blob: e37027a0150a344121fc40ede5f949d01f3f276f [file] [log] [blame]
//===-- UniqueCStringMap.h --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLDB_CORE_UNIQUECSTRINGMAP_H
#define LLDB_CORE_UNIQUECSTRINGMAP_H
#include <algorithm>
#include <vector>
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/RegularExpression.h"
namespace lldb_private {
// Templatized uniqued string map.
//
// This map is useful for mapping unique C string names to values of type T.
// Each "const char *" name added must be unique for a given
// C string value. ConstString::GetCString() can provide such strings.
// Any other string table that has guaranteed unique values can also be used.
template <typename T> class UniqueCStringMap {
public:
struct Entry {
Entry(ConstString cstr, const T &v) : cstring(cstr), value(v) {}
ConstString cstring;
T value;
};
typedef std::vector<Entry> collection;
typedef typename collection::iterator iterator;
typedef typename collection::const_iterator const_iterator;
// Call this function multiple times to add a bunch of entries to this map,
// then later call UniqueCStringMap<T>::Sort() before doing any searches by
// name.
void Append(ConstString unique_cstr, const T &value) {
m_map.push_back(typename UniqueCStringMap<T>::Entry(unique_cstr, value));
}
void Append(const Entry &e) { m_map.push_back(e); }
void Clear() { m_map.clear(); }
// Get an entries by index in a variety of forms.
//
// The caller is responsible for ensuring that the collection does not change
// during while using the returned values.
bool GetValueAtIndex(uint32_t idx, T &value) const {
if (idx < m_map.size()) {
value = m_map[idx].value;
return true;
}
return false;
}
ConstString GetCStringAtIndexUnchecked(uint32_t idx) const {
return m_map[idx].cstring;
}
// Use this function if you have simple types in your map that you can easily
// copy when accessing values by index.
T GetValueAtIndexUnchecked(uint32_t idx) const { return m_map[idx].value; }
// Use this function if you have complex types in your map that you don't
// want to copy when accessing values by index.
const T &GetValueRefAtIndexUnchecked(uint32_t idx) const {
return m_map[idx].value;
}
ConstString GetCStringAtIndex(uint32_t idx) const {
return ((idx < m_map.size()) ? m_map[idx].cstring : ConstString());
}
// Find the value for the unique string in the map.
//
// Return the value for \a unique_cstr if one is found, return \a fail_value
// otherwise. This method works well for simple type
// T values and only if there is a sensible failure value that can
// be returned and that won't match any existing values.
T Find(ConstString unique_cstr, T fail_value) const {
auto pos = llvm::lower_bound(m_map, unique_cstr, Compare());
if (pos != m_map.end() && pos->cstring == unique_cstr)
return pos->value;
return fail_value;
}
// Get a pointer to the first entry that matches "name". nullptr will be
// returned if there is no entry that matches "name".
//
// The caller is responsible for ensuring that the collection does not change
// during while using the returned pointer.
const Entry *FindFirstValueForName(ConstString unique_cstr) const {
auto pos = llvm::lower_bound(m_map, unique_cstr, Compare());
if (pos != m_map.end() && pos->cstring == unique_cstr)
return &(*pos);
return nullptr;
}
// Get a pointer to the next entry that matches "name" from a previously
// returned Entry pointer. nullptr will be returned if there is no subsequent
// entry that matches "name".
//
// The caller is responsible for ensuring that the collection does not change
// during while using the returned pointer.
const Entry *FindNextValueForName(const Entry *entry_ptr) const {
if (!m_map.empty()) {
const Entry *first_entry = &m_map[0];
const Entry *after_last_entry = first_entry + m_map.size();
const Entry *next_entry = entry_ptr + 1;
if (first_entry <= next_entry && next_entry < after_last_entry) {
if (next_entry->cstring == entry_ptr->cstring)
return next_entry;
}
}
return nullptr;
}
size_t GetValues(ConstString unique_cstr, std::vector<T> &values) const {
const size_t start_size = values.size();
for (const Entry &entry : llvm::make_range(std::equal_range(
m_map.begin(), m_map.end(), unique_cstr, Compare())))
values.push_back(entry.value);
return values.size() - start_size;
}
size_t GetValues(const RegularExpression &regex,
std::vector<T> &values) const {
const size_t start_size = values.size();
const_iterator pos, end = m_map.end();
for (pos = m_map.begin(); pos != end; ++pos) {
if (regex.Execute(pos->cstring.GetCString()))
values.push_back(pos->value);
}
return values.size() - start_size;
}
// Get the total number of entries in this map.
size_t GetSize() const { return m_map.size(); }
// Returns true if this map is empty.
bool IsEmpty() const { return m_map.empty(); }
// Reserve memory for at least "n" entries in the map. This is useful to call
// when you know you will be adding a lot of entries using
// UniqueCStringMap::Append() (which should be followed by a call to
// UniqueCStringMap::Sort()) or to UniqueCStringMap::Insert().
void Reserve(size_t n) { m_map.reserve(n); }
// Sort the unsorted contents in this map. A typical code flow would be:
// size_t approximate_num_entries = ....
// UniqueCStringMap<uint32_t> my_map;
// my_map.Reserve (approximate_num_entries);
// for (...)
// {
// my_map.Append (UniqueCStringMap::Entry(GetName(...), GetValue(...)));
// }
// my_map.Sort();
void Sort() { llvm::sort(m_map.begin(), m_map.end(), Compare()); }
// Since we are using a vector to contain our items it will always double its
// memory consumption as things are added to the vector, so if you intend to
// keep a UniqueCStringMap around and have a lot of entries in the map, you
// will want to call this function to create a new vector and copy _only_ the
// exact size needed as part of the finalization of the string map.
void SizeToFit() {
if (m_map.size() < m_map.capacity()) {
collection temp(m_map.begin(), m_map.end());
m_map.swap(temp);
}
}
iterator begin() { return m_map.begin(); }
iterator end() { return m_map.end(); }
const_iterator begin() const { return m_map.begin(); }
const_iterator end() const { return m_map.end(); }
// Range-based for loop for all entries of the specified ConstString name.
llvm::iterator_range<const_iterator>
equal_range(ConstString unique_cstr) const {
return llvm::make_range(
std::equal_range(m_map.begin(), m_map.end(), unique_cstr, Compare()));
};
protected:
struct Compare {
bool operator()(const Entry &lhs, const Entry &rhs) {
return operator()(lhs.cstring, rhs.cstring);
}
bool operator()(const Entry &lhs, ConstString rhs) {
return operator()(lhs.cstring, rhs);
}
bool operator()(ConstString lhs, const Entry &rhs) {
return operator()(lhs, rhs.cstring);
}
// This is only for uniqueness, not lexicographical ordering, so we can
// just compare pointers. *However*, comparing pointers from different
// allocations is UB, so we need compare their integral values instead.
bool operator()(ConstString lhs, ConstString rhs) {
return uintptr_t(lhs.GetCString()) < uintptr_t(rhs.GetCString());
}
};
collection m_map;
};
} // namespace lldb_private
#endif // LLDB_CORE_UNIQUECSTRINGMAP_H