blob: d8c2f46be541e154cb23f7f7527aa05d07287372 [file] [log] [blame]
// Copyright (C) 2019 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#define ATRACE_TAG ATRACE_TAG_APP
#define LOG_TAG "FuseDaemon"
#define LIBFUSE_LOG_TAG "libfuse"
#include "FuseDaemon.h"
#include <android-base/logging.h>
#include <android/log.h>
#include <android/trace.h>
#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <fuse_i.h>
#include <fuse_log.h>
#include <fuse_lowlevel.h>
#include <inttypes.h>
#include <limits.h>
#include <linux/fuse.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/inotify.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/param.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/statfs.h>
#include <sys/statvfs.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <iostream>
#include <list>
#include <map>
#include <mutex>
#include <queue>
#include <regex>
#include <thread>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "MediaProviderWrapper.h"
#include "libfuse_jni/ReaddirHelper.h"
#include "libfuse_jni/RedactionInfo.h"
#include "node-inl.h"
using mediaprovider::fuse::DirectoryEntry;
using mediaprovider::fuse::dirhandle;
using mediaprovider::fuse::handle;
using mediaprovider::fuse::node;
using mediaprovider::fuse::RedactionInfo;
using std::list;
using std::string;
using std::vector;
// logging macros to avoid duplication.
#define TRACE LOG(DEBUG)
#define TRACE_VERBOSE LOG(VERBOSE)
#define TRACE_FUSE(__fuse) TRACE << "[" << __fuse->path << "] "
#define TRACE_FUSE_VERBOSE(__fuse) TRACE_VERBOSE << "[" << __fuse->path << "] "
#define ATRACE_NAME(name) ScopedTrace ___tracer(name)
#define ATRACE_CALL() ATRACE_NAME(__FUNCTION__)
class ScopedTrace {
public:
explicit inline ScopedTrace(const char *name) {
ATrace_beginSection(name);
}
inline ~ScopedTrace() {
ATrace_endSection();
}
};
#define FUSE_UNKNOWN_INO 0xffffffff
constexpr size_t MAX_READ_SIZE = 128 * 1024;
// Stolen from: UserHandle#getUserId
constexpr int PER_USER_RANGE = 100000;
// Cache inode attributes for a 'short' time so that performance is decent and last modified time
// stamps are not too stale
constexpr double DEFAULT_ATTR_TIMEOUT_SECONDS = 10;
// Ensure the VFS does not cache dentries, if it caches, the following scenario could occur:
// 1. Process A has access to file A and does a lookup
// 2. Process B does not have access to file A and does a lookup
// (2) will succeed because the lookup request will not be sent from kernel to the FUSE daemon
// and the kernel will respond from cache. Even if this by itself is not a security risk
// because subsequent FUSE requests will fail if B does not have access to the resource.
// It does cause indeterministic behavior because whether (2) succeeds or not depends on if
// (1) occurred.
// We prevent this caching by setting the entry_timeout value to 0.
constexpr double DEFAULT_ENTRY_TIMEOUT_SECONDS = 0;
/*
* In order to avoid double caching with fuse, call fadvise on the file handles
* in the underlying file system. However, if this is done on every read/write,
* the fadvises cause a very significant slowdown in tests (specifically fio
* seq_write). So call fadvise on the file handles with the most reads/writes
* only after a threshold is passed.
*/
class FAdviser {
public:
FAdviser() : thread_(MessageLoop, this), total_size_(0) {}
~FAdviser() {
SendMessage(Message::quit);
thread_.join();
}
void Record(int fd, size_t size) { SendMessage(Message::record, fd, size); }
void Close(int fd) { SendMessage(Message::close, fd); }
private:
std::thread thread_;
struct Message {
enum Type { record, close, quit };
Type type;
int fd;
size_t size;
};
void RecordImpl(int fd, size_t size) {
total_size_ += size;
// Find or create record in files_
// Remove record from sizes_ if it exists, adjusting size appropriately
auto file = files_.find(fd);
if (file != files_.end()) {
auto old_size = file->second;
size += old_size->first;
sizes_.erase(old_size);
} else {
file = files_.insert(Files::value_type(fd, sizes_.end())).first;
}
// Now (re) insert record in sizes_
auto new_size = sizes_.insert(Sizes::value_type(size, fd));
file->second = new_size;
if (total_size_ < threshold_) return;
LOG(INFO) << "Threshold exceeded - fadvising " << total_size_;
while (!sizes_.empty() && total_size_ > target_) {
auto size = --sizes_.end();
total_size_ -= size->first;
posix_fadvise(size->second, 0, 0, POSIX_FADV_DONTNEED);
files_.erase(size->second);
sizes_.erase(size);
}
LOG(INFO) << "Threshold now " << total_size_;
}
void CloseImpl(int fd) {
auto file = files_.find(fd);
if (file == files_.end()) return;
total_size_ -= file->second->first;
sizes_.erase(file->second);
files_.erase(file);
}
void MessageLoopImpl() {
while (1) {
Message message;
{
std::unique_lock<std::mutex> lock(mutex_);
cv_.wait(lock, [this] { return !queue_.empty(); });
message = queue_.front();
queue_.pop();
}
switch (message.type) {
case Message::record:
RecordImpl(message.fd, message.size);
break;
case Message::close:
CloseImpl(message.fd);
break;
case Message::quit:
return;
}
}
}
static int MessageLoop(FAdviser* ptr) {
ptr->MessageLoopImpl();
return 0;
}
void SendMessage(Message::Type type, int fd = -1, size_t size = 0) {
{
std::unique_lock<std::mutex> lock(mutex_);
Message message = {type, fd, size};
queue_.push(message);
}
cv_.notify_one();
}
std::queue<Message> queue_;
std::mutex mutex_;
std::condition_variable cv_;
typedef std::multimap<size_t, int> Sizes;
typedef std::map<int, Sizes::iterator> Files;
Files files_;
Sizes sizes_;
size_t total_size_;
const size_t threshold_ = 64 * 1024 * 1024;
const size_t target_ = 32 * 1024 * 1024;
};
// Whether inode tracking is enabled or not. When enabled, we maintain a
// separate mapping from inode numbers to "live" nodes so we can detect when
// we receive a request to a node that has been deleted.
static constexpr bool kEnableInodeTracking = true;
/* Single FUSE mount */
struct fuse {
explicit fuse(const std::string& _path)
: path(_path), root(node::CreateRoot(_path, &lock)), mp(0), zero_addr(0) {}
inline bool IsRoot(const node* node) const { return node == root; }
// Note that these two (FromInode / ToInode) conversion wrappers are required
// because fuse_lowlevel_ops documents that the root inode is always one
// (see FUSE_ROOT_ID in fuse_lowlevel.h). There are no particular requirements
// on any of the other inodes in the FS.
inline node* FromInode(__u64 inode) {
if (inode == FUSE_ROOT_ID) {
return root;
}
node* node = node::FromInode(inode);
if (kEnableInodeTracking) {
std::lock_guard<std::recursive_mutex> guard(lock);
CHECK(inode_tracker_.find(node) != inode_tracker_.end());
}
return node;
}
inline __u64 ToInode(node* node) const {
if (IsRoot(node)) {
return FUSE_ROOT_ID;
}
return node::ToInode(node);
}
// Notify this FUSE instance that one of its nodes has been deleted.
void NodeDeleted(const node* node) {
if (kEnableInodeTracking) {
LOG(INFO) << "Node: " << node << " deleted.";
std::lock_guard<std::recursive_mutex> guard(lock);
inode_tracker_.erase(node);
}
}
// Notify this FUSE instance that a new nodes has been created.
void NodeCreated(const node* node) {
if (kEnableInodeTracking) {
LOG(INFO) << "Node: " << node << " created.";
std::lock_guard<std::recursive_mutex> guard(lock);
inode_tracker_.insert(node);
}
}
std::recursive_mutex lock;
const string path;
node* const root;
struct fuse_session* se;
/*
* Used to make JNI calls to MediaProvider.
* Responsibility of freeing this object falls on corresponding
* FuseDaemon object.
*/
mediaprovider::fuse::MediaProviderWrapper* mp;
/*
* Points to a range of zeroized bytes, used by pf_read to represent redacted ranges.
* The memory is read only and should never be modified.
*/
/* const */ char* zero_addr;
FAdviser fadviser;
std::unordered_set<const node*> inode_tracker_;
};
static inline const char* safe_name(node* n) {
return n ? n->GetName().c_str() : "?";
}
static inline __u64 ptr_to_id(void* ptr) {
return (__u64)(uintptr_t) ptr;
}
/*
* Set an F_RDLCK or F_WRLCKK on fd with fcntl(2).
*
* This is called before the MediaProvider returns fd from the lower file
* system to an app over the ContentResolver interface. This allows us
* check with is_file_locked if any reference to that fd is still open.
*/
static int set_file_lock(int fd, bool for_read, const std::string& path) {
std::string lock_str = (for_read ? "read" : "write");
TRACE_VERBOSE << "Setting " << lock_str << " lock for path " << path;
struct flock fl{};
fl.l_type = for_read ? F_RDLCK : F_WRLCK;
fl.l_whence = SEEK_SET;
int res = fcntl(fd, F_OFD_SETLK, &fl);
if (res) {
PLOG(ERROR) << "Failed to set " << lock_str << " lock on path " << path;
return res;
}
TRACE_VERBOSE << "Successfully set " << lock_str << " lock on path " << path;
return res;
}
/*
* Check if an F_RDLCK or F_WRLCK is set on fd with fcntl(2).
*
* This is used to determine if the MediaProvider has given an fd to the lower fs to an app over
* the ContentResolver interface. Before that happens, we always call set_file_lock on the file
* allowing us to know if any reference to that fd is still open here.
*
* Returns true if fd may have a lock, false otherwise
*/
static bool is_file_locked(int fd, const std::string& path) {
TRACE_VERBOSE << "Checking if file is locked " << path;
struct flock fl{};
fl.l_type = F_WRLCK;
fl.l_whence = SEEK_SET;
int res = fcntl(fd, F_OFD_GETLK, &fl);
if (res) {
PLOG(ERROR) << "Failed to check lock for file " << path;
// Assume worst
return true;
}
bool locked = fl.l_type != F_UNLCK;
TRACE_VERBOSE << "File " << path << " is " << (locked ? "locked" : "unlocked");
return locked;
}
static struct fuse* get_fuse(fuse_req_t req) {
return reinterpret_cast<struct fuse*>(fuse_req_userdata(req));
}
static bool is_android_path(const string& path, const string& fuse_path, uid_t uid) {
int user_id = uid / PER_USER_RANGE;
const std::string android_path = fuse_path + "/" + std::to_string(user_id) + "/Android";
return path.rfind(android_path, 0) == 0;
}
static double get_attr_timeout(const string& path, uid_t uid, struct fuse* fuse, node* parent) {
if (fuse->IsRoot(parent) || is_android_path(path, fuse->path, uid)) {
// The /0 and /0/Android attrs can be always cached, as they never change
return DBL_MAX;
} else {
return DEFAULT_ATTR_TIMEOUT_SECONDS;
}
}
static double get_entry_timeout(const string& path, uid_t uid, struct fuse* fuse, node* parent) {
if (fuse->IsRoot(parent) || is_android_path(path, fuse->path, uid)) {
// The /0 and /0/Android dentries can be always cached, as they are visible to all apps
return DBL_MAX;
} else {
return DEFAULT_ENTRY_TIMEOUT_SECONDS;
}
}
static node* make_node_entry(fuse_req_t req, node* parent, const string& name, const string& path,
struct fuse_entry_param* e, int* error_code) {
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
node* node;
memset(e, 0, sizeof(*e));
if (lstat(path.c_str(), &e->attr) < 0) {
*error_code = errno;
return NULL;
}
node = parent->LookupChildByName(name, true /* acquire */);
if (!node) {
node = ::node::Create(parent, name, &fuse->lock);
fuse->NodeCreated(node);
}
// This FS is not being exported via NFS so just a fixed generation number
// for now. If we do need this, we need to increment the generation ID each
// time the fuse daemon restarts because that's what it takes for us to
// reuse inode numbers.
e->generation = 0;
e->ino = fuse->ToInode(node);
e->entry_timeout = get_entry_timeout(path, ctx->uid, fuse, parent);
e->attr_timeout = get_attr_timeout(path, ctx->uid, fuse, parent);
return node;
}
static inline bool is_requesting_write(int flags) {
return flags & (O_WRONLY | O_RDWR);
}
namespace mediaprovider {
namespace fuse {
/**
* Function implementations
*
* These implement the various functions in fuse_lowlevel_ops
*
*/
static void pf_init(void* userdata, struct fuse_conn_info* conn) {
// We don't want a getattr request with every read request
conn->want &= ~FUSE_CAP_AUTO_INVAL_DATA;
unsigned mask = (FUSE_CAP_SPLICE_WRITE | FUSE_CAP_SPLICE_MOVE | FUSE_CAP_SPLICE_READ |
FUSE_CAP_ASYNC_READ | FUSE_CAP_ATOMIC_O_TRUNC | FUSE_CAP_WRITEBACK_CACHE |
FUSE_CAP_EXPORT_SUPPORT | FUSE_CAP_FLOCK_LOCKS);
conn->want |= conn->capable & mask;
conn->max_read = MAX_READ_SIZE;
}
static void pf_destroy(void* userdata) {
struct fuse* fuse = reinterpret_cast<struct fuse*>(userdata);
LOG(INFO) << "DESTROY " << fuse->path;
node::DeleteTree(fuse->root);
}
static std::regex storage_emulated_regex("^\\/storage\\/emulated\\/([0-9]+)");
static node* do_lookup(fuse_req_t req, fuse_ino_t parent, const char* name,
struct fuse_entry_param* e, int* error_code) {
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
node* parent_node = fuse->FromInode(parent);
string parent_path = parent_node->BuildPath();
TRACE_FUSE_VERBOSE(fuse) << "LOOKUP " << name << " @ " << parent << " ("
<< safe_name(parent_node) << ")";
string child_path = parent_path + "/" + name;
std::smatch match;
std::regex_search(child_path, match, storage_emulated_regex);
if (match.size() == 2 && std::to_string(getuid() / PER_USER_RANGE) != match[1].str()) {
// Ensure the FuseDaemon user id matches the user id in requested path
*error_code = EPERM;
return nullptr;
}
return make_node_entry(req, parent_node, name, child_path, e, error_code);
}
static void pf_lookup(fuse_req_t req, fuse_ino_t parent, const char* name) {
ATRACE_CALL();
struct fuse_entry_param e;
int error_code = 0;
if (do_lookup(req, parent, name, &e, &error_code)) {
fuse_reply_entry(req, &e);
} else {
CHECK(error_code != 0);
fuse_reply_err(req, error_code);
}
}
static void do_forget(struct fuse* fuse, fuse_ino_t ino, uint64_t nlookup) {
node* node = fuse->FromInode(ino);
TRACE_FUSE(fuse) << "FORGET #" << nlookup << " @ " << ino << " (" << safe_name(node) << ")";
if (node) {
// This is a narrowing conversion from an unsigned 64bit to a 32bit value. For
// some reason we only keep 32 bit refcounts but the kernel issues
// forget requests with a 64 bit counter.
if (node->Release(static_cast<uint32_t>(nlookup))) {
fuse->NodeDeleted(node);
}
}
}
static void pf_forget(fuse_req_t req, fuse_ino_t ino, uint64_t nlookup) {
ATRACE_CALL();
node* node;
struct fuse* fuse = get_fuse(req);
do_forget(fuse, ino, nlookup);
fuse_reply_none(req);
}
static void pf_forget_multi(fuse_req_t req,
size_t count,
struct fuse_forget_data* forgets) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
for (int i = 0; i < count; i++) {
do_forget(fuse, forgets[i].ino, forgets[i].nlookup);
}
fuse_reply_none(req);
}
static void pf_getattr(fuse_req_t req,
fuse_ino_t ino,
struct fuse_file_info* fi) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
node* node = fuse->FromInode(ino);
string path = node->BuildPath();
TRACE_FUSE(fuse) << "GETATTR @ " << ino << " (" << safe_name(node) << ")";
if (!node) fuse_reply_err(req, ENOENT);
struct stat s;
memset(&s, 0, sizeof(s));
if (lstat(path.c_str(), &s) < 0) {
fuse_reply_err(req, errno);
} else {
fuse_reply_attr(req, &s, get_attr_timeout(path, ctx->uid, fuse, nullptr));
}
}
static void pf_setattr(fuse_req_t req,
fuse_ino_t ino,
struct stat* attr,
int to_set,
struct fuse_file_info* fi) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
node* node = fuse->FromInode(ino);
string path = node->BuildPath();
struct timespec times[2];
TRACE_FUSE(fuse) << "SETATTR valid=" << to_set << " @ " << ino << "(" << safe_name(node) << ")";
if (!node) {
fuse_reply_err(req, ENOENT);
return;
}
/* XXX: incomplete implementation on purpose.
* chmod/chown should NEVER be implemented.*/
if ((to_set & FUSE_SET_ATTR_SIZE)
&& truncate64(path.c_str(), attr->st_size) < 0) {
fuse_reply_err(req, errno);
return;
}
/* Handle changing atime and mtime. If FATTR_ATIME_and FATTR_ATIME_NOW
* are both set, then set it to the current time. Else, set it to the
* time specified in the request. Same goes for mtime. Use utimensat(2)
* as it allows ATIME and MTIME to be changed independently, and has
* nanosecond resolution which fuse also has.
*/
if (to_set & (FATTR_ATIME | FATTR_MTIME)) {
times[0].tv_nsec = UTIME_OMIT;
times[1].tv_nsec = UTIME_OMIT;
if (to_set & FATTR_ATIME) {
if (to_set & FATTR_ATIME_NOW) {
times[0].tv_nsec = UTIME_NOW;
} else {
times[0].tv_sec = attr->st_atime;
// times[0].tv_nsec = attr->st_atime.tv_nsec;
}
}
if (to_set & FATTR_MTIME) {
if (to_set & FATTR_MTIME_NOW) {
times[1].tv_nsec = UTIME_NOW;
} else {
times[1].tv_sec = attr->st_mtime;
// times[1].tv_nsec = attr->st_mtime.tv_nsec;
}
}
TRACE_FUSE(fuse) << "Calling utimensat on " << path << " with atime " << times[0].tv_sec
<< " mtime=" << times[1].tv_sec;
if (utimensat(-1, path.c_str(), times, 0) < 0) {
fuse_reply_err(req, errno);
return;
}
}
lstat(path.c_str(), attr);
fuse_reply_attr(req, attr, get_attr_timeout(path, ctx->uid, fuse, nullptr));
}
static void pf_canonical_path(fuse_req_t req, fuse_ino_t ino)
{
node* node = get_fuse(req)->FromInode(ino);
if (node) {
// TODO(b/147482155): Check that uid has access to |path| and its contents
fuse_reply_canonical_path(req, node->BuildPath().c_str());
return;
}
fuse_reply_err(req, ENOENT);
}
static void pf_mknod(fuse_req_t req,
fuse_ino_t parent,
const char* name,
mode_t mode,
dev_t rdev) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
node* parent_node = fuse->FromInode(parent);
string parent_path = parent_node->BuildPath();
TRACE_FUSE(fuse) << "MKNOD " << name << " 0" << std::oct << mode << " @ " << parent << " ("
<< safe_name(parent_node) << ")";
if (!parent_node) {
fuse_reply_err(req, ENOENT);
return;
}
const string child_path = parent_path + "/" + name;
mode = (mode & (~0777)) | 0664;
if (mknod(child_path.c_str(), mode, rdev) < 0) {
fuse_reply_err(req, errno);
return;
}
int error_code = 0;
struct fuse_entry_param e;
if (make_node_entry(req, parent_node, name, child_path, &e, &error_code)) {
fuse_reply_entry(req, &e);
} else {
CHECK(error_code != 0);
fuse_reply_err(req, error_code);
}
}
static void pf_mkdir(fuse_req_t req,
fuse_ino_t parent,
const char* name,
mode_t mode) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
node* parent_node = fuse->FromInode(parent);
const string parent_path = parent_node->BuildPath();
TRACE_FUSE(fuse) << "MKDIR " << name << " 0" << std::oct << mode << " @ " << parent << " ("
<< safe_name(parent_node) << ")";
const string child_path = parent_path + "/" + name;
int status = fuse->mp->IsCreatingDirAllowed(child_path, ctx->uid);
if (status) {
fuse_reply_err(req, status);
return;
}
mode = (mode & (~0777)) | 0775;
if (mkdir(child_path.c_str(), mode) < 0) {
fuse_reply_err(req, errno);
return;
}
int error_code = 0;
struct fuse_entry_param e;
if (make_node_entry(req, parent_node, name, child_path, &e, &error_code)) {
fuse_reply_entry(req, &e);
} else {
CHECK(error_code != 0);
fuse_reply_err(req, error_code);
}
}
static void pf_unlink(fuse_req_t req, fuse_ino_t parent, const char* name) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
node* parent_node = fuse->FromInode(parent);
const string parent_path = parent_node->BuildPath();
TRACE_FUSE(fuse) << "UNLINK " << name << " @ " << parent << "(" << safe_name(parent_node) << ")";
const string child_path = parent_path + "/" + name;
int status = fuse->mp->DeleteFile(child_path, ctx->uid);
if (status) {
fuse_reply_err(req, status);
return;
}
node* child_node = parent_node->LookupChildByName(name, false /* acquire */);
if (child_node) {
child_node->SetDeleted();
}
fuse_reply_err(req, 0);
}
static void pf_rmdir(fuse_req_t req, fuse_ino_t parent, const char* name) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
node* parent_node = fuse->FromInode(parent);
const string parent_path = parent_node->BuildPath();
TRACE_FUSE(fuse) << "RMDIR " << name << " @ " << parent << "(" << safe_name(parent_node) << ")";
const string child_path = parent_path + "/" + name;
int status = fuse->mp->IsDeletingDirAllowed(child_path, ctx->uid);
if (status) {
fuse_reply_err(req, status);
return;
}
if (rmdir(child_path.c_str()) < 0) {
fuse_reply_err(req, errno);
return;
}
node* child_node = parent_node->LookupChildByName(name, false /* acquire */);
if (child_node) {
child_node->SetDeleted();
}
fuse_reply_err(req, 0);
}
/*
static void pf_symlink(fuse_req_t req, const char* link, fuse_ino_t parent,
const char* name)
{
cout << "TODO:" << __func__;
}
*/
static int do_rename(fuse_req_t req, fuse_ino_t parent, const char* name, fuse_ino_t new_parent,
const char* new_name, unsigned int flags) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
if (flags != 0) {
LOG(ERROR) << "One or more rename flags not supported";
return EINVAL;
}
node* old_parent_node = fuse->FromInode(parent);
const string old_parent_path = old_parent_node->BuildPath();
node* new_parent_node = fuse->FromInode(new_parent);
const string new_parent_path = new_parent_node->BuildPath();
if (!old_parent_node || !new_parent_node) {
return ENOENT;
} else if (parent == new_parent && name == new_name) {
// No rename required.
return 0;
}
TRACE_FUSE(fuse) << "RENAME " << name << " -> " << new_name << " @ " << parent << " ("
<< safe_name(old_parent_node) << ") -> " << new_parent << " ("
<< safe_name(new_parent_node) << ")";
node* child_node = old_parent_node->LookupChildByName(name, true /* acquire */);
const string old_child_path = child_node->BuildPath();
const string new_child_path = new_parent_path + "/" + new_name;
// TODO(b/147408834): Check ENOTEMPTY & EEXIST error conditions before JNI call.
const int res = fuse->mp->Rename(old_child_path, new_child_path, req->ctx.uid);
// TODO(b/145663158): Lookups can go out of sync if file/directory is actually moved but
// EFAULT/EIO is reported due to JNI exception.
if (res == 0) {
child_node->Rename(new_name, new_parent_node);
}
child_node->Release(1);
return res;
}
static void pf_rename(fuse_req_t req, fuse_ino_t parent, const char* name, fuse_ino_t new_parent,
const char* new_name, unsigned int flags) {
int res = do_rename(req, parent, name, new_parent, new_name, flags);
fuse_reply_err(req, res);
}
/*
static void pf_link(fuse_req_t req, fuse_ino_t ino, fuse_ino_t new_parent,
const char* new_name)
{
cout << "TODO:" << __func__;
}
*/
static void pf_open(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info* fi) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
node* node = fuse->FromInode(ino);
const string path = node->BuildPath();
TRACE_FUSE(fuse) << "OPEN 0" << std::oct << fi->flags << " @ " << ino << " (" << safe_name(node)
<< ")";
if (!node) {
fuse_reply_err(req, ENOENT);
return;
}
if (fi->flags & O_DIRECT) {
fi->flags &= ~O_DIRECT;
fi->direct_io = true;
}
TRACE_FUSE(fuse) << "OPEN " << path;
int status = fuse->mp->IsOpenAllowed(path, ctx->uid, is_requesting_write(fi->flags));
if (status) {
fuse_reply_err(req, status);
return;
}
// With the writeback cache enabled, FUSE may generate READ requests even for files that
// were opened O_WRONLY; so make sure we open it O_RDWR instead.
int open_flags = fi->flags;
if (open_flags & O_WRONLY) {
open_flags &= ~O_WRONLY;
open_flags |= O_RDWR;
}
const int fd = open(path.c_str(), open_flags);
if (fd < 0) {
fuse_reply_err(req, errno);
return;
}
// We don't redact if the caller was granted write permission for this file
std::unique_ptr<RedactionInfo> ri;
if (is_requesting_write(fi->flags)) {
ri = std::make_unique<RedactionInfo>();
} else {
ri = fuse->mp->GetRedactionInfo(path, req->ctx.uid);
}
if (!ri) {
close(fd);
fuse_reply_err(req, EFAULT);
return;
}
if (ri->isRedactionNeeded() || is_file_locked(fd, path)) {
// We don't want to use the FUSE VFS cache in two cases:
// 1. When redaction is needed because app A with EXIF access might access
// a region that should have been redacted for app B without EXIF access, but app B on
// a subsequent read, will be able to see the EXIF data because the read request for that
// region will be served from cache and not get to the FUSE daemon
// 2. When the file has a read or write lock on it. This means that the MediaProvider has
// given an fd to the lower file system to an app. There are two cases where using the cache
// in this case can be a problem:
// a. Writing to a FUSE fd with caching enabled will use the write-back cache and a
// subsequent read from the lower fs fd will not see the write.
// b. Reading from a FUSE fd with caching enabled may not see the latest writes using the
// lower fs fd because those writes did not go through the FUSE layer and reads from FUSE
// after that write may be served from cache
if (ri->isRedactionNeeded()) {
TRACE_FUSE(fuse) << "Using direct io for " << path << " because redaction is needed.";
} else {
TRACE_FUSE(fuse) << "Using direct io for " << path << " because the file is locked.";
}
fi->direct_io = true;
} else {
TRACE_FUSE(fuse) << "Using cache for " << path;
}
handle* h = new handle(path, fd, ri.release(), !fi->direct_io, fi->flags & O_CREAT);
node->AddHandle(h);
fi->fh = ptr_to_id(h);
fi->keep_cache = 1;
fuse_reply_open(req, fi);
}
static void do_read(fuse_req_t req, size_t size, off_t off, struct fuse_file_info* fi) {
handle* h = reinterpret_cast<handle*>(fi->fh);
struct fuse_bufvec buf = FUSE_BUFVEC_INIT(size);
buf.buf[0].fd = h->fd;
buf.buf[0].pos = off;
buf.buf[0].flags =
(enum fuse_buf_flags) (FUSE_BUF_IS_FD | FUSE_BUF_FD_SEEK);
fuse_reply_data(req, &buf, (enum fuse_buf_copy_flags) 0);
}
static bool range_contains(const RedactionRange& rr, off_t off) {
return rr.first <= off && off <= rr.second;
}
/**
* Sets the parameters for a fuse_buf that reads from memory, including flags.
* Makes buf->mem point to an already mapped region of zeroized memory.
* This memory is read only.
*/
static void create_mem_fuse_buf(size_t size, fuse_buf* buf, struct fuse* fuse) {
buf->size = size;
buf->mem = fuse->zero_addr;
buf->flags = static_cast<fuse_buf_flags>(0 /*read from fuse_buf.mem*/);
buf->pos = -1;
buf->fd = -1;
}
/**
* Sets the parameters for a fuse_buf that reads from file, including flags.
*/
static void create_file_fuse_buf(size_t size, off_t pos, int fd, fuse_buf* buf) {
buf->size = size;
buf->fd = fd;
buf->pos = pos;
buf->flags = static_cast<fuse_buf_flags>(FUSE_BUF_IS_FD | FUSE_BUF_FD_SEEK);
buf->mem = nullptr;
}
static void do_read_with_redaction(fuse_req_t req, size_t size, off_t off, fuse_file_info* fi) {
handle* h = reinterpret_cast<handle*>(fi->fh);
auto overlapping_rr = h->ri->getOverlappingRedactionRanges(size, off);
if (overlapping_rr->size() <= 0) {
// no relevant redaction ranges for this request
do_read(req, size, off, fi);
return;
}
// the number of buffers we need, if the read doesn't start or end with
// a redaction range.
int num_bufs = overlapping_rr->size() * 2 + 1;
if (overlapping_rr->front().first <= off) {
// the beginning of the read request is redacted
num_bufs--;
}
if (overlapping_rr->back().second >= off + size) {
// the end of the read request is redacted
num_bufs--;
}
auto bufvec_ptr = std::unique_ptr<fuse_bufvec, decltype(free)*>{
reinterpret_cast<fuse_bufvec*>(
malloc(sizeof(fuse_bufvec) + (num_bufs - 1) * sizeof(fuse_buf))),
free};
fuse_bufvec& bufvec = *bufvec_ptr;
// initialize bufvec
bufvec.count = num_bufs;
bufvec.idx = 0;
bufvec.off = 0;
int rr_idx = 0;
off_t start = off;
// Add a dummy redaction range to make sure we don't go out of vector
// limits when computing the end of the last non-redacted range.
// This ranges is invalid because its starting point is larger than it's ending point.
overlapping_rr->push_back(RedactionRange(LLONG_MAX, LLONG_MAX - 1));
for (int i = 0; i < num_bufs; ++i) {
off_t end;
if (range_contains(overlapping_rr->at(rr_idx), start)) {
// Handle a redacted range
// end should be the end of the redacted range, but can't be out of
// the read request bounds
end = std::min(static_cast<off_t>(off + size - 1), overlapping_rr->at(rr_idx).second);
create_mem_fuse_buf(/*size*/ end - start + 1, &(bufvec.buf[i]), get_fuse(req));
++rr_idx;
} else {
// Handle a non-redacted range
// end should be right before the next redaction range starts or
// the end of the read request
end = std::min(static_cast<off_t>(off + size - 1),
overlapping_rr->at(rr_idx).first - 1);
create_file_fuse_buf(/*size*/ end - start + 1, start, h->fd, &(bufvec.buf[i]));
}
start = end + 1;
}
fuse_reply_data(req, &bufvec, static_cast<fuse_buf_copy_flags>(0));
}
static void pf_read(fuse_req_t req, fuse_ino_t ino, size_t size, off_t off,
struct fuse_file_info* fi) {
ATRACE_CALL();
handle* h = reinterpret_cast<handle*>(fi->fh);
struct fuse* fuse = get_fuse(req);
fuse->fadviser.Record(h->fd, size);
if (h->ri->isRedactionNeeded()) {
do_read_with_redaction(req, size, off, fi);
} else {
do_read(req, size, off, fi);
}
}
/*
static void pf_write(fuse_req_t req, fuse_ino_t ino, const char* buf,
size_t size, off_t off, struct fuse_file_info* fi)
{
cout << "TODO:" << __func__;
}
*/
static void pf_write_buf(fuse_req_t req,
fuse_ino_t ino,
struct fuse_bufvec* bufv,
off_t off,
struct fuse_file_info* fi) {
ATRACE_CALL();
handle* h = reinterpret_cast<handle*>(fi->fh);
struct fuse_bufvec buf = FUSE_BUFVEC_INIT(fuse_buf_size(bufv));
ssize_t size;
struct fuse* fuse = get_fuse(req);
buf.buf[0].fd = h->fd;
buf.buf[0].pos = off;
buf.buf[0].flags =
(enum fuse_buf_flags) (FUSE_BUF_IS_FD | FUSE_BUF_FD_SEEK);
size = fuse_buf_copy(&buf, bufv, (enum fuse_buf_copy_flags) 0);
if (size < 0)
fuse_reply_err(req, -size);
else {
fuse_reply_write(req, size);
fuse->fadviser.Record(h->fd, size);
}
}
// Haven't tested this one. Not sure what calls it.
#if 0
static void pf_copy_file_range(fuse_req_t req, fuse_ino_t ino_in,
off_t off_in, struct fuse_file_info* fi_in,
fuse_ino_t ino_out, off_t off_out,
struct fuse_file_info* fi_out, size_t len,
int flags)
{
handle* h_in = reinterpret_cast<handle *>(fi_in->fh);
handle* h_out = reinterpret_cast<handle *>(fi_out->fh);
struct fuse_bufvec buf_in = FUSE_BUFVEC_INIT(len);
struct fuse_bufvec buf_out = FUSE_BUFVEC_INIT(len);
ssize_t size;
buf_in.buf[0].fd = h_in->fd;
buf_in.buf[0].pos = off_in;
buf_in.buf[0].flags = (enum fuse_buf_flags)(FUSE_BUF_IS_FD|FUSE_BUF_FD_SEEK);
buf_out.buf[0].fd = h_out->fd;
buf_out.buf[0].pos = off_out;
buf_out.buf[0].flags = (enum fuse_buf_flags)(FUSE_BUF_IS_FD|FUSE_BUF_FD_SEEK);
size = fuse_buf_copy(&buf_out, &buf_in, (enum fuse_buf_copy_flags) 0);
if (size < 0) {
fuse_reply_err(req, -size);
}
fuse_reply_write(req, size);
}
#endif
static void pf_flush(fuse_req_t req,
fuse_ino_t ino,
struct fuse_file_info* fi) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
TRACE_FUSE(fuse) << "FLUSH is a noop";
fuse_reply_err(req, 0);
}
static void pf_release(fuse_req_t req,
fuse_ino_t ino,
struct fuse_file_info* fi) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
node* node = fuse->FromInode(ino);
handle* h = reinterpret_cast<handle*>(fi->fh);
TRACE_FUSE(fuse) << "RELEASE "
<< "0" << std::oct << fi->flags << " " << h << "(" << h->fd << ")";
fuse->fadviser.Close(h->fd);
if (node) {
if (h->is_new_file) {
fuse->mp->ScanFile(h->path);
}
node->DestroyHandle(h);
}
fuse_reply_err(req, 0);
}
static int do_sync_common(int fd, bool datasync) {
int res = datasync ? fdatasync(fd) : fsync(fd);
if (res == -1) return errno;
return 0;
}
static void pf_fsync(fuse_req_t req,
fuse_ino_t ino,
int datasync,
struct fuse_file_info* fi) {
ATRACE_CALL();
handle* h = reinterpret_cast<handle*>(fi->fh);
int err = do_sync_common(h->fd, datasync);
fuse_reply_err(req, err);
}
static void pf_fsyncdir(fuse_req_t req,
fuse_ino_t ino,
int datasync,
struct fuse_file_info* fi) {
dirhandle* h = reinterpret_cast<dirhandle*>(fi->fh);
int err = do_sync_common(dirfd(h->d), datasync);
fuse_reply_err(req, err);
}
static void pf_opendir(fuse_req_t req,
fuse_ino_t ino,
struct fuse_file_info* fi) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
node* node = fuse->FromInode(ino);
const string path = node->BuildPath();
TRACE_FUSE(fuse) << "OPENDIR @ " << ino << " (" << safe_name(node) << ")" << path;
if (!node) {
fuse_reply_err(req, ENOENT);
return;
}
int status = fuse->mp->IsOpendirAllowed(path, ctx->uid);
if (status) {
fuse_reply_err(req, status);
return;
}
DIR* dir = opendir(path.c_str());
if (!dir) {
fuse_reply_err(req, errno);
return;
}
dirhandle* h = new dirhandle(dir);
node->AddDirHandle(h);
fi->fh = ptr_to_id(h);
fuse_reply_open(req, fi);
}
#define READDIR_BUF 8192LU
static void do_readdir_common(fuse_req_t req,
fuse_ino_t ino,
size_t size,
off_t off,
struct fuse_file_info* fi,
bool plus) {
struct fuse* fuse = get_fuse(req);
dirhandle* h = reinterpret_cast<dirhandle*>(fi->fh);
size_t len = std::min<size_t>(size, READDIR_BUF);
char buf[READDIR_BUF];
size_t used = 0;
std::shared_ptr<DirectoryEntry> de;
struct fuse_entry_param e;
size_t entry_size = 0;
node* node = fuse->FromInode(ino);
const string path = node->BuildPath();
TRACE_FUSE(fuse) << "READDIR @" << ino << " " << path << " at offset " << off;
// Get all directory entries from MediaProvider on first readdir() call of
// directory handle. h->next_off = 0 indicates that current readdir() call
// is first readdir() call for the directory handle, Avoid multiple JNI calls
// for single directory handle.
if (h->next_off == 0) {
h->de = fuse->mp->GetDirectoryEntries(req->ctx.uid, path, h->d);
}
// If the last entry in the previous readdir() call was rejected due to
// buffer capacity constraints, update directory offset to start from
// previously rejected entry. Directory offset can also change if there was
// a seekdir() on the given directory handle.
if (off != h->next_off) {
h->next_off = off;
}
const int num_directory_entries = h->de.size();
// Check for errors. Any error/exception occurred while obtaining directory
// entries will be indicated by marking first directory entry name as empty
// string. In the erroneous case corresponding d_type will hold error number.
if (num_directory_entries && h->de[0]->d_name.empty()) {
fuse_reply_err(req, h->de[0]->d_type);
return;
}
while (h->next_off < num_directory_entries) {
de = h->de[h->next_off];
entry_size = 0;
h->next_off++;
if (plus) {
int error_code = 0;
if (do_lookup(req, ino, de->d_name.c_str(), &e, &error_code)) {
entry_size = fuse_add_direntry_plus(req, buf + used, len - used, de->d_name.c_str(),
&e, h->next_off);
} else {
// Ignore lookup errors on
// 1. non-existing files returned from MediaProvider database.
// 2. path that doesn't match FuseDaemon UID and calling uid.
if (error_code == ENOENT || error_code == EPERM) continue;
fuse_reply_err(req, error_code);
return;
}
} else {
e.attr.st_ino = FUSE_UNKNOWN_INO;
e.attr.st_mode = de->d_type;
entry_size = fuse_add_direntry(req, buf + used, len - used, de->d_name.c_str(), &e.attr,
h->next_off);
}
// If buffer in fuse_add_direntry[_plus] is not large enough then
// the entry is not added to buffer but the size of the entry is still
// returned. Check available buffer size + returned entry size is less
// than actual buffer size to confirm entry is added to buffer.
if (used + entry_size > len) {
// When an entry is rejected, lookup called by readdir_plus will not be tracked by
// kernel. Call forget on the rejected node to decrement the reference count.
if (plus) {
do_forget(fuse, e.ino, 1);
}
break;
}
used += entry_size;
}
fuse_reply_buf(req, buf, used);
}
static void pf_readdir(fuse_req_t req, fuse_ino_t ino, size_t size, off_t off,
struct fuse_file_info* fi) {
ATRACE_CALL();
do_readdir_common(req, ino, size, off, fi, false);
}
static void pf_readdirplus(fuse_req_t req,
fuse_ino_t ino,
size_t size,
off_t off,
struct fuse_file_info* fi) {
ATRACE_CALL();
do_readdir_common(req, ino, size, off, fi, true);
}
static void pf_releasedir(fuse_req_t req,
fuse_ino_t ino,
struct fuse_file_info* fi) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
node* node = fuse->FromInode(ino);
dirhandle* h = reinterpret_cast<dirhandle*>(fi->fh);
TRACE_FUSE(fuse) << "RELEASEDIR " << h;
if (node) {
node->DestroyDirHandle(h);
}
fuse_reply_err(req, 0);
}
static void pf_statfs(fuse_req_t req, fuse_ino_t ino) {
ATRACE_CALL();
struct statvfs st;
struct fuse* fuse = get_fuse(req);
if (statvfs(fuse->root->GetName().c_str(), &st))
fuse_reply_err(req, errno);
else
fuse_reply_statfs(req, &st);
}
/*
static void pf_setxattr(fuse_req_t req, fuse_ino_t ino, const char* name,
const char* value, size_t size, int flags)
{
cout << "TODO:" << __func__;
}
static void pf_getxattr(fuse_req_t req, fuse_ino_t ino, const char* name,
size_t size)
{
cout << "TODO:" << __func__;
}
static void pf_listxattr(fuse_req_t req, fuse_ino_t ino, size_t size)
{
cout << "TODO:" << __func__;
}
static void pf_removexattr(fuse_req_t req, fuse_ino_t ino, const char* name)
{
cout << "TODO:" << __func__;
}*/
static void pf_access(fuse_req_t req, fuse_ino_t ino, int mask) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
node* node = fuse->FromInode(ino);
const string path = node->BuildPath();
TRACE_FUSE_VERBOSE(fuse) << "ACCESS " << path;
int res = access(path.c_str(), F_OK);
fuse_reply_err(req, res ? errno : 0);
}
static void pf_create(fuse_req_t req,
fuse_ino_t parent,
const char* name,
mode_t mode,
struct fuse_file_info* fi) {
ATRACE_CALL();
struct fuse* fuse = get_fuse(req);
const struct fuse_ctx* ctx = fuse_req_ctx(req);
node* parent_node = fuse->FromInode(parent);
const string parent_path = parent_node->BuildPath();
TRACE_FUSE(fuse) << "CREATE " << name << " 0" << std::oct << fi->flags << " @ " << parent
<< " (" << safe_name(parent_node) << ")";
const string child_path = parent_path + "/" + name;
int mp_return_code = fuse->mp->InsertFile(child_path.c_str(), ctx->uid);
if (mp_return_code) {
PLOG(DEBUG) << "Could not create file: " << child_path;
fuse_reply_err(req, mp_return_code);
return;
}
// With the writeback cache enabled, FUSE may generate READ requests even for files that
// were opened O_WRONLY; so make sure we open it O_RDWR instead.
int open_flags = fi->flags;
if (open_flags & O_WRONLY) {
open_flags &= ~O_WRONLY;
open_flags |= O_RDWR;
}
mode = (mode & (~0777)) | 0664;
int fd = open(child_path.c_str(), open_flags, mode);
if (fd < 0) {
int error_code = errno;
// We've already inserted the file into the MP database before the
// failed open(), so that needs to be rolled back here.
fuse->mp->DeleteFile(child_path.c_str(), ctx->uid);
fuse_reply_err(req, error_code);
return;
}
// TODO(b/147274248): Assume there will be no EXIF to redact.
// This prevents crashing during reads but can be a security hole if a malicious app opens an fd
// to the file before all the EXIF content is written. We could special case reads before the
// first close after a file has just been created.
handle* h = new handle(child_path, fd, new RedactionInfo(), /*cached*/ true,
/*is_new_file*/ true);
fi->fh = ptr_to_id(h);
fi->keep_cache = 1;
int error_code = 0;
struct fuse_entry_param e;
node* node = make_node_entry(req, parent_node, name, child_path, &e, &error_code);
if (node) {
node->AddHandle(h);
fuse_reply_create(req, &e, fi);
} else {
CHECK(error_code != 0);
fuse_reply_err(req, error_code);
}
}
/*
static void pf_getlk(fuse_req_t req, fuse_ino_t ino,
struct fuse_file_info* fi, struct flock* lock)
{
cout << "TODO:" << __func__;
}
static void pf_setlk(fuse_req_t req, fuse_ino_t ino,
struct fuse_file_info* fi,
struct flock* lock, int sleep)
{
cout << "TODO:" << __func__;
}
static void pf_bmap(fuse_req_t req, fuse_ino_t ino, size_t blocksize,
uint64_t idx)
{
cout << "TODO:" << __func__;
}
static void pf_ioctl(fuse_req_t req, fuse_ino_t ino, unsigned int cmd,
void* arg, struct fuse_file_info* fi, unsigned flags,
const void* in_buf, size_t in_bufsz, size_t out_bufsz)
{
cout << "TODO:" << __func__;
}
static void pf_poll(fuse_req_t req, fuse_ino_t ino, struct fuse_file_info* fi,
struct fuse_pollhandle* ph)
{
cout << "TODO:" << __func__;
}
static void pf_retrieve_reply(fuse_req_t req, void* cookie, fuse_ino_t ino,
off_t offset, struct fuse_bufvec* bufv)
{
cout << "TODO:" << __func__;
}
static void pf_flock(fuse_req_t req, fuse_ino_t ino,
struct fuse_file_info* fi, int op)
{
cout << "TODO:" << __func__;
}
static void pf_fallocate(fuse_req_t req, fuse_ino_t ino, int mode,
off_t offset, off_t length, struct fuse_file_info* fi)
{
cout << "TODO:" << __func__;
}
*/
static struct fuse_lowlevel_ops ops{
.init = pf_init,
.destroy = pf_destroy,
.lookup = pf_lookup, .forget = pf_forget, .getattr = pf_getattr,
.setattr = pf_setattr,
.canonical_path = pf_canonical_path,
.mknod = pf_mknod, .mkdir = pf_mkdir, .unlink = pf_unlink,
.rmdir = pf_rmdir,
/*.symlink = pf_symlink,*/
.rename = pf_rename,
/*.link = pf_link,*/
.open = pf_open, .read = pf_read,
/*.write = pf_write,*/
.flush = pf_flush, .release = pf_release, .fsync = pf_fsync,
.opendir = pf_opendir, .readdir = pf_readdir, .releasedir = pf_releasedir,
.fsyncdir = pf_fsyncdir, .statfs = pf_statfs,
/*.setxattr = pf_setxattr,
.getxattr = pf_getxattr,
.listxattr = pf_listxattr,
.removexattr = pf_removexattr,*/
.access = pf_access, .create = pf_create,
/*.getlk = pf_getlk,
.setlk = pf_setlk,
.bmap = pf_bmap,
.ioctl = pf_ioctl,
.poll = pf_poll,*/
.write_buf = pf_write_buf,
/*.retrieve_reply = pf_retrieve_reply,*/
.forget_multi = pf_forget_multi,
/*.flock = pf_flock,
.fallocate = pf_fallocate,*/
.readdirplus = pf_readdirplus,
/*.copy_file_range = pf_copy_file_range,*/
};
static struct fuse_loop_config config = {
.clone_fd = 1,
.max_idle_threads = 10,
};
static std::unordered_map<enum fuse_log_level, enum android_LogPriority> fuse_to_android_loglevel({
{FUSE_LOG_EMERG, ANDROID_LOG_FATAL},
{FUSE_LOG_ALERT, ANDROID_LOG_ERROR},
{FUSE_LOG_CRIT, ANDROID_LOG_ERROR},
{FUSE_LOG_ERR, ANDROID_LOG_ERROR},
{FUSE_LOG_WARNING, ANDROID_LOG_WARN},
{FUSE_LOG_NOTICE, ANDROID_LOG_INFO},
{FUSE_LOG_INFO, ANDROID_LOG_DEBUG},
{FUSE_LOG_DEBUG, ANDROID_LOG_VERBOSE},
});
static void fuse_logger(enum fuse_log_level level, const char* fmt, va_list ap) {
__android_log_vprint(fuse_to_android_loglevel.at(level), LIBFUSE_LOG_TAG, fmt, ap);
}
bool FuseDaemon::ShouldOpenWithFuse(int fd, bool for_read, const std::string& path) {
TRACE_VERBOSE << "Checking if file should be opened with FUSE " << path;
bool use_fuse = false;
if (active.load(std::memory_order_acquire)) {
const node* node = node::LookupAbsolutePath(fuse->root, path);
if (node && node->HasCachedHandle()) {
TRACE << "Should open " << path << " with FUSE. Reason: cache";
use_fuse = true;
} else {
// If we are unable to set a lock, we should use fuse since we can't track
// when all fd references (including dups) are closed. This can happen when
// we try to set a write lock twice on the same file
use_fuse = set_file_lock(fd, for_read, path);
TRACE << "Should open " << path << (use_fuse ? " with" : " without")
<< " FUSE. Reason: lock";
}
} else {
TRACE << "FUSE daemon is inactive. Should not open " << path << " with FUSE";
}
return use_fuse;
}
void FuseDaemon::InvalidateFuseDentryCache(const std::string& path) {
TRACE_VERBOSE << "Invalidating dentry for path " << path;
if (active.load(std::memory_order_acquire)) {
string name;
fuse_ino_t parent;
{
std::lock_guard<std::recursive_mutex> guard(fuse->lock);
const node* node = node::LookupAbsolutePath(fuse->root, path);
if (node) {
name = node->GetName();
parent = fuse->ToInode(node->GetParent());
}
}
if (!name.empty() &&
fuse_lowlevel_notify_inval_entry(fuse->se, parent, name.c_str(), name.size())) {
LOG(ERROR) << "Failed to invalidate dentry for path " << path;
}
} else {
TRACE << "FUSE daemon is inactive. Cannot invalidate dentry for " << path;
}
}
FuseDaemon::FuseDaemon(JNIEnv* env, jobject mediaProvider) : mp(env, mediaProvider),
active(false), fuse(nullptr) {}
void FuseDaemon::Start(const int fd, const std::string& path) {
struct fuse_args args;
struct fuse_cmdline_opts opts;
SetMinimumLogSeverity(android::base::VERBOSE);
struct stat stat;
if (lstat(path.c_str(), &stat)) {
LOG(ERROR) << "ERROR: failed to stat source " << path;
return;
}
if (!S_ISDIR(stat.st_mode)) {
LOG(ERROR) << "ERROR: source is not a directory";
return;
}
args = FUSE_ARGS_INIT(0, nullptr);
if (fuse_opt_add_arg(&args, path.c_str()) || fuse_opt_add_arg(&args, "-odebug") ||
fuse_opt_add_arg(&args, ("-omax_read=" + std::to_string(MAX_READ_SIZE)).c_str())) {
LOG(ERROR) << "ERROR: failed to set options";
return;
}
struct fuse fuse_default(path);
fuse_default.mp = &mp;
// fuse_default is stack allocated, but it's safe to save it as an instance variable because
// this method blocks and FuseDaemon#active tells if we are currently blocking
fuse = &fuse_default;
// Used by pf_read: redacted ranges are represented by zeroized ranges of bytes,
// so we mmap the maximum length of redacted ranges in the beginning and save memory allocations
// on each read.
fuse_default.zero_addr = static_cast<char*>(mmap(
NULL, MAX_READ_SIZE, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, /*fd*/ -1, /*off*/ 0));
if (fuse_default.zero_addr == MAP_FAILED) {
LOG(FATAL) << "mmap failed - could not start fuse! errno = " << errno;
}
umask(0);
// Custom logging for libfuse
fuse_set_log_func(fuse_logger);
struct fuse_session
* se = fuse_session_new(&args, &ops, sizeof(ops), &fuse_default);
if (!se) {
PLOG(ERROR) << "Failed to create session ";
return;
}
fuse_default.se = se;
se->fd = fd;
se->mountpoint = strdup(path.c_str());
// Single thread. Useful for debugging
// fuse_session_loop(se);
// Multi-threaded
LOG(INFO) << "Starting fuse...";
active.store(true, std::memory_order_release);
fuse_session_loop_mt(se, &config);
LOG(INFO) << "Ending fuse...";
if (munmap(fuse_default.zero_addr, MAX_READ_SIZE)) {
PLOG(ERROR) << "munmap failed!";
}
fuse_opt_free_args(&args);
fuse_session_destroy(se);
active.store(false, std::memory_order_relaxed);
LOG(INFO) << "Ended fuse";
return;
}
} //namespace fuse
} // namespace mediaprovider