blob: a2b7e09d439185f88eafcfb21ed396e5e9d2cf78 [file] [log] [blame]
// Copyright 2022, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Low-level allocation and tracking of main memory.
#![deny(unsafe_op_in_unsafe_fn)]
use crate::helpers::{self, align_down, align_up, page_4kb_of, RangeExt, SIZE_4KB, SIZE_4MB};
use crate::mmu;
use alloc::alloc::alloc_zeroed;
use alloc::alloc::dealloc;
use alloc::alloc::handle_alloc_error;
use alloc::boxed::Box;
use buddy_system_allocator::LockedHeap;
use core::alloc::GlobalAlloc as _;
use core::alloc::Layout;
use core::cmp::max;
use core::cmp::min;
use core::fmt;
use core::num::NonZeroUsize;
use core::ops::Range;
use core::ptr::NonNull;
use core::result;
use hyp::get_hypervisor;
use log::error;
use once_cell::race::OnceBox;
use spin::mutex::SpinMutex;
use tinyvec::ArrayVec;
/// Base of the system's contiguous "main" memory.
pub const BASE_ADDR: usize = 0x8000_0000;
/// First address that can't be translated by a level 1 TTBR0_EL1.
pub const MAX_ADDR: usize = 1 << 40;
pub type MemoryRange = Range<usize>;
pub static MEMORY: SpinMutex<Option<MemoryTracker>> = SpinMutex::new(None);
unsafe impl Send for MemoryTracker {}
#[derive(Clone, Copy, Debug, Default)]
enum MemoryType {
#[default]
ReadOnly,
ReadWrite,
}
#[derive(Clone, Debug, Default)]
struct MemoryRegion {
range: MemoryRange,
mem_type: MemoryType,
}
impl MemoryRegion {
/// True if the instance overlaps with the passed range.
pub fn overlaps(&self, range: &MemoryRange) -> bool {
overlaps(&self.range, range)
}
/// True if the instance is fully contained within the passed range.
pub fn is_within(&self, range: &MemoryRange) -> bool {
self.as_ref().is_within(range)
}
}
impl AsRef<MemoryRange> for MemoryRegion {
fn as_ref(&self) -> &MemoryRange {
&self.range
}
}
/// Returns true if one range overlaps with the other at all.
fn overlaps<T: Copy + Ord>(a: &Range<T>, b: &Range<T>) -> bool {
max(a.start, b.start) < min(a.end, b.end)
}
/// Tracks non-overlapping slices of main memory.
pub struct MemoryTracker {
total: MemoryRange,
page_table: mmu::PageTable,
regions: ArrayVec<[MemoryRegion; MemoryTracker::CAPACITY]>,
mmio_regions: ArrayVec<[MemoryRange; MemoryTracker::MMIO_CAPACITY]>,
}
/// Errors for MemoryTracker operations.
#[derive(Debug, Clone)]
pub enum MemoryTrackerError {
/// Tried to modify the memory base address.
DifferentBaseAddress,
/// Tried to shrink to a larger memory size.
SizeTooLarge,
/// Tracked regions would not fit in memory size.
SizeTooSmall,
/// Reached limit number of tracked regions.
Full,
/// Region is out of the tracked memory address space.
OutOfRange,
/// New region overlaps with tracked regions.
Overlaps,
/// Region couldn't be mapped.
FailedToMap,
/// Error from the interaction with the hypervisor.
Hypervisor(hyp::Error),
/// Failure to set `SHARED_POOL`.
SharedPoolSetFailure,
}
impl fmt::Display for MemoryTrackerError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
Self::DifferentBaseAddress => write!(f, "Received different base address"),
Self::SizeTooLarge => write!(f, "Tried to shrink to a larger memory size"),
Self::SizeTooSmall => write!(f, "Tracked regions would not fit in memory size"),
Self::Full => write!(f, "Reached limit number of tracked regions"),
Self::OutOfRange => write!(f, "Region is out of the tracked memory address space"),
Self::Overlaps => write!(f, "New region overlaps with tracked regions"),
Self::FailedToMap => write!(f, "Failed to map the new region"),
Self::Hypervisor(e) => e.fmt(f),
Self::SharedPoolSetFailure => write!(f, "Failed to set SHARED_POOL"),
}
}
}
impl From<hyp::Error> for MemoryTrackerError {
fn from(e: hyp::Error) -> Self {
Self::Hypervisor(e)
}
}
type Result<T> = result::Result<T, MemoryTrackerError>;
static SHARED_POOL: OnceBox<LockedHeap<32>> = OnceBox::new();
impl MemoryTracker {
const CAPACITY: usize = 5;
const MMIO_CAPACITY: usize = 5;
const PVMFW_RANGE: MemoryRange = (BASE_ADDR - SIZE_4MB)..BASE_ADDR;
/// Create a new instance from an active page table, covering the maximum RAM size.
pub fn new(page_table: mmu::PageTable) -> Self {
Self {
total: BASE_ADDR..MAX_ADDR,
page_table,
regions: ArrayVec::new(),
mmio_regions: ArrayVec::new(),
}
}
/// Resize the total RAM size.
///
/// This function fails if it contains regions that are not included within the new size.
pub fn shrink(&mut self, range: &MemoryRange) -> Result<()> {
if range.start != self.total.start {
return Err(MemoryTrackerError::DifferentBaseAddress);
}
if self.total.end < range.end {
return Err(MemoryTrackerError::SizeTooLarge);
}
if !self.regions.iter().all(|r| r.is_within(range)) {
return Err(MemoryTrackerError::SizeTooSmall);
}
self.total = range.clone();
Ok(())
}
/// Allocate the address range for a const slice; returns None if failed.
pub fn alloc_range(&mut self, range: &MemoryRange) -> Result<MemoryRange> {
let region = MemoryRegion { range: range.clone(), mem_type: MemoryType::ReadOnly };
self.check(&region)?;
self.page_table.map_rodata(range).map_err(|e| {
error!("Error during range allocation: {e}");
MemoryTrackerError::FailedToMap
})?;
self.add(region)
}
/// Allocate the address range for a mutable slice; returns None if failed.
pub fn alloc_range_mut(&mut self, range: &MemoryRange) -> Result<MemoryRange> {
let region = MemoryRegion { range: range.clone(), mem_type: MemoryType::ReadWrite };
self.check(&region)?;
self.page_table.map_data(range).map_err(|e| {
error!("Error during mutable range allocation: {e}");
MemoryTrackerError::FailedToMap
})?;
self.add(region)
}
/// Allocate the address range for a const slice; returns None if failed.
pub fn alloc(&mut self, base: usize, size: NonZeroUsize) -> Result<MemoryRange> {
self.alloc_range(&(base..(base + size.get())))
}
/// Allocate the address range for a mutable slice; returns None if failed.
pub fn alloc_mut(&mut self, base: usize, size: NonZeroUsize) -> Result<MemoryRange> {
self.alloc_range_mut(&(base..(base + size.get())))
}
/// Checks that the given range of addresses is within the MMIO region, and then maps it
/// appropriately.
pub fn map_mmio_range(&mut self, range: MemoryRange) -> Result<()> {
// MMIO space is below the main memory region.
if range.end > self.total.start || overlaps(&Self::PVMFW_RANGE, &range) {
return Err(MemoryTrackerError::OutOfRange);
}
if self.mmio_regions.iter().any(|r| overlaps(r, &range)) {
return Err(MemoryTrackerError::Overlaps);
}
if self.mmio_regions.len() == self.mmio_regions.capacity() {
return Err(MemoryTrackerError::Full);
}
self.page_table.map_device(&range).map_err(|e| {
error!("Error during MMIO device mapping: {e}");
MemoryTrackerError::FailedToMap
})?;
for page_base in page_iterator(&range) {
get_hypervisor().mmio_guard_map(page_base)?;
}
if self.mmio_regions.try_push(range).is_some() {
return Err(MemoryTrackerError::Full);
}
Ok(())
}
/// Checks that the given region is within the range of the `MemoryTracker` and doesn't overlap
/// with any other previously allocated regions, and that the regions ArrayVec has capacity to
/// add it.
fn check(&self, region: &MemoryRegion) -> Result<()> {
if !region.is_within(&self.total) {
return Err(MemoryTrackerError::OutOfRange);
}
if self.regions.iter().any(|r| r.overlaps(&region.range)) {
return Err(MemoryTrackerError::Overlaps);
}
if self.regions.len() == self.regions.capacity() {
return Err(MemoryTrackerError::Full);
}
Ok(())
}
fn add(&mut self, region: MemoryRegion) -> Result<MemoryRange> {
if self.regions.try_push(region).is_some() {
return Err(MemoryTrackerError::Full);
}
Ok(self.regions.last().unwrap().as_ref().clone())
}
/// Unmaps all tracked MMIO regions from the MMIO guard.
///
/// Note that they are not unmapped from the page table.
pub fn mmio_unmap_all(&self) -> Result<()> {
for region in &self.mmio_regions {
for page_base in page_iterator(region) {
get_hypervisor().mmio_guard_unmap(page_base)?;
}
}
Ok(())
}
/// Initialize a separate heap for shared memory allocations.
///
/// Some hypervisors such as Gunyah do not support a MemShare API for guest
/// to share its memory with host. Instead they allow host to designate part
/// of guest memory as "shared" ahead of guest starting its execution. The
/// shared memory region is indicated in swiotlb node. On such platforms use
/// a separate heap to allocate buffers that can be shared with host.
pub fn init_shared_pool(&mut self, range: Range<usize>) -> Result<()> {
let size = NonZeroUsize::new(range.len()).unwrap();
let range = self.alloc_mut(range.start, size)?;
let shared_pool = LockedHeap::<32>::new();
// SAFETY - `range` should be a valid region of memory as validated by
// `validate_swiotlb_info` and not used by any other rust code.
unsafe {
shared_pool.lock().init(range.start, range.len());
}
SHARED_POOL
.set(Box::new(shared_pool))
.map_err(|_| MemoryTrackerError::SharedPoolSetFailure)?;
Ok(())
}
}
impl Drop for MemoryTracker {
fn drop(&mut self) {
for region in &self.regions {
match region.mem_type {
MemoryType::ReadWrite => {
// TODO(b/269738062): Use PT's dirty bit to only flush pages that were touched.
helpers::flush_region(region.range.start, region.range.len())
}
MemoryType::ReadOnly => {}
}
}
}
}
/// Gives the KVM host read, write and execute permissions on the given memory range. If the range
/// is not aligned with the memory protection granule then it will be extended on either end to
/// align.
fn share_range(range: &MemoryRange, granule: usize) -> hyp::Result<()> {
for base in (align_down(range.start, granule)
.expect("Memory protection granule was not a power of two")..range.end)
.step_by(granule)
{
get_hypervisor().mem_share(base as u64)?;
}
Ok(())
}
/// Removes permission from the KVM host to access the given memory range which was previously
/// shared. If the range is not aligned with the memory protection granule then it will be extended
/// on either end to align.
fn unshare_range(range: &MemoryRange, granule: usize) -> hyp::Result<()> {
for base in (align_down(range.start, granule)
.expect("Memory protection granule was not a power of two")..range.end)
.step_by(granule)
{
get_hypervisor().mem_unshare(base as u64)?;
}
Ok(())
}
/// Allocates a memory range of at least the given size that is shared with
/// host. Returns a pointer to the buffer.
///
/// It will be aligned to the memory sharing granule size supported by the hypervisor.
pub fn alloc_shared(size: usize) -> hyp::Result<NonNull<u8>> {
let layout = shared_buffer_layout(size)?;
let granule = layout.align();
if let Some(shared_pool) = SHARED_POOL.get() {
// Safe because `shared_buffer_layout` panics if the size is 0, so the
// layout must have a non-zero size.
let buffer = unsafe { shared_pool.alloc_zeroed(layout) };
let Some(buffer) = NonNull::new(buffer) else {
handle_alloc_error(layout);
};
return Ok(buffer);
}
// Safe because `shared_buffer_layout` panics if the size is 0, so the layout must have a
// non-zero size.
let buffer = unsafe { alloc_zeroed(layout) };
let Some(buffer) = NonNull::new(buffer) else {
handle_alloc_error(layout);
};
let paddr = virt_to_phys(buffer);
// If share_range fails then we will leak the allocation, but that seems better than having it
// be reused while maybe still partially shared with the host.
share_range(&(paddr..paddr + layout.size()), granule)?;
Ok(buffer)
}
/// Unshares and deallocates a memory range which was previously allocated by `alloc_shared`.
///
/// The size passed in must be the size passed to the original `alloc_shared` call.
///
/// # Safety
///
/// The memory must have been allocated by `alloc_shared` with the same size, and not yet
/// deallocated.
pub unsafe fn dealloc_shared(vaddr: NonNull<u8>, size: usize) -> hyp::Result<()> {
let layout = shared_buffer_layout(size)?;
let granule = layout.align();
if let Some(shared_pool) = SHARED_POOL.get() {
// Safe because the memory was allocated by `alloc_shared` above using
// the same allocator, and the layout is the same as was used then.
unsafe { shared_pool.dealloc(vaddr.as_ptr(), layout) };
return Ok(());
}
let paddr = virt_to_phys(vaddr);
unshare_range(&(paddr..paddr + layout.size()), granule)?;
// Safe because the memory was allocated by `alloc_shared` above using the same allocator, and
// the layout is the same as was used then.
unsafe { dealloc(vaddr.as_ptr(), layout) };
Ok(())
}
/// Returns the layout to use for allocating a buffer of at least the given size shared with the
/// host.
///
/// It will be aligned to the memory sharing granule size supported by the hypervisor.
///
/// Panics if `size` is 0.
fn shared_buffer_layout(size: usize) -> hyp::Result<Layout> {
assert_ne!(size, 0);
let granule = get_hypervisor().memory_protection_granule()?;
let allocated_size =
align_up(size, granule).expect("Memory protection granule was not a power of two");
Ok(Layout::from_size_align(allocated_size, granule).unwrap())
}
/// Returns an iterator which yields the base address of each 4 KiB page within the given range.
fn page_iterator(range: &MemoryRange) -> impl Iterator<Item = usize> {
(page_4kb_of(range.start)..range.end).step_by(SIZE_4KB)
}
/// Returns the intermediate physical address corresponding to the given virtual address.
///
/// As we use identity mapping for everything, this is just a cast, but it's useful to use it to be
/// explicit about where we are converting from virtual to physical address.
pub fn virt_to_phys(vaddr: NonNull<u8>) -> usize {
vaddr.as_ptr() as _
}
/// Returns a pointer for the virtual address corresponding to the given non-zero intermediate
/// physical address.
///
/// Panics if `paddr` is 0.
pub fn phys_to_virt(paddr: usize) -> NonNull<u8> {
NonNull::new(paddr as _).unwrap()
}