blob: abc2144032867872c2e2f49140c2ff880aaf02be [file] [log] [blame]
/*
* Copyright 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package androidx.recyclerview.selection;
import static androidx.core.util.Preconditions.checkArgument;
import android.graphics.Point;
import android.graphics.Rect;
import android.util.Log;
import android.util.SparseArray;
import android.util.SparseBooleanArray;
import android.util.SparseIntArray;
import androidx.annotation.NonNull;
import androidx.annotation.Nullable;
import androidx.recyclerview.selection.SelectionTracker.SelectionPredicate;
import androidx.recyclerview.widget.RecyclerView;
import androidx.recyclerview.widget.RecyclerView.OnScrollListener;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
/**
* Provides a band selection item model for views within a RecyclerView. This class queries the
* RecyclerView to determine where its items are placed; then, once band selection is underway,
* it alerts listeners of which items are covered by the selections.
*
* @param <K> Selection key type. @see {@link StorageStrategy} for supported types.
*/
final class GridModel<K> {
// Magical value indicating that a value has not been previously set. primitive null :)
static final int NOT_SET = -1;
// Enum values used to determine the corner at which the origin is located within the
private static final int UPPER = 0x00;
private static final int LOWER = 0x01;
private static final int LEFT = 0x00;
private static final int RIGHT = 0x02;
private static final int UPPER_LEFT = UPPER | LEFT;
private static final int UPPER_RIGHT = UPPER | RIGHT;
private static final int LOWER_LEFT = LOWER | LEFT;
private static final int LOWER_RIGHT = LOWER | RIGHT;
private final GridHost<K> mHost;
private final ItemKeyProvider<K> mKeyProvider;
private final SelectionPredicate<K> mSelectionPredicate;
private final List<SelectionObserver> mOnSelectionChangedListeners = new ArrayList<>();
// Map from the x-value of the left side of a SparseBooleanArray of adapter positions, keyed
// by their y-offset. For example, if the first column of the view starts at an x-value of 5,
// mColumns.get(5) would return an array of positions in that column. Within that array, the
// value for key y is the adapter position for the item whose y-offset is y.
private final SparseArray<SparseIntArray> mColumns = new SparseArray<>();
// List of limits along the x-axis (columns).
// This list is sorted from furthest left to furthest right.
private final List<Limits> mColumnBounds = new ArrayList<>();
// List of limits along the y-axis (rows). Note that this list only contains items which
// have been in the viewport.
private final List<Limits> mRowBounds = new ArrayList<>();
// The adapter positions which have been recorded so far.
private final SparseBooleanArray mKnownPositions = new SparseBooleanArray();
// Array passed to registered OnSelectionChangedListeners. One array is created and reused
// throughout the lifetime of the object.
private final Set<K> mSelection = new HashSet<>();
// The current pointer (in absolute positioning from the top of the view).
private Point mPointer;
// The bounds of the band selection.
private RelativePoint mRelOrigin;
private RelativePoint mRelPointer;
private boolean mIsActive;
// Tracks where the band select originated from. This is used to determine where selections
// should expand from when Shift+click is used.
private int mPositionNearestOrigin = NOT_SET;
private final OnScrollListener mScrollListener;
GridModel(
GridHost host,
ItemKeyProvider<K> keyProvider,
SelectionPredicate<K> selectionPredicate) {
checkArgument(host != null);
checkArgument(keyProvider != null);
checkArgument(selectionPredicate != null);
mHost = host;
mKeyProvider = keyProvider;
mSelectionPredicate = selectionPredicate;
mScrollListener = new OnScrollListener() {
@Override
public void onScrolled(RecyclerView recyclerView, int dx, int dy) {
GridModel.this.onScrolled(recyclerView, dx, dy);
}
};
mHost.addOnScrollListener(mScrollListener);
}
/**
* Start a band select operation at the given point.
*
* @param relativeOrigin The origin of the band select operation, relative to the viewport.
* For example, if the view is scrolled to the bottom, the top-left of
* the
* viewport
* would have a relative origin of (0, 0), even though its absolute point
* has a higher
* y-value.
*/
void startCapturing(Point relativeOrigin) {
recordVisibleChildren();
if (isEmpty()) {
// The selection band logic works only if there is at least one visible child.
return;
}
mIsActive = true;
mPointer = mHost.createAbsolutePoint(relativeOrigin);
mRelOrigin = createRelativePoint(mPointer);
mRelPointer = createRelativePoint(mPointer);
computeCurrentSelection();
notifySelectionChanged();
}
/**
* Ends the band selection.
*/
void stopCapturing() {
mIsActive = false;
}
/**
* Resizes the selection by adjusting the pointer (i.e., the corner of the selection
* opposite the origin.
*
* @param relativePointer The pointer (opposite of the origin) of the band select operation,
* relative to the viewport. For example, if the view is scrolled to the
* bottom, the
* top-left of the viewport would have a relative origin of (0, 0), even
* though its
* absolute point has a higher y-value.
*/
void resizeSelection(Point relativePointer) {
mPointer = mHost.createAbsolutePoint(relativePointer);
updateModel();
}
/**
* @return The adapter position for the item nearest the origin corresponding to the latest
* band select operation, or NOT_SET if the selection did not cover any items.
*/
int getPositionNearestOrigin() {
return mPositionNearestOrigin;
}
private void onScrolled(RecyclerView recyclerView, int dx, int dy) {
if (!mIsActive) {
return;
}
mPointer.x += dx;
mPointer.y += dy;
recordVisibleChildren();
updateModel();
}
/**
* Queries the view for all children and records their location metadata.
*/
private void recordVisibleChildren() {
for (int i = 0; i < mHost.getVisibleChildCount(); i++) {
int adapterPosition = mHost.getAdapterPositionAt(i);
// Sometimes the view is not attached, as we notify the multi selection manager
// synchronously, while views are attached asynchronously. As a result items which
// are in the adapter may not actually have a corresponding view (yet).
if (mHost.hasView(adapterPosition)
&& mSelectionPredicate.canSetStateAtPosition(adapterPosition, true)
&& !mKnownPositions.get(adapterPosition)) {
mKnownPositions.put(adapterPosition, true);
recordItemData(mHost.getAbsoluteRectForChildViewAt(i), adapterPosition);
}
}
}
/**
* Checks if there are any recorded children.
*/
private boolean isEmpty() {
return mColumnBounds.size() == 0 || mRowBounds.size() == 0;
}
/**
* Updates the limits lists and column map with the given item metadata.
*
* @param absoluteChildRect The absolute rectangle for the child view being processed.
* @param adapterPosition The position of the child view being processed.
*/
private void recordItemData(Rect absoluteChildRect, int adapterPosition) {
if (mColumnBounds.size() != mHost.getColumnCount()) {
// If not all x-limits have been recorded, record this one.
recordLimits(
mColumnBounds, new Limits(absoluteChildRect.left, absoluteChildRect.right));
}
recordLimits(mRowBounds, new Limits(absoluteChildRect.top, absoluteChildRect.bottom));
SparseIntArray columnList = mColumns.get(absoluteChildRect.left);
if (columnList == null) {
columnList = new SparseIntArray();
mColumns.put(absoluteChildRect.left, columnList);
}
columnList.put(absoluteChildRect.top, adapterPosition);
}
/**
* Ensures limits exists within the sorted list limitsList, and adds it to the list if it
* does not exist.
*/
private void recordLimits(List<Limits> limitsList, Limits limits) {
int index = Collections.binarySearch(limitsList, limits);
if (index < 0) {
limitsList.add(~index, limits);
}
}
/**
* Handles a moved pointer; this function determines whether the pointer movement resulted
* in a selection change and, if it has, notifies listeners of this change.
*/
private void updateModel() {
RelativePoint old = mRelPointer;
mRelPointer = createRelativePoint(mPointer);
if (old != null && mRelPointer.equals(old)) {
return;
}
computeCurrentSelection();
notifySelectionChanged();
}
/**
* Computes the currently-selected items.
*/
private void computeCurrentSelection() {
if (areItemsCoveredByBand(mRelPointer, mRelOrigin)) {
updateSelection(computeBounds());
} else {
mSelection.clear();
mPositionNearestOrigin = NOT_SET;
}
}
/**
* Notifies all listeners of a selection change. Note that this function simply passes
* mSelection, so computeCurrentSelection() should be called before this
* function.
*/
private void notifySelectionChanged() {
for (SelectionObserver listener : mOnSelectionChangedListeners) {
listener.onSelectionChanged(mSelection);
}
}
/**
* @param rect Rectangle including all covered items.
*/
private void updateSelection(Rect rect) {
int columnStart =
Collections.binarySearch(mColumnBounds, new Limits(rect.left, rect.left));
checkArgument(columnStart >= 0, "Rect doesn't intesect any known column.");
int columnEnd = columnStart;
for (int i = columnStart; i < mColumnBounds.size()
&& mColumnBounds.get(i).lowerLimit <= rect.right; i++) {
columnEnd = i;
}
int rowStart = Collections.binarySearch(mRowBounds, new Limits(rect.top, rect.top));
if (rowStart < 0) {
mPositionNearestOrigin = NOT_SET;
return;
}
int rowEnd = rowStart;
for (int i = rowStart; i < mRowBounds.size()
&& mRowBounds.get(i).lowerLimit <= rect.bottom; i++) {
rowEnd = i;
}
updateSelection(columnStart, columnEnd, rowStart, rowEnd);
}
/**
* Computes the selection given the previously-computed start- and end-indices for each
* row and column.
*/
private void updateSelection(
int columnStartIndex, int columnEndIndex, int rowStartIndex, int rowEndIndex) {
if (BandSelectionHelper.DEBUG) {
Log.d(BandSelectionHelper.TAG, String.format(
"updateSelection: %d, %d, %d, %d",
columnStartIndex, columnEndIndex, rowStartIndex, rowEndIndex));
}
mSelection.clear();
for (int column = columnStartIndex; column <= columnEndIndex; column++) {
SparseIntArray items = mColumns.get(mColumnBounds.get(column).lowerLimit);
for (int row = rowStartIndex; row <= rowEndIndex; row++) {
// The default return value for SparseIntArray.get is 0, which is a valid
// position. Use a sentry value to prevent erroneously selecting item 0.
final int rowKey = mRowBounds.get(row).lowerLimit;
int position = items.get(rowKey, NOT_SET);
if (position != NOT_SET) {
K key = mKeyProvider.getKey(position);
if (key != null) {
// The adapter inserts items for UI layout purposes that aren't
// associated with files. Those will have a null model ID.
// Don't select them.
if (canSelect(key)) {
mSelection.add(key);
}
}
if (isPossiblePositionNearestOrigin(column, columnStartIndex, columnEndIndex,
row, rowStartIndex, rowEndIndex)) {
// If this is the position nearest the origin, record it now so that it
// can be returned by endSelection() later.
mPositionNearestOrigin = position;
}
}
}
}
}
private boolean canSelect(K key) {
return mSelectionPredicate.canSetStateForKey(key, true);
}
/**
* @return Returns true if the position is the nearest to the origin, or, in the case of the
* lower-right corner, whether it is possible that the position is the nearest to the
* origin. See comment below for reasoning for this special case.
*/
private boolean isPossiblePositionNearestOrigin(int columnIndex, int columnStartIndex,
int columnEndIndex, int rowIndex, int rowStartIndex, int rowEndIndex) {
int corner = computeCornerNearestOrigin();
switch (corner) {
case UPPER_LEFT:
return columnIndex == columnStartIndex && rowIndex == rowStartIndex;
case UPPER_RIGHT:
return columnIndex == columnEndIndex && rowIndex == rowStartIndex;
case LOWER_LEFT:
return columnIndex == columnStartIndex && rowIndex == rowEndIndex;
case LOWER_RIGHT:
// Note that in some cases, the last row will not have as many items as there
// are columns (e.g., if there are 4 items and 3 columns, the second row will
// only have one item in the first column). This function is invoked for each
// position from left to right, so return true for any position in the bottom
// row and only the right-most position in the bottom row will be recorded.
return rowIndex == rowEndIndex;
default:
throw new RuntimeException("Invalid corner type.");
}
}
/**
* Listener for changes in which items have been band selected.
*/
public abstract static class SelectionObserver<K> {
abstract void onSelectionChanged(Set<K> updatedSelection);
}
void addOnSelectionChangedListener(SelectionObserver listener) {
mOnSelectionChangedListeners.add(listener);
}
/**
* Called when {@link BandSelectionHelper} is finished with a GridModel.
*/
void onDestroy() {
mOnSelectionChangedListeners.clear();
// Cleanup listeners to prevent memory leaks.
mHost.removeOnScrollListener(mScrollListener);
}
/**
* Limits of a view item. For example, if an item's left side is at x-value 5 and its right side
* is at x-value 10, the limits would be from 5 to 10. Used to record the left- and right sides
* of item columns and the top- and bottom sides of item rows so that it can be determined
* whether the pointer is located within the bounds of an item.
*/
private static class Limits implements Comparable<Limits> {
public int lowerLimit;
public int upperLimit;
Limits(int lowerLimit, int upperLimit) {
this.lowerLimit = lowerLimit;
this.upperLimit = upperLimit;
}
@Override
public int compareTo(Limits other) {
return lowerLimit - other.lowerLimit;
}
@Override
public int hashCode() {
return lowerLimit ^ upperLimit;
}
@Override
public boolean equals(Object other) {
if (!(other instanceof Limits)) {
return false;
}
return ((Limits) other).lowerLimit == lowerLimit
&& ((Limits) other).upperLimit == upperLimit;
}
@Override
public String toString() {
return "(" + lowerLimit + ", " + upperLimit + ")";
}
}
/**
* The location of a coordinate relative to items. This class represents a general area of the
* view as it relates to band selection rather than an explicit point. For example, two
* different points within an item are considered to have the same "location" because band
* selection originating within the item would select the same items no matter which point
* was used. Same goes for points between items as well as those at the very beginning or end
* of the view.
*
* Tracking a coordinate (e.g., an x-value) as a CoordinateLocation instead of as an int has the
* advantage of tying the value to the Limits of items along that axis. This allows easy
* selection of items within those Limits as opposed to a search through every item to see if a
* given coordinate value falls within those Limits.
*/
private static class RelativeCoordinate
implements Comparable<RelativeCoordinate> {
/**
* Location describing points after the last known item.
*/
static final int AFTER_LAST_ITEM = 0;
/**
* Location describing points before the first known item.
*/
static final int BEFORE_FIRST_ITEM = 1;
/**
* Location describing points between two items.
*/
static final int BETWEEN_TWO_ITEMS = 2;
/**
* Location describing points within the limits of one item.
*/
static final int WITHIN_LIMITS = 3;
/**
* The type of this coordinate, which is one of AFTER_LAST_ITEM, BEFORE_FIRST_ITEM,
* BETWEEN_TWO_ITEMS, or WITHIN_LIMITS.
*/
public final int type;
/**
* The limits before the coordinate; only populated when type == WITHIN_LIMITS or type ==
* BETWEEN_TWO_ITEMS.
*/
public Limits limitsBeforeCoordinate;
/**
* The limits after the coordinate; only populated when type == BETWEEN_TWO_ITEMS.
*/
public Limits limitsAfterCoordinate;
// Limits of the first known item; only populated when type == BEFORE_FIRST_ITEM.
public Limits mFirstKnownItem;
// Limits of the last known item; only populated when type == AFTER_LAST_ITEM.
public Limits mLastKnownItem;
/**
* @param limitsList The sorted limits list for the coordinate type. If this
* CoordinateLocation is an x-value, mXLimitsList should be passed;
* otherwise,
* mYLimitsList should be pased.
* @param value The coordinate value.
*/
RelativeCoordinate(List<Limits> limitsList, int value) {
int index = Collections.binarySearch(limitsList, new Limits(value, value));
if (index >= 0) {
this.type = WITHIN_LIMITS;
this.limitsBeforeCoordinate = limitsList.get(index);
} else if (~index == 0) {
this.type = BEFORE_FIRST_ITEM;
this.mFirstKnownItem = limitsList.get(0);
} else if (~index == limitsList.size()) {
Limits lastLimits = limitsList.get(limitsList.size() - 1);
if (lastLimits.lowerLimit <= value && value <= lastLimits.upperLimit) {
this.type = WITHIN_LIMITS;
this.limitsBeforeCoordinate = lastLimits;
} else {
this.type = AFTER_LAST_ITEM;
this.mLastKnownItem = lastLimits;
}
} else {
Limits limitsBeforeIndex = limitsList.get(~index - 1);
if (limitsBeforeIndex.lowerLimit <= value
&& value <= limitsBeforeIndex.upperLimit) {
this.type = WITHIN_LIMITS;
this.limitsBeforeCoordinate = limitsList.get(~index - 1);
} else {
this.type = BETWEEN_TWO_ITEMS;
this.limitsBeforeCoordinate = limitsList.get(~index - 1);
this.limitsAfterCoordinate = limitsList.get(~index);
}
}
}
int toComparisonValue() {
if (type == BEFORE_FIRST_ITEM) {
return mFirstKnownItem.lowerLimit - 1;
} else if (type == AFTER_LAST_ITEM) {
return mLastKnownItem.upperLimit + 1;
} else if (type == BETWEEN_TWO_ITEMS) {
return limitsBeforeCoordinate.upperLimit + 1;
} else {
return limitsBeforeCoordinate.lowerLimit;
}
}
@Override
public int hashCode() {
return mFirstKnownItem.lowerLimit
^ mLastKnownItem.upperLimit
^ limitsBeforeCoordinate.upperLimit
^ limitsBeforeCoordinate.lowerLimit;
}
@Override
public boolean equals(Object other) {
if (!(other instanceof RelativeCoordinate)) {
return false;
}
RelativeCoordinate otherCoordinate = (RelativeCoordinate) other;
return toComparisonValue() == otherCoordinate.toComparisonValue();
}
@Override
public int compareTo(RelativeCoordinate other) {
return toComparisonValue() - other.toComparisonValue();
}
}
RelativePoint createRelativePoint(Point point) {
return new RelativePoint(
new RelativeCoordinate(mColumnBounds, point.x),
new RelativeCoordinate(mRowBounds, point.y));
}
/**
* The location of a point relative to the Limits of nearby items; consists of both an x- and
* y-RelativeCoordinateLocation.
*/
private static class RelativePoint {
final RelativeCoordinate mX;
final RelativeCoordinate mY;
RelativePoint(
@NonNull List<Limits> columnLimits,
@NonNull List<Limits> rowLimits, Point point) {
this.mX = new RelativeCoordinate(columnLimits, point.x);
this.mY = new RelativeCoordinate(rowLimits, point.y);
}
RelativePoint(@NonNull RelativeCoordinate x, @NonNull RelativeCoordinate y) {
this.mX = x;
this.mY = y;
}
@Override
public int hashCode() {
return mX.toComparisonValue() ^ mY.toComparisonValue();
}
@Override
public boolean equals(@Nullable Object other) {
if (!(other instanceof RelativePoint)) {
return false;
}
RelativePoint otherPoint = (RelativePoint) other;
return mX.equals(otherPoint.mX) && mY.equals(otherPoint.mY);
}
}
/**
* Generates a rectangle which contains the items selected by the pointer and origin.
*
* @return The rectangle, or null if no items were selected.
*/
private Rect computeBounds() {
Rect rect = new Rect();
rect.left = getCoordinateValue(
min(mRelOrigin.mX, mRelPointer.mX),
mColumnBounds,
true);
rect.right = getCoordinateValue(
max(mRelOrigin.mX, mRelPointer.mX),
mColumnBounds,
false);
rect.top = getCoordinateValue(
min(mRelOrigin.mY, mRelPointer.mY),
mRowBounds,
true);
rect.bottom = getCoordinateValue(
max(mRelOrigin.mY, mRelPointer.mY),
mRowBounds,
false);
return rect;
}
/**
* Computes the corner of the selection nearest the origin.
*/
private int computeCornerNearestOrigin() {
int cornerValue = 0;
if (mRelOrigin.mY.equals(min(mRelOrigin.mY, mRelPointer.mY))) {
cornerValue |= UPPER;
} else {
cornerValue |= LOWER;
}
if (mRelOrigin.mX.equals(min(mRelOrigin.mX, mRelPointer.mX))) {
cornerValue |= LEFT;
} else {
cornerValue |= RIGHT;
}
return cornerValue;
}
private RelativeCoordinate min(
@NonNull RelativeCoordinate first, @NonNull RelativeCoordinate second) {
return first.compareTo(second) < 0 ? first : second;
}
private RelativeCoordinate max(
@NonNull RelativeCoordinate first, @NonNull RelativeCoordinate second) {
return first.compareTo(second) > 0 ? first : second;
}
/**
* @return The absolute coordinate (i.e., the x- or y-value) of the given relative
* coordinate.
*/
private int getCoordinateValue(
@NonNull RelativeCoordinate coordinate,
@NonNull List<Limits> limitsList,
boolean isStartOfRange) {
switch (coordinate.type) {
case RelativeCoordinate.BEFORE_FIRST_ITEM:
return limitsList.get(0).lowerLimit;
case RelativeCoordinate.AFTER_LAST_ITEM:
return limitsList.get(limitsList.size() - 1).upperLimit;
case RelativeCoordinate.BETWEEN_TWO_ITEMS:
if (isStartOfRange) {
return coordinate.limitsAfterCoordinate.lowerLimit;
} else {
return coordinate.limitsBeforeCoordinate.upperLimit;
}
case RelativeCoordinate.WITHIN_LIMITS:
return coordinate.limitsBeforeCoordinate.lowerLimit;
}
throw new RuntimeException("Invalid coordinate value.");
}
private boolean areItemsCoveredByBand(
@NonNull RelativePoint first, @NonNull RelativePoint second) {
return doesCoordinateLocationCoverItems(first.mX, second.mX)
&& doesCoordinateLocationCoverItems(first.mY, second.mY);
}
private boolean doesCoordinateLocationCoverItems(
@NonNull RelativeCoordinate pointerCoordinate,
@NonNull RelativeCoordinate originCoordinate) {
if (pointerCoordinate.type == RelativeCoordinate.BEFORE_FIRST_ITEM
&& originCoordinate.type == RelativeCoordinate.BEFORE_FIRST_ITEM) {
return false;
}
if (pointerCoordinate.type == RelativeCoordinate.AFTER_LAST_ITEM
&& originCoordinate.type == RelativeCoordinate.AFTER_LAST_ITEM) {
return false;
}
if (pointerCoordinate.type == RelativeCoordinate.BETWEEN_TWO_ITEMS
&& originCoordinate.type == RelativeCoordinate.BETWEEN_TWO_ITEMS
&& pointerCoordinate.limitsBeforeCoordinate.equals(
originCoordinate.limitsBeforeCoordinate)
&& pointerCoordinate.limitsAfterCoordinate.equals(
originCoordinate.limitsAfterCoordinate)) {
return false;
}
return true;
}
/**
* Provides functionality for BandController. Exists primarily to tests that are
* fully isolated from RecyclerView.
*
* @param <K> Selection key type. @see {@link StorageStrategy} for supported types.
*/
abstract static class GridHost<K> extends BandSelectionHelper.BandHost<K> {
/**
* Remove the listener.
*
* @param listener
*/
abstract void removeOnScrollListener(@NonNull OnScrollListener listener);
/**
* @param relativePoint for which to create absolute point.
* @return absolute point.
*/
abstract Point createAbsolutePoint(@NonNull Point relativePoint);
/**
* @param index index of child.
* @return rectangle describing child at {@code index}.
*/
abstract Rect getAbsoluteRectForChildViewAt(int index);
/**
* @param index index of child.
* @return child adapter position for the child at {@code index}
*/
abstract int getAdapterPositionAt(int index);
/** @return column count. */
abstract int getColumnCount();
/** @return number of children visible in the view. */
abstract int getVisibleChildCount();
/**
* @return true if the item at adapter position is attached to a view.
*/
abstract boolean hasView(int adapterPosition);
}
}