| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // Contains the implementation of the operations. |
| |
| #define LOG_TAG "Operations" |
| |
| #include "Operations.h" |
| #include "CpuOperationUtils.h" |
| |
| #include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h" |
| #include "tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h" |
| |
| namespace android { |
| namespace nn { |
| |
| bool reshapeGeneric(const void* inputData, const Shape& inputShape, |
| void* outputData, const Shape& outputShape) { |
| size_t count = sizeOfData(inputShape.type, inputShape.dimensions); |
| memcpy(outputData, inputData, count); |
| return true; |
| } |
| |
| bool resizeBilinearFloat32(const float* inputData, const Shape& inputShape, |
| float* outputData, const Shape& outputShape) { |
| int32_t height = (int32_t) getSizeOfDimension(outputShape, 1); |
| int32_t width = (int32_t) getSizeOfDimension(outputShape, 2); |
| |
| int32_t outDimData[2] = {height, width}; |
| // We have to fake a tensor here, to satisfy ResizeBilinear(). |
| Shape outDimShape; |
| outDimShape.dimensions = {1, 1, 1, 2}; |
| |
| tflite::optimized_ops::ResizeBilinear( |
| inputData, convertShapeToDims(inputShape), |
| outDimData, convertShapeToDims(outDimShape), |
| outputData, convertShapeToDims(outputShape)); |
| return true; |
| } |
| |
| bool depthToSpaceGeneric(const uint8_t* inputData, const Shape& inputShape, |
| int32_t blockSize, |
| uint8_t* outputData, const Shape& outputShape) { |
| if (inputShape.type == OperandType::TENSOR_FLOAT32) { |
| tflite::optimized_ops::DepthToSpace( |
| reinterpret_cast<const float*>(inputData), |
| convertShapeToDims(inputShape), |
| blockSize, |
| reinterpret_cast<float*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) { |
| tflite::optimized_ops::DepthToSpace( |
| reinterpret_cast<const uint8_t*>(inputData), |
| convertShapeToDims(inputShape), |
| blockSize, |
| reinterpret_cast<uint8_t*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else { |
| LOG(ERROR) << "Unsupported data type"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool spaceToDepthGeneric(const uint8_t* inputData, const Shape& inputShape, |
| int32_t blockSize, |
| uint8_t* outputData, const Shape& outputShape) { |
| if (inputShape.type == OperandType::TENSOR_FLOAT32) { |
| tflite::optimized_ops::SpaceToDepth( |
| reinterpret_cast<const float*>(inputData), |
| convertShapeToDims(inputShape), |
| blockSize, |
| reinterpret_cast<float*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) { |
| tflite::optimized_ops::SpaceToDepth( |
| reinterpret_cast<const uint8_t*>(inputData), |
| convertShapeToDims(inputShape), |
| blockSize, |
| reinterpret_cast<uint8_t*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else { |
| LOG(ERROR) << "Unsupported data type"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool padGeneric(const uint8_t* inputData, const Shape& inputShape, |
| const int32_t* paddings, |
| uint8_t* outputData, const Shape& outputShape) { |
| int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(inputShape)); |
| |
| std::vector<int> beforePadding; |
| std::vector<int> afterPadding; |
| // The lower level implementation expects the paddings in the reverse order. |
| for (int32_t i = numInputDims - 1; i >= 0; --i) { |
| beforePadding.push_back(paddings[i * 2]); |
| afterPadding.push_back(paddings[i * 2 + 1]); |
| } |
| |
| if (inputShape.type == OperandType::TENSOR_FLOAT32) { |
| tflite::optimized_ops::Pad( |
| reinterpret_cast<const float*>(inputData), |
| convertShapeToDims(inputShape), |
| beforePadding, afterPadding, |
| reinterpret_cast<float*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) { |
| tflite::optimized_ops::Pad( |
| reinterpret_cast<const uint8_t*>(inputData), |
| convertShapeToDims(inputShape), |
| beforePadding, afterPadding, |
| reinterpret_cast<uint8_t*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else { |
| LOG(ERROR) << "Unsupported data type"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool batchToSpaceGeneric(const uint8_t* inputData, const Shape& inputShape, |
| const int32_t* blockSize, |
| uint8_t* outputData, const Shape& outputShape) { |
| // Needed by low level implementation, but not really used. |
| tflite::Dims<4> blockSizeDim; |
| if (inputShape.type == OperandType::TENSOR_FLOAT32) { |
| tflite::optimized_ops::BatchToSpaceND( |
| reinterpret_cast<const float*>(inputData), |
| convertShapeToDims(inputShape), |
| blockSize, blockSizeDim, |
| reinterpret_cast<float*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) { |
| tflite::optimized_ops::BatchToSpaceND( |
| reinterpret_cast<const uint8_t*>(inputData), |
| convertShapeToDims(inputShape), |
| blockSize, blockSizeDim, |
| reinterpret_cast<uint8_t*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else { |
| LOG(ERROR) << "Unsupported data type"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool spaceToBatchGeneric(const uint8_t* inputData, const Shape& inputShape, |
| const int32_t* blockSize, |
| const int32_t* padding, const Shape& paddingShape, |
| uint8_t* outputData, const Shape& outputShape) { |
| // Needed by low level implementation, but not really used. |
| tflite::Dims<4> blockSizeDim; |
| if (inputShape.type == OperandType::TENSOR_FLOAT32) { |
| tflite::optimized_ops::SpaceToBatchND( |
| reinterpret_cast<const float*>(inputData), |
| convertShapeToDims(inputShape), |
| blockSize, blockSizeDim, |
| padding, convertShapeToDims(paddingShape), |
| reinterpret_cast<float*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) { |
| tflite::optimized_ops::SpaceToBatchND( |
| reinterpret_cast<const uint8_t*>(inputData), |
| convertShapeToDims(inputShape), |
| blockSize, blockSizeDim, |
| padding, convertShapeToDims(paddingShape), |
| reinterpret_cast<uint8_t*>(outputData), |
| convertShapeToDims(outputShape)); |
| } else { |
| LOG(ERROR) << "Unsupported data type"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool squeezeGeneric(const void* inputData, const Shape& inputShape, |
| void* outputData, const Shape& outputShape) { |
| size_t count = sizeOfData(inputShape.type, inputShape.dimensions); |
| memcpy(outputData, inputData, count); |
| return true; |
| } |
| |
| bool transposeGeneric(const uint8_t* inputData, const Shape& inputShape, |
| const int32_t* perm, const Shape& permShape, |
| uint8_t* outputData, const Shape& outputShape) { |
| // Reverse the permuted axes and convert to 4D due to the way Dims are |
| // constructed. |
| const int32_t kOutputDimensionNum = 4; |
| |
| int32_t permSize = static_cast<int32_t>(getSizeOfDimension(permShape, 0)); |
| int32_t reversed_perm[kOutputDimensionNum]; |
| for (int32_t output_k = 0, input_k = permSize - 1; output_k < permSize; |
| ++output_k, --input_k) { |
| reversed_perm[output_k] = permSize - perm[input_k] - 1; |
| } |
| for (int32_t k = permSize; k < kOutputDimensionNum; ++k) { |
| reversed_perm[k] = k; |
| } |
| if (inputShape.type == OperandType::TENSOR_FLOAT32) { |
| tflite::reference_ops::Transpose( |
| reinterpret_cast<const float*>(inputData), |
| convertShapeToDims(inputShape), |
| reinterpret_cast<float*>(outputData), |
| convertShapeToDims(outputShape), |
| reversed_perm); |
| } else if (inputShape.type == OperandType::TENSOR_QUANT8_ASYMM) { |
| tflite::reference_ops::Transpose( |
| reinterpret_cast<const uint8_t*>(inputData), |
| convertShapeToDims(inputShape), |
| reinterpret_cast<uint8_t*>(outputData), |
| convertShapeToDims(outputShape), |
| reversed_perm); |
| } else { |
| LOG(ERROR) << "Unsupported data type"; |
| return false; |
| } |
| return true; |
| } |
| } // namespace nn |
| } // namespace android |