blob: 1dc2fa2ccacb8ac6c6b3b50848dd8186495c7b4d [file] [log] [blame]
#pragma version(1)
#pragma rs java_package_name(com.android.testingcamera)
#pragma rs_fp_relaxed
uchar *yuv_in;
// Input globals
uint32_t yuv_height;
uint32_t yuv_width;
uint32_t out_width;
uint32_t out_height;
// Derived globals
uint32_t y_stride;
uint32_t uv_stride;
uint32_t u_start;
uint32_t v_start;
float x_scale;
float y_scale;
static const float CLAMP_MIN = 0;
static const float CLAMP_MAX = 255;
/**
* JFIF standard YCbCr <-> RGB conversion matrix,
* column-major order.
*/
static const float YUV2RGB[] = {
1.0f, 1.0f, 1.0f, 0.0f,
0.0f, -0.34414f, 1.772f, 0.0f,
1.402f, -0.71414f, 0.0f, 0.0f,
-0.701f, 0.529f, -0.886f, 1.0f
};
rs_matrix4x4 yuv2rgb_matrix;
enum ImageFormat {
NV16 = 16,
NV21 = 17,
RGB_565 = 4,
UNKNOWN = 0,
YUY2 = 20,
YV12 = 0x32315659
};
// Must be called before using any conversion methods
void init_convert(uint32_t yw, uint32_t yh, uint32_t format,
uint32_t ow, uint32_t oh) {
yuv_height = yh;
yuv_width = yw;
out_width = ow;
out_height = oh;
rsMatrixLoad(&yuv2rgb_matrix, YUV2RGB);
x_scale = (float)yuv_width / out_width;
y_scale = (float)yuv_height / out_height;
switch (format) {
case NV16:
case NV21:
y_stride = yuv_width;
uv_stride = yuv_width;
v_start = y_stride * yuv_height;
u_start = v_start + 1;
break;
case YV12:
// Minimum align-16 stride
y_stride = (yuv_width + 0xF) & ~0xF;
uv_stride = (y_stride / 2 + 0xF) & ~0xF;
v_start = y_stride * yuv_height;
u_start = v_start + uv_stride * (yuv_height / 2);
break;
case YUY2:
y_stride = yuv_width * 2;
uv_stride = y_stride;
u_start = 1;
v_start = 3;
break;
case RGB_565:
case UNKNOWN:
default:
y_stride = yuv_width;
uv_stride = yuv_width;
v_start = 0;
u_start = 0;
}
}
// Multiply by color matrix and clamp to range [0, 255]
static inline uchar4 multiply_and_clamp(const rs_matrix4x4* mat, uchar4 input) {
float4 intermediate = convert_float4(input);
intermediate = rsMatrixMultiply(mat, intermediate);
intermediate = clamp(intermediate, CLAMP_MIN, CLAMP_MAX);
return convert_uchar4(intermediate);
}
// Makes up a conversion for unknown YUV types to try to display something
// Asssumes that there's at least 1bpp in input YUV data
uchar4 __attribute__((kernel)) convert_unknown(uint32_t x, uint32_t y) {
uint32_t x_scaled = x * x_scale;
uint32_t y_scaled = y * y_scale;
uchar4 out;
out.r = yuv_in[y_stride * y_scaled + x_scaled];
out.g = 128;
out.b = 128;
out.a = 255; // For affine transform later
// Apply yuv->rgb color transform
return multiply_and_clamp(&yuv2rgb_matrix, out);
}
// Converts semiplanar YVU to interleaved YUV, nearest neighbor
uchar4 __attribute__((kernel)) convert_semiplanar(uint32_t x, uint32_t y) {
uint32_t x_scaled = x * x_scale;
uint32_t y_scaled = y * y_scale;
uint32_t uv_row = y_scaled / 2; // truncation is important here
uint32_t uv_col = x_scaled & ~0x1;
uint32_t vu_pixel = uv_row * uv_stride + uv_col;
uchar4 out;
out.r = yuv_in[y_stride * y_scaled + x_scaled];
out.g = yuv_in[u_start + vu_pixel];
out.b = yuv_in[v_start + vu_pixel];
out.a = 255; // For affine transform later
// Apply yuv->rgb color transform
return multiply_and_clamp(&yuv2rgb_matrix, out);
}
// Converts planar YVU to interleaved YUV, nearest neighbor
uchar4 __attribute__((kernel)) convert_planar(uint32_t x, uint32_t y) {
uint32_t x_scaled = x * x_scale;
uint32_t y_scaled = y * y_scale;
uint32_t uv_row = y_scaled / 2; // truncation is important here
uint32_t vu_pixel = uv_stride * uv_row + x_scaled / 2;
uchar4 out;
out.r = yuv_in[y_stride * y_scaled + x_scaled];
out.g = yuv_in[u_start + vu_pixel];
out.b = yuv_in[v_start + vu_pixel];
out.a = 255; // For affine transform later
// Apply yuv->rgb color transform
return multiply_and_clamp(&yuv2rgb_matrix, out);
}
// Converts interleaved 4:2:2 YUV to interleaved YUV, nearest neighbor
uchar4 __attribute__((kernel)) convert_interleaved(uint32_t x, uint32_t y) {
uint32_t x_scaled = x * x_scale;
uint32_t y_scaled = y * y_scale;
uint32_t uv_col = 2 * (x_scaled & ~0x1);
uint32_t vu_pixel = y_stride * y_scaled + uv_col;
uchar4 out;
out.r = yuv_in[y_stride * y_scaled + x_scaled * 2];
out.g = yuv_in[u_start + vu_pixel];
out.b = yuv_in[v_start + vu_pixel];
out.a = 255; // For affine transform later
// Apply yuv->rgb color transform
return multiply_and_clamp(&yuv2rgb_matrix, out);
}