blob: d1bf85c86ea4345ab09b290e4878e23e6e8f7e28 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "SampleDriver"
#include "SampleDriver.h"
#include <android-base/logging.h>
#include <android-base/properties.h>
#include <android-base/scopeguard.h>
#include <android/binder_auto_utils.h>
#include <android/binder_interface_utils.h>
#include <android/binder_manager.h>
#include <android/binder_process.h>
#include <nnapi/Result.h>
#include <nnapi/Types.h>
#include <nnapi/Validation.h>
#include <nnapi/hal/aidl/Conversions.h>
#include <nnapi/hal/aidl/Utils.h>
#include <algorithm>
#include <chrono>
#include <map>
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <thread>
#include <tuple>
#include <utility>
#include <variant>
#include <vector>
#include "AidlBufferTracker.h"
#include "AidlHalUtils.h"
#include "CpuExecutor.h"
#include "SampleDriverUtils.h"
#include "Tracing.h"
#include "Utils.h"
namespace android {
namespace nn {
namespace sample_driver {
namespace {
int64_t nanosecondsDuration(TimePoint end, TimePoint start) {
return std::chrono::duration_cast<std::chrono::nanoseconds>(end - start).count();
};
constexpr aidl_hal::Timing kNoTiming = {.timeOnDeviceNs = -1, .timeInDriverNs = -1};
} // namespace
ndk::ScopedAStatus SampleDriver::getVersionString(std::string* versionString) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getVersionString");
*versionString = "JUST_AN_EXAMPLE";
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus SampleDriver::getType(aidl_hal::DeviceType* deviceType) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION, "SampleDriver::getType");
*deviceType = aidl_hal::DeviceType::CPU;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus SampleDriver::getSupportedExtensions(
std::vector<aidl_hal::Extension>* supportedExtensions) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getSupportedExtensions");
*supportedExtensions = {/* No extensions. */};
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus SampleDriver::getNumberOfCacheFilesNeeded(
aidl_hal::NumberOfCacheFiles* numberOfCacheFiles) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INITIALIZATION,
"SampleDriver::getNumberOfCacheFilesNeeded");
// Set both numbers to be 0 for cache not supported.
numberOfCacheFiles->numDataCache = 0;
numberOfCacheFiles->numModelCache = 0;
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus SampleDriver::prepareModel(
const aidl_hal::Model& model, aidl_hal::ExecutionPreference preference,
aidl_hal::Priority priority, int64_t deadlineNs,
const std::vector<ndk::ScopedFileDescriptor>& /*modelCache*/,
const std::vector<ndk::ScopedFileDescriptor>& /*dataCache*/,
const std::vector<uint8_t>& /*token*/,
const std::shared_ptr<aidl_hal::IPreparedModelCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION, "SampleDriver::prepareModel");
auto copiedModel = aidl_hal::utils::clone(model);
if (!copiedModel.has_value()) {
return toAStatus(aidl_hal::ErrorStatus::GENERAL_FAILURE, copiedModel.error().message);
}
return prepareModelBase(std::move(copiedModel).value(), this, preference, priority, deadlineNs,
callback);
}
ndk::ScopedAStatus SampleDriver::prepareModelFromCache(
int64_t /*deadlineNs*/, const std::vector<ndk::ScopedFileDescriptor>& /*modelCache*/,
const std::vector<ndk::ScopedFileDescriptor>& /*dataCache*/,
const std::vector<uint8_t>& /*token*/,
const std::shared_ptr<aidl_hal::IPreparedModelCallback>& callback) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_COMPILATION,
"SampleDriver::prepareModelFromCache");
notify(callback, aidl_hal::ErrorStatus::GENERAL_FAILURE, nullptr);
return toAStatus(aidl_hal::ErrorStatus::GENERAL_FAILURE,
"Caching is not supported in the sample driver.");
}
// Safely downcast an IPreparedModel object to SamplePreparedModel.
// This function will return nullptr if the IPreparedModel object is not originated from the sample
// driver process.
static const SamplePreparedModel* castToSamplePreparedModel(
const std::shared_ptr<aidl_hal::IPreparedModel>& preparedModel) {
if (preparedModel->isRemote()) {
return nullptr;
} else {
// This static_cast is safe because SamplePreparedModel is the only class that implements
// the IPreparedModel interface in the sample driver process.
return static_cast<const SamplePreparedModel*>(preparedModel.get());
}
}
ndk::ScopedAStatus SampleDriver::allocate(
const aidl_hal::BufferDesc& desc,
const std::vector<aidl_hal::IPreparedModelParcel>& halPreparedModels,
const std::vector<aidl_hal::BufferRole>& inputRoles,
const std::vector<aidl_hal::BufferRole>& outputRoles, aidl_hal::DeviceBuffer* buffer) {
VLOG(DRIVER) << "SampleDriver::allocate";
constexpr auto getModel = [](const std::shared_ptr<aidl_hal::IPreparedModel>& preparedModel)
-> const aidl_hal::Model* {
const auto* samplePreparedModel = castToSamplePreparedModel(preparedModel);
if (samplePreparedModel == nullptr) {
LOG(ERROR) << "SampleDriver::allocate -- unknown remote IPreparedModel.";
return nullptr;
}
return samplePreparedModel->getModel();
};
std::vector<std::shared_ptr<aidl_hal::IPreparedModel>> preparedModels;
preparedModels.reserve(halPreparedModels.size());
for (const auto& halPreparedModelParcel : halPreparedModels) {
preparedModels.push_back(halPreparedModelParcel.preparedModel);
}
std::set<AidlHalPreparedModelRole> roles;
aidl_hal::Operand operand;
if (!validateMemoryDesc(desc, preparedModels, inputRoles, outputRoles, getModel, &roles,
&operand)) {
LOG(ERROR) << "SampleDriver::allocate -- validation failed.";
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT,
"SampleDriver::allocate -- validation failed.");
}
if (isExtensionOperandType(operand.type)) {
LOG(ERROR) << "SampleDriver::allocate -- does not support extension type.";
return toAStatus(aidl_hal::ErrorStatus::GENERAL_FAILURE,
"SampleDriver::allocate -- does not support extension type.");
}
// TODO(xusongw): Support allocating buffers with unknown dimensions or rank.
// An operand obtained from validateMemoryDesc is guaranteed to be representable in canonical
// types.
uint32_t size = nonExtensionOperandSizeOfData(convert(operand.type).value(),
toUnsigned(operand.dimensions).value());
VLOG(DRIVER) << "SampleDriver::allocate -- type = " << toString(operand.type)
<< ", dimensions = " << toString(operand.dimensions) << ", size = " << size;
if (size == 0) {
LOG(ERROR) << "SampleDriver::allocate -- does not support dynamic output shape.";
return toAStatus(aidl_hal::ErrorStatus::GENERAL_FAILURE,
"SampleDriver::allocate -- does not support dynamic output shape.");
}
// An operand obtained from validateMemoryDesc is guaranteed to be representable in canonical
// types, so it safe to do an unvalidated conversion here.
auto bufferWrapper =
AidlManagedBuffer::create(size, std::move(roles), unvalidatedConvert(operand).value());
if (bufferWrapper == nullptr) {
LOG(ERROR) << "SampleDriver::allocate -- not enough memory.";
return toAStatus(aidl_hal::ErrorStatus::GENERAL_FAILURE,
"SampleDriver::allocate -- not enough memory.");
}
auto token = mBufferTracker->add(bufferWrapper);
if (token == nullptr) {
LOG(ERROR) << "SampleDriver::allocate -- AidlBufferTracker returned invalid token.";
return toAStatus(aidl_hal::ErrorStatus::GENERAL_FAILURE,
"SampleDriver::allocate -- AidlBufferTracker returned invalid token.");
}
const uint32_t tokenValue = token->get();
std::shared_ptr<SampleBuffer> sampleBuffer =
ndk::SharedRefBase::make<SampleBuffer>(std::move(bufferWrapper), std::move(token));
VLOG(DRIVER) << "SampleDriver::allocate -- successfully allocates the requested memory";
buffer->buffer = std::move(sampleBuffer);
buffer->token = tokenValue;
return ndk::ScopedAStatus::ok();
}
int SampleDriver::run() {
ABinderProcess_setThreadPoolMaxThreadCount(4);
const std::string name = std::string(SampleDriver::descriptor) + "/" + mName;
const binder_status_t status = AServiceManager_addService(this->asBinder().get(), name.c_str());
if (status != STATUS_OK) {
return 1;
}
ABinderProcess_joinThreadPool();
return 1;
}
static void copyRunTimePoolInfos(const RunTimePoolInfo& srcPool, const RunTimePoolInfo& dstPool) {
CHECK(srcPool.getBuffer() != nullptr);
CHECK(dstPool.getBuffer() != nullptr);
CHECK(srcPool.getSize() == dstPool.getSize());
std::copy(srcPool.getBuffer(), srcPool.getBuffer() + srcPool.getSize(), dstPool.getBuffer());
dstPool.flush();
}
ndk::ScopedAStatus SampleBuffer::copyTo(const aidl_hal::Memory& dst) {
const auto canonicalMemory = convert(dst);
if (!canonicalMemory.has_value()) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT, canonicalMemory.error().message);
}
const auto dstPool = RunTimePoolInfo::createFromMemory(canonicalMemory.value());
if (!dstPool.has_value()) {
LOG(ERROR) << "SampleBuffer::copyTo -- unable to map dst memory.";
return toAStatus(aidl_hal::ErrorStatus::GENERAL_FAILURE,
"SampleBuffer::copyTo -- unable to map dst memory.");
}
const auto validationStatus =
aidl_hal::utils::convert(kBuffer->validateCopyTo(dstPool->getSize())).value();
if (validationStatus != aidl_hal::ErrorStatus::NONE) {
return toAStatus(validationStatus);
}
const auto srcPool = kBuffer->createRunTimePoolInfo();
copyRunTimePoolInfos(srcPool, dstPool.value());
return ndk::ScopedAStatus::ok();
}
static aidl_hal::ErrorStatus copyFromInternal(
const aidl_hal::Memory& src, const std::vector<uint32_t>& dimensions,
const std::shared_ptr<AidlManagedBuffer>& bufferWrapper) {
CHECK(bufferWrapper != nullptr);
const auto canonicalMemory = convert(src);
if (!canonicalMemory.has_value()) {
return aidl_hal::ErrorStatus::INVALID_ARGUMENT;
}
const auto srcPool = RunTimePoolInfo::createFromMemory(canonicalMemory.value());
if (!srcPool.has_value()) {
LOG(ERROR) << "SampleBuffer::copyFrom -- unable to map src memory.";
return aidl_hal::ErrorStatus::GENERAL_FAILURE;
}
const auto validationStatus = aidl_hal::utils::convert(bufferWrapper->validateCopyFrom(
dimensions, srcPool->getSize()))
.value();
if (validationStatus != aidl_hal::ErrorStatus::NONE) {
return validationStatus;
}
const auto dstPool = bufferWrapper->createRunTimePoolInfo();
copyRunTimePoolInfos(srcPool.value(), dstPool);
return aidl_hal::ErrorStatus::NONE;
}
ndk::ScopedAStatus SampleBuffer::copyFrom(const aidl_hal::Memory& src,
const std::vector<int32_t>& dimensions) {
const auto unsignedDimensions = toUnsigned(dimensions);
if (!unsignedDimensions.has_value()) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT,
unsignedDimensions.error().message);
}
const auto status = copyFromInternal(src, unsignedDimensions.value(), kBuffer);
if (status != aidl_hal::ErrorStatus::NONE) {
kBuffer->setInitialized(false);
return toAStatus(status);
}
kBuffer->updateDimensions(unsignedDimensions.value());
kBuffer->setInitialized(true);
return ndk::ScopedAStatus::ok();
}
bool SamplePreparedModel::initialize() {
const auto canonicalPools = convert(mModel.pools);
if (!canonicalPools.has_value()) {
return false;
}
return setRunTimePoolInfosFromCanonicalMemories(&mPoolInfos, canonicalPools.value());
}
static std::tuple<aidl_hal::ErrorStatus, std::vector<RunTimePoolInfo>,
std::vector<std::shared_ptr<AidlManagedBuffer>>>
createRunTimePoolInfos(const Request& request, const SampleDriver& driver,
const SamplePreparedModel* preparedModel) {
std::vector<RunTimePoolInfo> requestPoolInfos;
std::vector<std::shared_ptr<AidlManagedBuffer>> bufferWrappers;
requestPoolInfos.reserve(request.pools.size());
bufferWrappers.reserve(request.pools.size());
for (uint32_t i = 0; i < request.pools.size(); i++) {
const auto& pool = request.pools[i];
if (const auto* memory = std::get_if<SharedMemory>(&pool)) {
auto buffer = RunTimePoolInfo::createFromMemory(*memory);
if (!buffer.has_value()) {
LOG(ERROR) << "createRuntimeMemoriesFromMemoryPools -- could not map pools";
return {aidl_hal::ErrorStatus::GENERAL_FAILURE, {}, {}};
}
requestPoolInfos.push_back(std::move(*buffer));
bufferWrappers.push_back(nullptr);
} else if (const auto* token = std::get_if<Request::MemoryDomainToken>(&pool)) {
auto bufferWrapper = driver.getBufferTracker()->get(static_cast<uint32_t>(*token));
if (bufferWrapper == nullptr) {
return {aidl_hal::ErrorStatus::INVALID_ARGUMENT, {}, {}};
}
const auto validationStatus =
aidl_hal::utils::convert(
bufferWrapper->validateRequest(i, request, preparedModel))
.value();
if (validationStatus != aidl_hal::ErrorStatus::NONE) {
return {validationStatus, {}, {}};
}
requestPoolInfos.push_back(bufferWrapper->createRunTimePoolInfo());
bufferWrappers.push_back(std::move(bufferWrapper));
} else {
// If the pool is not a Memory or a token, the input is invalid.
return {aidl_hal::ErrorStatus::INVALID_ARGUMENT, {}, {}};
}
}
return {aidl_hal::ErrorStatus::NONE, std::move(requestPoolInfos), std::move(bufferWrappers)};
}
static aidl_hal::ErrorStatus updateDeviceMemories(
aidl_hal::ErrorStatus status, const Request& request,
const std::vector<std::shared_ptr<AidlManagedBuffer>>& bufferWrappers,
const std::vector<aidl_hal::OutputShape>& outputShapes) {
if (status == aidl_hal::ErrorStatus::NONE) {
for (uint32_t i = 0; i < request.outputs.size(); i++) {
const uint32_t poolIndex = request.outputs[i].location.poolIndex;
const auto& pool = request.pools[poolIndex];
if (std::holds_alternative<Request::MemoryDomainToken>(pool)) {
const auto unsignedDimensions = toUnsigned(outputShapes[i].dimensions).value();
if (!bufferWrappers[poolIndex]->updateDimensions(unsignedDimensions)) {
return aidl_hal::ErrorStatus::GENERAL_FAILURE;
}
}
}
for (uint32_t i = 0; i < request.outputs.size(); i++) {
const uint32_t poolIndex = request.outputs[i].location.poolIndex;
const auto& pool = request.pools[poolIndex];
if (std::holds_alternative<Request::MemoryDomainToken>(pool)) {
bufferWrappers[poolIndex]->setInitialized(true);
}
}
} else if (status == aidl_hal::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
// If CpuExecutor reports OUTPUT_INSUFFCIENT_SIZE on a device memory, this is because the
// dimensions of the device memory are incorrectly specified. The driver should return
// GENERAL_FAILURE instead in this case.
for (uint32_t i = 0; i < request.outputs.size(); i++) {
const uint32_t poolIndex = request.outputs[i].location.poolIndex;
const auto& pool = request.pools[poolIndex];
if (std::holds_alternative<Request::MemoryDomainToken>(pool)) {
if (!outputShapes[i].isSufficient) {
LOG(ERROR) << "Invalid dimensions for output " << i
<< ": actual shape = " << toString(outputShapes[i].dimensions);
return aidl_hal::ErrorStatus::GENERAL_FAILURE;
}
}
}
}
return aidl_hal::ErrorStatus::NONE;
}
ndk::ScopedAStatus SamplePreparedModel::executeSynchronously(
const aidl_hal::Request& halRequest, bool measureTiming, int64_t halDeadlineNs,
int64_t loopTimeoutDurationNs, aidl_hal::ExecutionResult* executionResult) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SampleDriver::executeSynchronously");
VLOG(DRIVER) << "executeSynchronously(" << SHOW_IF_DEBUG(halRequest.toString()) << ")";
TimePoint driverStart, driverEnd, deviceStart, deviceEnd;
if (measureTiming) driverStart = Clock::now();
const auto model = convert(mModel).value();
auto maybeRequest = convert(halRequest);
if (!maybeRequest.has_value()) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT, maybeRequest.error().message);
}
const auto request = std::move(maybeRequest).value();
const auto validationResult = validateRequestForModel(request, model);
if (!validationResult.ok()) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT, validationResult.error());
}
if (halDeadlineNs < -1) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT,
"Invalid deadline: " + toString(halDeadlineNs));
}
if (loopTimeoutDurationNs < -1) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT,
"Invalid loop timeout duration: " + toString(loopTimeoutDurationNs));
}
const auto deadline = makeDeadline(halDeadlineNs);
if (hasDeadlinePassed(deadline)) {
return toAStatus(aidl_hal::ErrorStatus::MISSED_DEADLINE_PERSISTENT);
}
NNTRACE_FULL_SWITCH(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INPUTS_AND_OUTPUTS,
"SampleDriver::executeSynchronouslyBase");
const auto [poolStatus, requestPoolInfos, bufferWrappers] =
createRunTimePoolInfos(request, *mDriver, this);
if (poolStatus != aidl_hal::ErrorStatus::NONE) {
return toAStatus(poolStatus);
}
NNTRACE_FULL_SWITCH(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SampleDriver::executeSynchronouslyBase");
CpuExecutor executor = mDriver->getExecutor();
if (loopTimeoutDurationNs >= 0) {
executor.setLoopTimeout(loopTimeoutDurationNs);
}
if (deadline.has_value()) {
executor.setDeadline(*deadline);
}
if (measureTiming) deviceStart = Clock::now();
int n = executor.run(model, request, mPoolInfos, requestPoolInfos);
if (measureTiming) deviceEnd = Clock::now();
VLOG(DRIVER) << "executor.run returned " << n;
aidl_hal::ErrorStatus executionStatus = convertResultCodeToAidlErrorStatus(n);
if (executionStatus != aidl_hal::ErrorStatus::NONE &&
executionStatus != aidl_hal::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE) {
return toAStatus(executionStatus);
}
auto outputShapes = aidl_hal::utils::convert(executor.getOutputShapes()).value();
// Update device memory metadata.
const aidl_hal::ErrorStatus updateStatus =
updateDeviceMemories(executionStatus, request, bufferWrappers, outputShapes);
if (updateStatus != aidl_hal::ErrorStatus::NONE) {
return toAStatus(updateStatus);
}
executionResult->outputSufficientSize =
executionStatus != aidl_hal::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE;
executionResult->outputShapes = std::move(outputShapes);
executionResult->timing = kNoTiming;
if (measureTiming && executionStatus == aidl_hal::ErrorStatus::NONE) {
driverEnd = Clock::now();
aidl_hal::Timing timing = {.timeOnDeviceNs = nanosecondsDuration(deviceEnd, deviceStart),
.timeInDriverNs = nanosecondsDuration(driverEnd, driverStart)};
VLOG(DRIVER) << "executeSynchronously timing = " << timing.toString();
executionResult->timing = timing;
}
return ndk::ScopedAStatus::ok();
}
// The sample driver will finish the execution and then return.
ndk::ScopedAStatus SamplePreparedModel::executeFenced(
const aidl_hal::Request& halRequest, const std::vector<ndk::ScopedFileDescriptor>& waitFor,
bool measureTiming, int64_t halDeadlineNs, int64_t loopTimeoutDurationNs,
int64_t durationNs, aidl_hal::FencedExecutionResult* executionResult) {
NNTRACE_FULL(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SamplePreparedModel::executeFenced");
VLOG(DRIVER) << "executeFenced(" << SHOW_IF_DEBUG(halRequest.toString()) << ")";
TimePoint driverStart, driverEnd, deviceStart, deviceEnd;
if (measureTiming) driverStart = Clock::now();
const auto model = convert(mModel).value();
auto maybeRequest = convert(halRequest);
if (!maybeRequest.has_value()) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT, maybeRequest.error().message);
}
const auto request = std::move(maybeRequest).value();
const auto validationResult =
validateRequestForModel(request, model, /*allowUnspecifiedOutput=*/false);
if (!validationResult.ok()) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT, validationResult.error());
}
if (halDeadlineNs < -1) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT,
"Invalid deadline: " + toString(halDeadlineNs));
}
if (loopTimeoutDurationNs < -1) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT,
"Invalid loop timeout duration: " + toString(loopTimeoutDurationNs));
}
if (durationNs < -1) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT,
"Invalid fenced execution duration: " + toString(durationNs));
}
const auto deadline = makeDeadline(halDeadlineNs);
if (hasDeadlinePassed(deadline)) {
return toAStatus(aidl_hal::ErrorStatus::MISSED_DEADLINE_PERSISTENT);
}
// Wait for the dependent events to signal
for (const auto& fenceHandle : waitFor) {
int syncFenceFd = fenceHandle.get();
if (syncWait(syncFenceFd, -1) != FenceState::SIGNALED) {
LOG(ERROR) << "syncWait failed";
return toAStatus(aidl_hal::ErrorStatus::GENERAL_FAILURE, "syncWait failed");
}
}
// Update deadline if the timeout duration is closer than the deadline.
auto closestDeadline = deadline;
if (durationNs >= 0) {
const auto timeoutDurationDeadline = makeDeadline(durationNs);
if (!closestDeadline.has_value() || *closestDeadline > timeoutDurationDeadline) {
closestDeadline = timeoutDurationDeadline;
}
}
TimePoint driverStartAfterFence;
if (measureTiming) driverStartAfterFence = Clock::now();
NNTRACE_FULL_SWITCH(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_INPUTS_AND_OUTPUTS,
"SamplePreparedModel::executeFenced");
const auto [poolStatus, requestPoolInfos, bufferWrappers] =
createRunTimePoolInfos(request, *mDriver, this);
if (poolStatus != aidl_hal::ErrorStatus::NONE) {
return toAStatus(poolStatus);
}
NNTRACE_FULL_SWITCH(NNTRACE_LAYER_DRIVER, NNTRACE_PHASE_EXECUTION,
"SamplePreparedModel::executeFenced");
CpuExecutor executor = mDriver->getExecutor();
if (loopTimeoutDurationNs >= 0) {
executor.setLoopTimeout(loopTimeoutDurationNs);
}
if (closestDeadline.has_value()) {
executor.setDeadline(*closestDeadline);
}
if (measureTiming) deviceStart = Clock::now();
int n = executor.run(model, request, mPoolInfos, requestPoolInfos);
if (measureTiming) deviceEnd = Clock::now();
VLOG(DRIVER) << "executor.run returned " << n;
aidl_hal::ErrorStatus executionStatus = convertResultCodeToAidlErrorStatus(n);
if (executionStatus != aidl_hal::ErrorStatus::NONE) {
return toAStatus(executionStatus);
}
// Set output memories to the initialized state.
if (executionStatus == aidl_hal::ErrorStatus::NONE) {
for (const auto& output : request.outputs) {
const uint32_t poolIndex = output.location.poolIndex;
const auto& pool = request.pools[poolIndex];
if (std::holds_alternative<Request::MemoryDomainToken>(pool)) {
bufferWrappers[poolIndex]->setInitialized(true);
}
}
}
aidl_hal::Timing timingSinceLaunch = kNoTiming;
aidl_hal::Timing timingAfterFence = kNoTiming;
if (measureTiming) {
driverEnd = Clock::now();
timingSinceLaunch = {.timeOnDeviceNs = nanosecondsDuration(deviceEnd, deviceStart),
.timeInDriverNs = nanosecondsDuration(driverEnd, driverStart)};
timingAfterFence = {
.timeOnDeviceNs = nanosecondsDuration(deviceEnd, deviceStart),
.timeInDriverNs = nanosecondsDuration(driverEnd, driverStartAfterFence)};
VLOG(DRIVER) << "executeFenced timingSinceLaunch = " << timingSinceLaunch.toString();
VLOG(DRIVER) << "executeFenced timingAfterFence = " << timingAfterFence.toString();
}
executionResult->callback = ndk::SharedRefBase::make<SampleFencedExecutionCallback>(
timingSinceLaunch, timingAfterFence, executionStatus);
executionResult->syncFence = ndk::ScopedFileDescriptor();
return ndk::ScopedAStatus::ok();
}
ndk::ScopedAStatus SamplePreparedModel::configureExecutionBurst(
std::shared_ptr<aidl_hal::IBurst>* burst) {
std::shared_ptr<SamplePreparedModel> self = this->template ref<SamplePreparedModel>();
*burst = ndk::SharedRefBase::make<SampleBurst>(std::move(self));
return ndk::ScopedAStatus::ok();
}
SampleBurst::SampleBurst(std::shared_ptr<SamplePreparedModel> preparedModel)
: kPreparedModel(std::move(preparedModel)) {
CHECK(kPreparedModel != nullptr);
}
ndk::ScopedAStatus SampleBurst::executeSynchronously(
const aidl_hal::Request& request, const std::vector<int64_t>& memoryIdentifierTokens,
bool measureTiming, int64_t deadlineNs, int64_t loopTimeoutDurationNs,
aidl_hal::ExecutionResult* executionResult) {
if (request.pools.size() != memoryIdentifierTokens.size()) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT,
"request.pools.size() != memoryIdentifierTokens.size()");
}
if (!std::all_of(memoryIdentifierTokens.begin(), memoryIdentifierTokens.end(),
[](int64_t token) { return token >= -1; })) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT, "Invalid memoryIdentifierTokens");
}
// Ensure at most one execution is in flight at a time.
const bool executionAlreadyInFlight = mExecutionInFlight.test_and_set();
if (executionAlreadyInFlight) {
return toAStatus(aidl_hal::ErrorStatus::GENERAL_FAILURE,
"Burst object supports at most one execution at a time");
}
const auto guard = base::make_scope_guard([this] { mExecutionInFlight.clear(); });
return kPreparedModel->executeSynchronously(request, measureTiming, deadlineNs,
loopTimeoutDurationNs, executionResult);
}
ndk::ScopedAStatus SampleBurst::releaseMemoryResource(int64_t memoryIdentifierToken) {
if (memoryIdentifierToken < -1) {
return toAStatus(aidl_hal::ErrorStatus::INVALID_ARGUMENT, "Invalid memoryIdentifierToken");
}
return ndk::ScopedAStatus::ok();
}
} // namespace sample_driver
} // namespace nn
} // namespace android