blob: 7ce6fa50e6da32ab521f7fac039510b7d1989106 [file] [log] [blame]
//===- IRSymtab.h - data definitions for IR symbol tables -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains data definitions and a reader and builder for a symbol
// table for LLVM IR. Its purpose is to allow linkers and other consumers of
// bitcode files to efficiently read the symbol table for symbol resolution
// purposes without needing to construct a module in memory.
//
// As with most object files the symbol table has two parts: the symbol table
// itself and a string table which is referenced by the symbol table.
//
// A symbol table corresponds to a single bitcode file, which may consist of
// multiple modules, so symbol tables may likewise contain symbols for multiple
// modules.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_IRSYMTAB_H
#define LLVM_OBJECT_IRSYMTAB_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Support/Endian.h"
namespace llvm {
namespace irsymtab {
namespace storage {
// The data structures in this namespace define the low-level serialization
// format. Clients that just want to read a symbol table should use the
// irsymtab::Reader class.
typedef support::ulittle32_t Word;
/// A reference to a string in the string table.
struct Str {
Word Offset;
StringRef get(StringRef Strtab) const {
return Strtab.data() + Offset;
}
};
/// A reference to a range of objects in the symbol table.
template <typename T> struct Range {
Word Offset, Size;
ArrayRef<T> get(StringRef Symtab) const {
return {reinterpret_cast<const T *>(Symtab.data() + Offset), Size};
}
};
/// Describes the range of a particular module's symbols within the symbol
/// table.
struct Module {
Word Begin, End;
};
/// This is equivalent to an IR comdat.
struct Comdat {
Str Name;
};
/// Contains the information needed by linkers for symbol resolution, as well as
/// by the LTO implementation itself.
struct Symbol {
/// The mangled symbol name.
Str Name;
/// The unmangled symbol name, or the empty string if this is not an IR
/// symbol.
Str IRName;
/// The index into Header::Comdats, or -1 if not a comdat member.
Word ComdatIndex;
Word Flags;
enum FlagBits {
FB_visibility, // 2 bits
FB_undefined = FB_visibility + 2,
FB_weak,
FB_common,
FB_indirect,
FB_used,
FB_tls,
FB_may_omit,
FB_global,
FB_format_specific,
FB_unnamed_addr,
};
/// The index into the Uncommon table, or -1 if this symbol does not have an
/// Uncommon.
Word UncommonIndex;
};
/// This data structure contains rarely used symbol fields and is optionally
/// referenced by a Symbol.
struct Uncommon {
Word CommonSize, CommonAlign;
/// COFF-specific: the name of the symbol that a weak external resolves to
/// if not defined.
Str COFFWeakExternFallbackName;
};
struct Header {
Range<Module> Modules;
Range<Comdat> Comdats;
Range<Symbol> Symbols;
Range<Uncommon> Uncommons;
Str SourceFileName;
/// COFF-specific: linker directives.
Str COFFLinkerOpts;
};
}
/// Fills in Symtab and Strtab with a valid symbol and string table for Mods.
Error build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
SmallVector<char, 0> &Strtab);
/// This represents a symbol that has been read from a storage::Symbol and
/// possibly a storage::Uncommon.
struct Symbol {
// Copied from storage::Symbol.
StringRef Name, IRName;
int ComdatIndex;
uint32_t Flags;
// Copied from storage::Uncommon.
uint32_t CommonSize, CommonAlign;
StringRef COFFWeakExternFallbackName;
/// Returns the mangled symbol name.
StringRef getName() const { return Name; }
/// Returns the unmangled symbol name, or the empty string if this is not an
/// IR symbol.
StringRef getIRName() const { return IRName; }
/// Returns the index into the comdat table (see Reader::getComdatTable()), or
/// -1 if not a comdat member.
int getComdatIndex() const { return ComdatIndex; }
using S = storage::Symbol;
GlobalValue::VisibilityTypes getVisibility() const {
return GlobalValue::VisibilityTypes((Flags >> S::FB_visibility) & 3);
}
bool isUndefined() const { return (Flags >> S::FB_undefined) & 1; }
bool isWeak() const { return (Flags >> S::FB_weak) & 1; }
bool isCommon() const { return (Flags >> S::FB_common) & 1; }
bool isIndirect() const { return (Flags >> S::FB_indirect) & 1; }
bool isUsed() const { return (Flags >> S::FB_used) & 1; }
bool isTLS() const { return (Flags >> S::FB_tls) & 1; }
bool canBeOmittedFromSymbolTable() const {
return (Flags >> S::FB_may_omit) & 1;
}
bool isGlobal() const { return (Flags >> S::FB_global) & 1; }
bool isFormatSpecific() const { return (Flags >> S::FB_format_specific) & 1; }
bool isUnnamedAddr() const { return (Flags >> S::FB_unnamed_addr) & 1; }
uint64_t getCommonSize() const {
assert(isCommon());
return CommonSize;
}
uint32_t getCommonAlignment() const {
assert(isCommon());
return CommonAlign;
}
/// COFF-specific: for weak externals, returns the name of the symbol that is
/// used as a fallback if the weak external remains undefined.
StringRef getCOFFWeakExternalFallback() const {
assert(isWeak() && isIndirect());
return COFFWeakExternFallbackName;
}
};
/// This class can be used to read a Symtab and Strtab produced by
/// irsymtab::build.
class Reader {
StringRef Symtab, Strtab;
ArrayRef<storage::Module> Modules;
ArrayRef<storage::Comdat> Comdats;
ArrayRef<storage::Symbol> Symbols;
ArrayRef<storage::Uncommon> Uncommons;
StringRef str(storage::Str S) const { return S.get(Strtab); }
template <typename T> ArrayRef<T> range(storage::Range<T> R) const {
return R.get(Symtab);
}
const storage::Header &header() const {
return *reinterpret_cast<const storage::Header *>(Symtab.data());
}
public:
class SymbolRef;
Reader() = default;
Reader(StringRef Symtab, StringRef Strtab) : Symtab(Symtab), Strtab(Strtab) {
Modules = range(header().Modules);
Comdats = range(header().Comdats);
Symbols = range(header().Symbols);
Uncommons = range(header().Uncommons);
}
typedef iterator_range<object::content_iterator<SymbolRef>> symbol_range;
/// Returns the symbol table for the entire bitcode file.
/// The symbols enumerated by this method are ephemeral, but they can be
/// copied into an irsymtab::Symbol object.
symbol_range symbols() const;
/// Returns a slice of the symbol table for the I'th module in the file.
/// The symbols enumerated by this method are ephemeral, but they can be
/// copied into an irsymtab::Symbol object.
symbol_range module_symbols(unsigned I) const;
/// Returns the source file path specified at compile time.
StringRef getSourceFileName() const { return str(header().SourceFileName); }
/// Returns a table with all the comdats used by this file.
std::vector<StringRef> getComdatTable() const {
std::vector<StringRef> ComdatTable;
ComdatTable.reserve(Comdats.size());
for (auto C : Comdats)
ComdatTable.push_back(str(C.Name));
return ComdatTable;
}
/// COFF-specific: returns linker options specified in the input file.
StringRef getCOFFLinkerOpts() const { return str(header().COFFLinkerOpts); }
};
/// Ephemeral symbols produced by Reader::symbols() and
/// Reader::module_symbols().
class Reader::SymbolRef : public Symbol {
const storage::Symbol *SymI, *SymE;
const Reader *R;
public:
SymbolRef(const storage::Symbol *SymI, const storage::Symbol *SymE,
const Reader *R)
: SymI(SymI), SymE(SymE), R(R) {
read();
}
void read() {
if (SymI == SymE)
return;
Name = R->str(SymI->Name);
IRName = R->str(SymI->IRName);
ComdatIndex = SymI->ComdatIndex;
Flags = SymI->Flags;
uint32_t UncI = SymI->UncommonIndex;
if (UncI != -1u) {
const storage::Uncommon &Unc = R->Uncommons[UncI];
CommonSize = Unc.CommonSize;
CommonAlign = Unc.CommonAlign;
COFFWeakExternFallbackName = R->str(Unc.COFFWeakExternFallbackName);
}
}
void moveNext() {
++SymI;
read();
}
bool operator==(const SymbolRef &Other) const { return SymI == Other.SymI; }
};
inline Reader::symbol_range Reader::symbols() const {
return {SymbolRef(Symbols.begin(), Symbols.end(), this),
SymbolRef(Symbols.end(), Symbols.end(), this)};
}
inline Reader::symbol_range Reader::module_symbols(unsigned I) const {
const storage::Module &M = Modules[I];
const storage::Symbol *MBegin = Symbols.begin() + M.Begin,
*MEnd = Symbols.begin() + M.End;
return {SymbolRef(MBegin, MEnd, this), SymbolRef(MEnd, MEnd, this)};
}
}
}
#endif