blob: db4497a5770f8f414a010a3bb0d58c81cd3df9a1 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Operations.h"
#include "CpuOperationUtils.h"
#include "tensorflow/contrib/lite/kernels/internal/optimized/optimized_ops.h"
namespace android {
namespace nn {
#define ANDROID_NN_POOLING_PARAMETERS \
uint32_t height = getSizeOfDimension(inputShape, 1); \
uint32_t width = getSizeOfDimension(inputShape, 2); \
uint32_t outHeight = getSizeOfDimension(outputShape, 1); \
uint32_t outWidth = getSizeOfDimension(outputShape, 2); \
\
uint32_t paddingHeight = (uint32_t)padding_top; \
uint32_t paddingWidth = (uint32_t)padding_left;
bool averagePoolFloat32(const float* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
float* outputData, const Shape& outputShape) {
ANDROID_NN_POOLING_PARAMETERS
float output_activation_min, output_activation_max;
CalculateActivationRangeFloat(activation, &output_activation_min,
&output_activation_max);
tflite::optimized_ops::AveragePool(
inputData, convertShapeToDims(inputShape),
stride_width, stride_height, paddingWidth, paddingHeight,
filter_width, filter_height,
output_activation_min, output_activation_max,
outputData, convertShapeToDims(outputShape));
return true;
}
bool averagePoolQuant8(const uint8_t* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
uint8_t* outputData, const Shape& outputShape) {
ANDROID_NN_POOLING_PARAMETERS
int32_t output_activation_min = 0;
int32_t output_activation_max = 0;
CalculateActivationRangeUint8(activation, outputShape,
&output_activation_min,
&output_activation_max);
tflite::optimized_ops::AveragePool(
inputData, convertShapeToDims(inputShape),
stride_width, stride_height, paddingWidth, paddingHeight,
filter_width, filter_height,
output_activation_min, output_activation_max,
outputData, convertShapeToDims(outputShape));
return true;
}
bool l2PoolFloat32(const float* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
float* outputData, const Shape& outputShape) {
ANDROID_NN_POOLING_PARAMETERS
float output_activation_min, output_activation_max;
CalculateActivationRangeFloat(activation, &output_activation_min,
&output_activation_max);
tflite::optimized_ops::L2Pool(
inputData, convertShapeToDims(inputShape),
stride_width, stride_height, paddingWidth, paddingHeight,
filter_width, filter_height,
output_activation_min, output_activation_max,
outputData, convertShapeToDims(outputShape));
return true;
}
bool maxPoolFloat32(const float* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
float* outputData, const Shape& outputShape) {
ANDROID_NN_POOLING_PARAMETERS
float output_activation_min, output_activation_max;
CalculateActivationRangeFloat(activation, &output_activation_min,
&output_activation_max);
tflite::optimized_ops::MaxPool(
inputData, convertShapeToDims(inputShape),
stride_width, stride_height, paddingWidth, paddingHeight,
filter_width, filter_height,
output_activation_min, output_activation_max,
outputData, convertShapeToDims(outputShape));
return true;
}
bool maxPoolQuant8(const uint8_t* inputData, const Shape& inputShape,
int32_t padding_left, int32_t padding_right,
int32_t padding_top, int32_t padding_bottom,
int32_t stride_width, int32_t stride_height,
int32_t filter_width, int32_t filter_height, int32_t activation,
uint8_t* outputData, const Shape& outputShape) {
ANDROID_NN_POOLING_PARAMETERS
int32_t output_activation_min = 0;
int32_t output_activation_max = 0;
CalculateActivationRangeUint8(activation, outputShape,
&output_activation_min,
&output_activation_max);
tflite::optimized_ops::MaxPool(
inputData, convertShapeToDims(inputShape),
stride_width, stride_height, paddingWidth, paddingHeight,
filter_width, filter_height,
output_activation_min, output_activation_max,
outputData, convertShapeToDims(outputShape));
return true;
}
#undef ANDROID_NN_POOLING_PARAMETERS
} // namespace nn
} // namespace android