blob: 87526885d5a263848fe1e51e42d9484688ef706f [file] [log] [blame]
// Generated from maximum.mod.py
// DO NOT EDIT
// clang-format off
#include "TestGenerated.h"
namespace generated_tests::maximum {
void CreateModel(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {3, 1, 2});
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto input1 = model->addOperand(&type0);
auto output0 = model->addOperand(&type0);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0, input1},
{output0});
assert(model->isValid());
}
bool is_ignored(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_relaxed(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {3, 1, 2});
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto input1 = model->addOperand(&type0);
auto output0 = model->addOperand(&type0);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0, input1},
{output0});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
bool is_ignored_relaxed(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_float16(Model *model) {
OperandType type4(Type::TENSOR_FLOAT16, {3, 1, 2});
// Phase 1, operands
auto input0 = model->addOperand(&type4);
auto input1 = model->addOperand(&type4);
auto output0 = model->addOperand(&type4);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0, input1},
{output0});
assert(model->isValid());
}
bool is_ignored_float16(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_int32(Model *model) {
OperandType type5(Type::TENSOR_INT32, {3, 1, 2});
// Phase 1, operands
auto input0 = model->addOperand(&type5);
auto input1 = model->addOperand(&type5);
auto output0 = model->addOperand(&type5);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0, input1},
{output0});
assert(model->isValid());
}
bool is_ignored_int32(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_quant8(Model *model) {
OperandType type6(Type::TENSOR_QUANT8_ASYMM, {3, 1, 2}, 0.5f, 127);
OperandType type7(Type::TENSOR_QUANT8_ASYMM, {3, 1, 2}, 1.0f, 100);
OperandType type8(Type::TENSOR_QUANT8_ASYMM, {3, 1, 2}, 2.0f, 80);
// Phase 1, operands
auto input0 = model->addOperand(&type6);
auto input1 = model->addOperand(&type7);
auto output0 = model->addOperand(&type8);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0, input1},
{output0});
assert(model->isValid());
}
bool is_ignored_quant8(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_dynamic_output_shape(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {3, 1, 2});
OperandType type9(Type::TENSOR_FLOAT32, {0, 0, 0});
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto input1 = model->addOperand(&type0);
auto output0 = model->addOperand(&type9);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0, input1},
{output0});
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_dynamic_output_shape_relaxed(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {3, 1, 2});
OperandType type9(Type::TENSOR_FLOAT32, {0, 0, 0});
// Phase 1, operands
auto input0 = model->addOperand(&type0);
auto input1 = model->addOperand(&type0);
auto output0 = model->addOperand(&type9);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0, input1},
{output0});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape_relaxed(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_dynamic_output_shape_float16(Model *model) {
OperandType type10(Type::TENSOR_FLOAT16, {0, 0, 0});
OperandType type4(Type::TENSOR_FLOAT16, {3, 1, 2});
// Phase 1, operands
auto input0 = model->addOperand(&type4);
auto input1 = model->addOperand(&type4);
auto output0 = model->addOperand(&type10);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0, input1},
{output0});
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape_float16(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_dynamic_output_shape_int32(Model *model) {
OperandType type11(Type::TENSOR_INT32, {0, 0, 0});
OperandType type5(Type::TENSOR_INT32, {3, 1, 2});
// Phase 1, operands
auto input0 = model->addOperand(&type5);
auto input1 = model->addOperand(&type5);
auto output0 = model->addOperand(&type11);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0, input1},
{output0});
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape_int32(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_dynamic_output_shape_quant8(Model *model) {
OperandType type12(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0}, 2.0f, 80);
OperandType type6(Type::TENSOR_QUANT8_ASYMM, {3, 1, 2}, 0.5f, 127);
OperandType type7(Type::TENSOR_QUANT8_ASYMM, {3, 1, 2}, 1.0f, 100);
// Phase 1, operands
auto input0 = model->addOperand(&type6);
auto input1 = model->addOperand(&type7);
auto output0 = model->addOperand(&type12);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input0, input1}, {output0});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input0, input1},
{output0});
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape_quant8(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_2(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {3, 1, 2});
OperandType type1(Type::TENSOR_FLOAT32, {2});
// Phase 1, operands
auto input01 = model->addOperand(&type0);
auto input11 = model->addOperand(&type1);
auto output01 = model->addOperand(&type0);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input01, input11}, {output01});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input01, input11},
{output01});
assert(model->isValid());
}
bool is_ignored_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_relaxed_2(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {3, 1, 2});
OperandType type1(Type::TENSOR_FLOAT32, {2});
// Phase 1, operands
auto input01 = model->addOperand(&type0);
auto input11 = model->addOperand(&type1);
auto output01 = model->addOperand(&type0);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input01, input11}, {output01});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input01, input11},
{output01});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
bool is_ignored_relaxed_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_float16_2(Model *model) {
OperandType type13(Type::TENSOR_FLOAT16, {2});
OperandType type4(Type::TENSOR_FLOAT16, {3, 1, 2});
// Phase 1, operands
auto input01 = model->addOperand(&type4);
auto input11 = model->addOperand(&type13);
auto output01 = model->addOperand(&type4);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input01, input11}, {output01});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input01, input11},
{output01});
assert(model->isValid());
}
bool is_ignored_float16_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_int32_2(Model *model) {
OperandType type14(Type::TENSOR_INT32, {2});
OperandType type5(Type::TENSOR_INT32, {3, 1, 2});
// Phase 1, operands
auto input01 = model->addOperand(&type5);
auto input11 = model->addOperand(&type14);
auto output01 = model->addOperand(&type5);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input01, input11}, {output01});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input01, input11},
{output01});
assert(model->isValid());
}
bool is_ignored_int32_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_quant8_2(Model *model) {
OperandType type15(Type::TENSOR_QUANT8_ASYMM, {2}, 1.0f, 100);
OperandType type6(Type::TENSOR_QUANT8_ASYMM, {3, 1, 2}, 0.5f, 127);
OperandType type8(Type::TENSOR_QUANT8_ASYMM, {3, 1, 2}, 2.0f, 80);
// Phase 1, operands
auto input01 = model->addOperand(&type6);
auto input11 = model->addOperand(&type15);
auto output01 = model->addOperand(&type8);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input01, input11}, {output01});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input01, input11},
{output01});
assert(model->isValid());
}
bool is_ignored_quant8_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_dynamic_output_shape_2(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {3, 1, 2});
OperandType type1(Type::TENSOR_FLOAT32, {2});
OperandType type9(Type::TENSOR_FLOAT32, {0, 0, 0});
// Phase 1, operands
auto input01 = model->addOperand(&type0);
auto input11 = model->addOperand(&type1);
auto output01 = model->addOperand(&type9);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input01, input11}, {output01});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input01, input11},
{output01});
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_dynamic_output_shape_relaxed_2(Model *model) {
OperandType type0(Type::TENSOR_FLOAT32, {3, 1, 2});
OperandType type1(Type::TENSOR_FLOAT32, {2});
OperandType type9(Type::TENSOR_FLOAT32, {0, 0, 0});
// Phase 1, operands
auto input01 = model->addOperand(&type0);
auto input11 = model->addOperand(&type1);
auto output01 = model->addOperand(&type9);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input01, input11}, {output01});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input01, input11},
{output01});
// Phase 4: set relaxed execution
model->relaxComputationFloat32toFloat16(true);
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape_relaxed_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_dynamic_output_shape_float16_2(Model *model) {
OperandType type10(Type::TENSOR_FLOAT16, {0, 0, 0});
OperandType type13(Type::TENSOR_FLOAT16, {2});
OperandType type4(Type::TENSOR_FLOAT16, {3, 1, 2});
// Phase 1, operands
auto input01 = model->addOperand(&type4);
auto input11 = model->addOperand(&type13);
auto output01 = model->addOperand(&type10);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input01, input11}, {output01});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input01, input11},
{output01});
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape_float16_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_dynamic_output_shape_int32_2(Model *model) {
OperandType type11(Type::TENSOR_INT32, {0, 0, 0});
OperandType type14(Type::TENSOR_INT32, {2});
OperandType type5(Type::TENSOR_INT32, {3, 1, 2});
// Phase 1, operands
auto input01 = model->addOperand(&type5);
auto input11 = model->addOperand(&type14);
auto output01 = model->addOperand(&type11);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input01, input11}, {output01});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input01, input11},
{output01});
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape_int32_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_dynamic_output_shape_quant8_2(Model *model) {
OperandType type12(Type::TENSOR_QUANT8_ASYMM, {0, 0, 0}, 2.0f, 80);
OperandType type15(Type::TENSOR_QUANT8_ASYMM, {2}, 1.0f, 100);
OperandType type6(Type::TENSOR_QUANT8_ASYMM, {3, 1, 2}, 0.5f, 127);
// Phase 1, operands
auto input01 = model->addOperand(&type6);
auto input11 = model->addOperand(&type15);
auto output01 = model->addOperand(&type12);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input01, input11}, {output01});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input01, input11},
{output01});
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape_quant8_2(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_3(Model *model) {
OperandType type2(Type::TENSOR_QUANT8_ASYMM, {2}, 1.0f, 128);
OperandType type3(Type::TENSOR_QUANT8_ASYMM, {2}, 0.5f, 128);
// Phase 1, operands
auto input02 = model->addOperand(&type2);
auto input12 = model->addOperand(&type2);
auto output02 = model->addOperand(&type3);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input02, input12}, {output02});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input02, input12},
{output02});
assert(model->isValid());
}
bool is_ignored_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum
namespace generated_tests::maximum {
void CreateModel_dynamic_output_shape_3(Model *model) {
OperandType type16(Type::TENSOR_QUANT8_ASYMM, {0}, 0.5f, 128);
OperandType type2(Type::TENSOR_QUANT8_ASYMM, {2}, 1.0f, 128);
// Phase 1, operands
auto input02 = model->addOperand(&type2);
auto input12 = model->addOperand(&type2);
auto output02 = model->addOperand(&type16);
// Phase 2, operations
model->addOperation(ANEURALNETWORKS_MAXIMUM, {input02, input12}, {output02});
// Phase 3, inputs and outputs
model->identifyInputsAndOutputs(
{input02, input12},
{output02});
assert(model->isValid());
}
bool is_ignored_dynamic_output_shape_3(int i) {
static std::set<int> ignore = {};
return ignore.find(i) != ignore.end();
}
} // namespace generated_tests::maximum