blob: 67f21a1328704b05b6fe36b5544c20ef86a6a409 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define TRACE_TAG INCREMENTAL
#include "incremental_utils.h"
#include <android-base/endian.h>
#include <android-base/mapped_file.h>
#include <android-base/strings.h>
#include <ziparchive/zip_archive.h>
#include <ziparchive/zip_writer.h>
#include <algorithm>
#include <array>
#include <cinttypes>
#include <numeric>
#include <unordered_set>
#include "adb_io.h"
#include "adb_trace.h"
#include "sysdeps.h"
using namespace std::literals;
namespace incremental {
static constexpr inline int32_t offsetToBlockIndex(int64_t offset) {
return (offset & ~(kBlockSize - 1)) >> 12;
}
Size verity_tree_blocks_for_file(Size fileSize) {
if (fileSize == 0) {
return 0;
}
constexpr int hash_per_block = kBlockSize / kDigestSize;
Size total_tree_block_count = 0;
const Size block_count = 1 + (fileSize - 1) / kBlockSize;
Size hash_block_count = block_count;
while (hash_block_count > 1) {
hash_block_count = (hash_block_count + hash_per_block - 1) / hash_per_block;
total_tree_block_count += hash_block_count;
}
return total_tree_block_count;
}
Size verity_tree_size_for_file(Size fileSize) {
return verity_tree_blocks_for_file(fileSize) * kBlockSize;
}
static inline int32_t read_int32(borrowed_fd fd) {
int32_t result;
return ReadFdExactly(fd, &result, sizeof(result)) ? result : -1;
}
static inline int32_t skip_int(borrowed_fd fd) {
return adb_lseek(fd, 4, SEEK_CUR);
}
static inline void append_int(borrowed_fd fd, std::vector<char>* bytes) {
int32_t le_val = read_int32(fd);
auto old_size = bytes->size();
bytes->resize(old_size + sizeof(le_val));
memcpy(bytes->data() + old_size, &le_val, sizeof(le_val));
}
static inline bool append_bytes_with_size(borrowed_fd fd, std::vector<char>* bytes,
int* bytes_left) {
int32_t le_size = read_int32(fd);
if (le_size < 0) {
return false;
}
int32_t size = int32_t(le32toh(le_size));
if (size < 0 || size > *bytes_left) {
return false;
}
if (size == 0) {
return true;
}
*bytes_left -= size;
auto old_size = bytes->size();
bytes->resize(old_size + sizeof(le_size) + size);
memcpy(bytes->data() + old_size, &le_size, sizeof(le_size));
ReadFdExactly(fd, bytes->data() + old_size + sizeof(le_size), size);
return true;
}
static inline int32_t skip_bytes_with_size(borrowed_fd fd) {
int32_t le_size = read_int32(fd);
if (le_size < 0) {
return -1;
}
int32_t size = int32_t(le32toh(le_size));
return (int32_t)adb_lseek(fd, size, SEEK_CUR);
}
std::pair<std::vector<char>, int32_t> read_id_sig_headers(borrowed_fd fd) {
std::vector<char> signature;
append_int(fd, &signature); // version
int max_size = kMaxSignatureSize - sizeof(int32_t);
// hashingInfo and signingInfo
if (!append_bytes_with_size(fd, &signature, &max_size) ||
!append_bytes_with_size(fd, &signature, &max_size)) {
return {};
}
auto le_tree_size = read_int32(fd);
auto tree_size = int32_t(le32toh(le_tree_size)); // size of the verity tree
return {std::move(signature), tree_size};
}
std::pair<off64_t, ssize_t> skip_id_sig_headers(borrowed_fd fd) {
skip_int(fd); // version
skip_bytes_with_size(fd); // hashingInfo
auto offset = skip_bytes_with_size(fd); // signingInfo
auto le_tree_size = read_int32(fd);
auto tree_size = int32_t(le32toh(le_tree_size)); // size of the verity tree
return {offset + sizeof(le_tree_size), tree_size};
}
template <class T>
static T valueAt(borrowed_fd fd, off64_t offset) {
T t;
memset(&t, 0, sizeof(T));
if (adb_pread(fd, &t, sizeof(T), offset) != sizeof(T)) {
memset(&t, -1, sizeof(T));
}
return t;
}
static void appendBlocks(int32_t start, int count, std::vector<int32_t>* blocks) {
if (count == 1) {
blocks->push_back(start);
} else {
auto oldSize = blocks->size();
blocks->resize(oldSize + count);
std::iota(blocks->begin() + oldSize, blocks->end(), start);
}
}
template <class T>
static void unduplicate(std::vector<T>& v) {
std::unordered_set<T> uniques(v.size());
v.erase(std::remove_if(v.begin(), v.end(),
[&uniques](T t) { return !uniques.insert(t).second; }),
v.end());
}
static off64_t CentralDirOffset(borrowed_fd fd, Size fileSize) {
static constexpr int kZipEocdRecMinSize = 22;
static constexpr int32_t kZipEocdRecSig = 0x06054b50;
static constexpr int kZipEocdCentralDirSizeFieldOffset = 12;
static constexpr int kZipEocdCommentLengthFieldOffset = 20;
int32_t sigBuf = 0;
off64_t eocdOffset = -1;
off64_t maxEocdOffset = fileSize - kZipEocdRecMinSize;
int16_t commentLenBuf = 0;
// Search from the end of zip, backward to find beginning of EOCD
for (int16_t commentLen = 0; commentLen < fileSize; ++commentLen) {
sigBuf = valueAt<int32_t>(fd, maxEocdOffset - commentLen);
if (sigBuf == kZipEocdRecSig) {
commentLenBuf = valueAt<int16_t>(
fd, maxEocdOffset - commentLen + kZipEocdCommentLengthFieldOffset);
if (commentLenBuf == commentLen) {
eocdOffset = maxEocdOffset - commentLen;
break;
}
}
}
if (eocdOffset < 0) {
return -1;
}
off64_t cdLen = static_cast<int64_t>(
valueAt<int32_t>(fd, eocdOffset + kZipEocdCentralDirSizeFieldOffset));
return eocdOffset - cdLen;
}
// Does not support APKs larger than 4GB
static off64_t SignerBlockOffset(borrowed_fd fd, Size fileSize) {
static constexpr int kApkSigBlockMinSize = 32;
static constexpr int kApkSigBlockFooterSize = 24;
static constexpr int64_t APK_SIG_BLOCK_MAGIC_HI = 0x3234206b636f6c42l;
static constexpr int64_t APK_SIG_BLOCK_MAGIC_LO = 0x20676953204b5041l;
off64_t cdOffset = CentralDirOffset(fd, fileSize);
if (cdOffset < 0) {
return -1;
}
// CD offset is where original signer block ends. Search backwards for magic and footer.
if (cdOffset < kApkSigBlockMinSize ||
valueAt<int64_t>(fd, cdOffset - 2 * sizeof(int64_t)) != APK_SIG_BLOCK_MAGIC_LO ||
valueAt<int64_t>(fd, cdOffset - sizeof(int64_t)) != APK_SIG_BLOCK_MAGIC_HI) {
return -1;
}
int32_t signerSizeInFooter = valueAt<int32_t>(fd, cdOffset - kApkSigBlockFooterSize);
off64_t signerBlockOffset = cdOffset - signerSizeInFooter - sizeof(int64_t);
if (signerBlockOffset < 0) {
return -1;
}
int32_t signerSizeInHeader = valueAt<int32_t>(fd, signerBlockOffset);
if (signerSizeInFooter != signerSizeInHeader) {
return -1;
}
return signerBlockOffset;
}
static std::vector<int32_t> ZipPriorityBlocks(off64_t signerBlockOffset, Size fileSize) {
int32_t signerBlockIndex = offsetToBlockIndex(signerBlockOffset);
int32_t lastBlockIndex = offsetToBlockIndex(fileSize);
const auto numPriorityBlocks = lastBlockIndex - signerBlockIndex + 1;
std::vector<int32_t> zipPriorityBlocks;
// Some magic here: most of zip libraries perform a scan for EOCD record starting at the offset
// of a maximum comment size from the end of the file. This means the last 65-ish KBs will be
// accessed first, followed by the rest of the central directory blocks. Make sure we
// send the data in the proper order, as central directory can be quite big by itself.
static constexpr auto kMaxZipCommentSize = 64 * 1024;
static constexpr auto kNumBlocksInEocdSearch = kMaxZipCommentSize / kBlockSize + 1;
if (numPriorityBlocks > kNumBlocksInEocdSearch) {
appendBlocks(lastBlockIndex - kNumBlocksInEocdSearch + 1, kNumBlocksInEocdSearch,
&zipPriorityBlocks);
appendBlocks(signerBlockIndex, numPriorityBlocks - kNumBlocksInEocdSearch,
&zipPriorityBlocks);
} else {
appendBlocks(signerBlockIndex, numPriorityBlocks, &zipPriorityBlocks);
}
// Somehow someone keeps accessing the start of the archive, even if there's nothing really
// interesting there...
appendBlocks(0, 1, &zipPriorityBlocks);
return zipPriorityBlocks;
}
[[maybe_unused]] static ZipArchiveHandle openZipArchiveFd(borrowed_fd fd) {
bool transferFdOwnership = false;
#ifdef _WIN32
//
// Need to create a special CRT FD here as the current one is not compatible with
// normal read()/write() calls that libziparchive uses.
// To make this work we have to create a copy of the file handle, as CRT doesn't care
// and closes it together with the new descriptor.
//
// Note: don't move this into a helper function, it's better to be hard to reuse because
// the code is ugly and won't work unless it's a last resort.
//
auto handle = adb_get_os_handle(fd);
HANDLE dupedHandle;
if (!::DuplicateHandle(::GetCurrentProcess(), handle, ::GetCurrentProcess(), &dupedHandle, 0,
false, DUPLICATE_SAME_ACCESS)) {
D("%s failed at DuplicateHandle: %d", __func__, (int)::GetLastError());
return {};
}
int osfd = _open_osfhandle((intptr_t)dupedHandle, _O_RDONLY | _O_BINARY);
if (osfd < 0) {
D("%s failed at _open_osfhandle: %d", __func__, errno);
::CloseHandle(handle);
return {};
}
transferFdOwnership = true;
#else
int osfd = fd.get();
#endif
ZipArchiveHandle zip;
if (OpenArchiveFd(osfd, "apk_fd", &zip, transferFdOwnership) != 0) {
D("%s failed at OpenArchiveFd: %d", __func__, errno);
#ifdef _WIN32
// "_close()" is a secret WinCRT name for the regular close() function.
_close(osfd);
#endif
return {};
}
return zip;
}
static std::pair<ZipArchiveHandle, std::unique_ptr<android::base::MappedFile>> openZipArchive(
borrowed_fd fd, Size fileSize) {
#ifndef __LP64__
if (fileSize >= INT_MAX) {
return {openZipArchiveFd(fd), nullptr};
}
#endif
auto mapping =
android::base::MappedFile::FromOsHandle(adb_get_os_handle(fd), 0, fileSize, PROT_READ);
if (!mapping) {
D("%s failed at FromOsHandle: %d", __func__, errno);
return {};
}
ZipArchiveHandle zip;
if (OpenArchiveFromMemory(mapping->data(), mapping->size(), "apk_mapping", &zip) != 0) {
D("%s failed at OpenArchiveFromMemory: %d", __func__, errno);
return {};
}
return {zip, std::move(mapping)};
}
static std::vector<int32_t> InstallationPriorityBlocks(borrowed_fd fd, Size fileSize) {
static constexpr std::array<std::string_view, 3> additional_matches = {
"resources.arsc"sv, "AndroidManifest.xml"sv, "classes.dex"sv};
auto [zip, _] = openZipArchive(fd, fileSize);
if (!zip) {
return {};
}
auto matcher = [](std::string_view entry_name) {
if (entry_name.starts_with("lib/"sv) && entry_name.ends_with(".so"sv)) {
return true;
}
return std::any_of(additional_matches.begin(), additional_matches.end(),
[entry_name](std::string_view i) { return i == entry_name; });
};
void* cookie = nullptr;
if (StartIteration(zip, &cookie, std::move(matcher)) != 0) {
D("%s failed at StartIteration: %d", __func__, errno);
return {};
}
std::vector<int32_t> installationPriorityBlocks;
ZipEntry64 entry;
std::string_view entryName;
while (Next(cookie, &entry, &entryName) == 0) {
if (entryName == "classes.dex"sv) {
// Only the head is needed for installation
int32_t startBlockIndex = offsetToBlockIndex(entry.offset);
appendBlocks(startBlockIndex, 2, &installationPriorityBlocks);
D("\tadding to priority blocks: '%.*s' (%d)", (int)entryName.size(), entryName.data(),
2);
} else {
// Full entries are needed for installation
off64_t entryStartOffset = entry.offset;
off64_t entryEndOffset =
entryStartOffset +
(entry.method == kCompressStored ? entry.uncompressed_length
: entry.compressed_length) +
(entry.has_data_descriptor ? 16 /* sizeof(DataDescriptor) */ : 0);
int32_t startBlockIndex = offsetToBlockIndex(entryStartOffset);
int32_t endBlockIndex = offsetToBlockIndex(entryEndOffset);
int32_t numNewBlocks = endBlockIndex - startBlockIndex + 1;
appendBlocks(startBlockIndex, numNewBlocks, &installationPriorityBlocks);
D("\tadding to priority blocks: '%.*s' (%d)", (int)entryName.size(), entryName.data(),
numNewBlocks);
}
}
EndIteration(cookie);
CloseArchive(zip);
return installationPriorityBlocks;
}
std::vector<int32_t> PriorityBlocksForFile(const std::string& filepath, borrowed_fd fd,
Size fileSize) {
if (!android::base::EndsWithIgnoreCase(filepath, ".apk"sv)) {
return {};
}
off64_t signerOffset = SignerBlockOffset(fd, fileSize);
if (signerOffset < 0) {
// No signer block? not a valid APK
return {};
}
std::vector<int32_t> priorityBlocks = ZipPriorityBlocks(signerOffset, fileSize);
std::vector<int32_t> installationPriorityBlocks = InstallationPriorityBlocks(fd, fileSize);
priorityBlocks.insert(priorityBlocks.end(), installationPriorityBlocks.begin(),
installationPriorityBlocks.end());
unduplicate(priorityBlocks);
return priorityBlocks;
}
} // namespace incremental