = (l + 16) / 116;
final double fx = a / 500 + fy;
final double fz = fy - b / 200;
double tmp = Math.pow(fx, 3);
final double xr = tmp > XYZ_EPSILON ? tmp : (116 * fx - 16) / XYZ_KAPPA;
final double yr = l > XYZ_KAPPA * XYZ_EPSILON ? Math.pow(fy, 3) : l / XYZ_KAPPA;
tmp = Math.pow(fz, 3);
final double zr = tmp > XYZ_EPSILON ? tmp : (116 * fz - 16) / XYZ_KAPPA;
outXyz[0] = xr * XYZ_WHITE_REFERENCE_X;
outXyz[1] = yr * XYZ_WHITE_REFERENCE_Y;
outXyz[2] = zr * XYZ_WHITE_REFERENCE_Z;
}
/**
* Converts a color from CIE XYZ to its RGB representation.
*
* <p>This method expects the XYZ representation to use the D65 illuminant and the CIE
* 2° Standard Observer (1931).</p>
*
* @param x X component value [0...95.047)
* @param y Y component value [0...100)
* @param z Z component value [0...108.883)
* @return int containing the RGB representation
*/
@ColorInt
public static int XYZToColor(@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_X) double x,
@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Y) double y,
@FloatRange(from = 0f, to = XYZ_WHITE_REFERENCE_Z) double z) {
double r = (x * 3.2406 + y * -1.5372 + z * -0.4986) / 100;
double g = (x * -0.9689 + y * 1.8758 + z * 0.0415) / 100;
double b = (x * 0.0557 + y * -0.2040 + z * 1.0570) / 100;
r = r > 0.0031308 ? 1.055 * Math.pow(r, 1 / 2.4) - 0.055 : 12.92 * r;
g = g > 0.0031308 ? 1.055 * Math.pow(g, 1 / 2.4) - 0.055 : 12.92 * g;
b = b > 0.0031308 ? 1.055 * Math.pow(b, 1 / 2.4) - 0.055 : 12.92 * b;
return Color.rgb(
constrain((int) Math.round(r * 255), 0, 255),
constrain((int) Math.round(g * 255), 0, 255),
constrain((int) Math.round(b * 255), 0, 255));
}
/**
* Converts a color from CIE Lab to its RGB representation.
*
* @param l L component value [0...100]
* @param a A component value [-128...127]
* @param b B component value [-128...127]
* @return int containing the RGB representation
*/
@ColorInt
public static int LABToColor(@FloatRange(from = 0f, to = 100) final double l,
@FloatRange(from = -128, to = 127) final double a,
@FloatRange(from = -128, to = 127) final double b) {
final double[] result = getTempDouble3Array();
LABToXYZ(l, a, b, result);
return XYZToColor(result[0], result[1], result[2]);
}
private static int constrain(int amount, int low, int high) {
return amount < low ? low : (amount > high ? high : amount);
}
private static float constrain(float amount, float low, float high) {
return amount < low ? low : (amount > high ? high : amount);
}
private static double pivotXyzComponent(double component) {
return component > XYZ_EPSILON
? Math.pow(component, 1 / 3.0)
: (XYZ_KAPPA * component + 16) / 116;
}
public static double[] getTempDouble3Array() {
double[] result = TEMP_ARRAY.get();
if (result == null) {
result = new double[3];
TEMP_ARRAY.set(result);
}
return result;
}
/**
* Convert HSL (hue-saturation-lightness) components to a RGB color.
* <ul>
* <li>hsl[0] is Hue [0 .. 360)</li>
* <li>hsl[1] is Saturation [0...1]</li>
* <li>hsl[2] is Lightness [0...1]</li>
* </ul>
* If hsv values are out of range, they are pinned.
*
* @param hsl 3-element array which holds the input HSL components
* @return the resulting RGB color
*/
@ColorInt
public static int HSLToColor(@NonNull float[] hsl) {
final float h = hsl[0];
final float s = hsl[1];
final float l = hsl[2];
final float c = (1f - Math.abs(2 * l - 1f)) * s;
final float m = l - 0.5f * c;
final float x = c * (1f - Math.abs((h / 60f % 2f) - 1f));
final int hueSegment = (int) h / 60;
int r = 0, g = 0, b = 0;
switch (hueSegment) {
case 0:
r = Math.round(255 * (c + m));
g = Math.round(255 * (x + m));
b = Math.round(255 * m);
break;
case 1:
r = Math.round(255 * (x + m));
g = Math.round(255 * (c + m));
b = Math.round(255 * m);
break;
case 2:
r = Math.round(255 * m);
g = Math.round(255 * (c + m));
b = Math.round(255 * (x + m));
break;
case 3:
r = Math.round(255 * m);
g = Math.round(255 * (x + m));
b = Math.round(255 * (c + m));
break;
case 4:
r = Math.round(255 * (x + m));
g = Math.round(255 * m);
b = Math.round(255 * (c + m));
break;
case 5:
case 6:
r = Math.round(255 * (c + m));
g = Math.round(255 * m);
b = Math.round(255 * (x + m));
break;
}
r = constrain(r, 0, 255);
g = constrain(g, 0, 255);
b = constrain(b, 0, 255);
return Color.rgb(r, g, b);
}
/**
* Convert the ARGB color to its HSL (hue-saturation-lightness) components.
* <ul>
* <li>outHsl[0] is Hue [0 .. 360)</li>
* <li>outHsl[1] is Saturation [0...1]</li>
* <li>outHsl[2] is Lightness [0...1]</li>
* </ul>
*
* @param color the ARGB color to convert. The alpha component is ignored
* @param outHsl 3-element array which holds the resulting HSL components
*/
public static void colorToHSL(@ColorInt int color, @NonNull float[] outHsl) {
RGBToHSL(Color.red(color), Color.green(color), Color.blue(color), outHsl);
}
/**
* Convert RGB components to HSL (hue-saturation-lightness).
* <ul>
* <li>outHsl[0] is Hue [0 .. 360)</li>
* <li>outHsl[1] is Saturation [0...1]</li>
* <li>outHsl[2] is Lightness [0...1]</li>
* </ul>
*
* @param r red component value [0..255]
* @param g green component value [0..255]
* @param b blue component value [0..255]
* @param outHsl 3-element array which holds the resulting HSL components
*/
public static void RGBToHSL(@IntRange(from = 0x0, to = 0xFF) int r,
@IntRange(from = 0x0, to = 0xFF) int g, @IntRange(from = 0x0, to = 0xFF) int b,
@NonNull float[] outHsl) {
final float rf = r / 255f;
final float gf = g / 255f;
final float bf = b / 255f;
final float max = Math.max(rf, Math.max(gf, bf));
final float min = Math.min(rf, Math.min(gf, bf));
final float deltaMaxMin = max - min;
float h, s;
float l = (max + min) / 2f;
if (max == min) {
// Monochromatic
h = s = 0f;
} else {
if (max == rf) {
h = ((gf - bf) / deltaMaxMin) % 6f;
} else if (max == gf) {
h = ((bf - rf) / deltaMaxMin) + 2f;
} else {
h = ((rf - gf) / deltaMaxMin) + 4f;
}
s = deltaMaxMin / (1f - Math.abs(2f * l - 1f));
}
h = (h * 60f) % 360f;
if (h < 0) {
h += 360f;
}
outHsl[0] = constrain(h, 0f, 360f);
outHsl[1] = constrain(s, 0f, 1f);
outHsl[2] = constrain(l, 0f, 1f);
}
}
}