blob: bb5bd2de9ae5f5fd5881930091a70923ce118411 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ControlFlow.h>
#include <HalInterfaces.h>
#include <SampleDriver.h>
#include <Utils.h>
#include <ValidateHal.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <filesystem>
#include <functional>
#include <iostream>
#include <map>
#include <memory>
#include <queue>
#include <set>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "CompilationBuilder.h"
#include "ExecutionPlan.h"
#include "HalUtils.h"
#include "Manager.h"
#include "ModelBuilder.h"
#include "NeuralNetworks.h"
#include "NeuralNetworksOEM.h"
#include "TestNeuralNetworksWrapper.h"
// Uncomment the following line to generate some debugging output that
// may be useful when analyzing failures:
//
// #define VERBOSE VERBOSE
// These tests do whitebox testing of the graph partitioning
// algorithm. It is "whitebox" in the sense that we're not evaluating
// whether a particular partitioning is legal, or "good enough"
// according to some metric, but whether it exactly matches the
// expected behavior of the current partitioning algorithm.
//
// A key part of the current partitioning algorithm is to determine
// which device among the available devices should be the one to
// execute a particular operation from the graph. This determination
// is made "locally" -- i.e., it does not depend on the graph
// topology, only on the properties of the operation in question.
// IDevice::getSupportedOperations() indicates which operations in a
// graph can be executed on a device, and IDevice::getCapabilities()
// indicates how "good" that device is for executing particular kinds
// of operations. For each operation, the partitioning algorithm
// picks the "best" device that is capable of executing that
// operation; if no device can do so, then the algorithm picks the
// cpu.
//
// As part of this testing approach, we want to make it easy to
// specify which operations in a test graph can be executed on which
// devices. We accomplish this in the following way:
// - A unary OEM operation is available.
// - There is a collection of operations (each of which has two inputs
// and one output):
// - Eight kinds of operations available at driver version V1_0 or
// later. They are represented in the graph as ADD or MUL with a
// particular activation function -- two opcodes times four
// activation functions means eight available operation kinds.
// This is a low-level representation detail -- when we specify the
// behavior of the device or build a graph, we do so in terms of
// operation encodings 0..7.
// - Eight kinds of operations available at driver version V1_1 or
// later. They are represented in the graph as DIV or SUB with
// a particular activation function, exactly analogous to ADD
// and MUL above. We use operation encodings 8..15 for them.
// - Four kinds of operations available at driver version V1_2 or
// later. They are represented in the graph as MAXIMUM,
// MINIMUM, POW, or PRELU. These operations take no activation
// function, so we only get 4 operation kinds, for which we
// use operation encodings 16..19.
// - There is another collection of operations (each of which has one input
// and one output):
// - Single operation available at driver version V1_3 or
// later. It is represented in the graph as HARD_SWISH.
// These operations take no activation function, for which we
// use operation encodings 20..20.
// When we instantiate a device for testing purposes, we specify what subset of
// those operations the device is able to execute.
//
// In order to determine whether or not a partitioning matches the
// expected partitioning, we check the number of partitions, check
// which device each partition targets, and compare each partition's
// subgraph, model inputs, model outputs, step model inputs, and
// step model outputs against what is expected. In order to perform
// that comparison, we build a model to compare against a partition's
// step model and run a graph comparison algorithm on it. The graph
// comparison and the inputs and outputs comparisons are syntactic
// rather than semantic comparisons -- they don't allow for
// reorderings of inputs and outputs. Because of this, we need to
// know exactly how the partitioning algorithm orders inputs and
// outputs in order to construct the models and operand lists to
// compare against. Here are some relevant behaviors of the
// partitioning algorithm:
//
// - It builds a subgraph by walking operations in forward topological
// order, and adding each operation's input operands and output
// operands in index order (input followed by output) when that
// operation is added. (It does not add an input that has already
// been added.)
// - It finds model inputs, model outputs, and step model inputs in
// the order the corresponding operands were added to the subgraph
// (see ExecutionStep methods getModelInputs(), getModelOutputs(),
// getTempsAsStepModelInputs(), getOutputsAsStepModelInputs()).
// - It finds temps as step model outputs in numerical order of corresponding
// operand number in the original model (see ExecutionStep method
// getTempsAsStepModelOutputs()).
// - When it calls identifyInputsAndOutputs() on the step model, it
// passes inputs from getModelInputs() in order, followed by temps as
// step model inputs from getTempsAsStepModelInputs() in order,
// followed by outputs as step model inputs from
// getOutputsAsStepModelInputs() in order; and it passes outputs from
// getModelOutputs() in order followed by step model outputs from
// getTempsAsStepModelOutputs() in order.
//
// TODO: Maybe the logic for comparing a partition to an expected
// model should be changed to tolerate reorderings of inputs and
// outputs, so that when we build models and lists to compare
// against, we don't need to worry about input and output
// orderings. But is there a way to do this that still lets us
// verify that we have the correct relationships between
// an (original) model's inputs and outputs and each step model's
// inputs and outputs, as well as the correct relationship
// between step model inputs and outputs across partitions?
namespace {
namespace hardware = android::hardware;
namespace V1_0 = ::android::hardware::neuralnetworks::V1_0;
namespace V1_1 = ::android::hardware::neuralnetworks::V1_1;
namespace V1_2 = ::android::hardware::neuralnetworks::V1_2;
namespace V1_3 = ::android::hardware::neuralnetworks::V1_3;
using CompilationBuilder = ::android::nn::CompilationBuilder;
using Device = ::android::nn::Device;
using SharedDevice = ::android::nn::SharedDevice;
using DeviceManager = ::android::nn::DeviceManager;
using ExecutePreference = ::android::nn::test_wrapper::ExecutePreference;
using ExecutePriority = ::android::nn::test_wrapper::ExecutePriority;
using ExecutionPlan = ::android::nn::ExecutionPlan;
using ExecutionStep = ::android::nn::ExecutionStep;
using HalCacheToken = ::android::nn::HalCacheToken;
using HalVersion = ::android::nn::HalVersion;
using HidlModel = V1_3::Model;
using LogicalStep = ::android::nn::LogicalStep;
using ModelBuilder = ::android::nn::ModelBuilder;
using Operand = ::android::nn::Operand;
using Operation = ::android::nn::Operation;
using OptionalTimePoint = ::android::nn::OptionalTimePoint;
using Result = ::android::nn::test_wrapper::Result;
using SampleDriver = ::android::nn::sample_driver::SampleDriver;
using WrapperCompilation = ::android::nn::test_wrapper::Compilation;
using WrapperExecution = ::android::nn::test_wrapper::Execution;
using WrapperModel = ::android::nn::test_wrapper::Model;
using WrapperOperandType = ::android::nn::test_wrapper::OperandType;
using WrapperSymmPerChannelQuantParams = ::android::nn::test_wrapper::SymmPerChannelQuantParams;
using WrapperType = ::android::nn::test_wrapper::Type;
using android::sp;
void update(V1_3::Capabilities* capabilities, V1_3::OperandType type, float perf) {
V1_0::PerformanceInfo perfInfo = {.execTime = perf, .powerUsage = perf};
::android::nn::update(&capabilities->operandPerformance, type, perfInfo);
}
float lookupExecTime(const V1_3::Capabilities& capabilities, V1_3::OperandType type) {
return ::android::nn::lookup(capabilities.operandPerformance, type).execTime;
}
HalVersion min(HalVersion a, HalVersion b) {
return int32_t(a) < int32_t(b) ? a : b;
}
const uint32_t kNumFuseCodes = 4;
const uint32_t kBadOperation = ~0;
// V1_0 operations
const uint32_t kFirstEncodingADD = 0;
const uint32_t kFirstEncodingMUL = kFirstEncodingADD + kNumFuseCodes;
const uint32_t kFirstEncodingV1_0 = kFirstEncodingADD;
const uint32_t kLastEncodingV1_0 = kFirstEncodingMUL + kNumFuseCodes - 1;
// V1_1 operations
const uint32_t kFirstEncodingDIV = kLastEncodingV1_0 + 1;
const uint32_t kFirstEncodingSUB = kFirstEncodingDIV + kNumFuseCodes;
const uint32_t kFirstEncodingV1_1 = kFirstEncodingDIV;
const uint32_t kLastEncodingV1_1 = kFirstEncodingSUB + kNumFuseCodes - 1;
// V1_2 operations
const uint32_t kFirstEncodingMAXIMUM = kLastEncodingV1_1 + 1;
const uint32_t kFirstEncodingMINIMUM = kFirstEncodingMAXIMUM + 1;
const uint32_t kFirstEncodingPOW = kFirstEncodingMINIMUM + 1;
const uint32_t kFirstEncodingPRELU = kFirstEncodingPOW + 1;
const uint32_t kFirstEncodingV1_2 = kFirstEncodingMAXIMUM;
const uint32_t kLastEncodingV1_2 = kFirstEncodingPRELU;
// V1_3 operations
const uint32_t kFirstEncodingHARD_SWISH = kLastEncodingV1_2 + 1;
const uint32_t kFirstEncodingV1_3 = kFirstEncodingHARD_SWISH;
const uint32_t kLastEncodingV1_3 = kFirstEncodingHARD_SWISH;
const std::map<V1_3::OperationType, uint32_t> operationToFirstEncoding = {
{V1_3::OperationType::ADD, kFirstEncodingADD},
{V1_3::OperationType::MUL, kFirstEncodingMUL},
{V1_3::OperationType::DIV, kFirstEncodingDIV},
{V1_3::OperationType::SUB, kFirstEncodingSUB},
{V1_3::OperationType::MAXIMUM, kFirstEncodingMAXIMUM},
{V1_3::OperationType::MINIMUM, kFirstEncodingMINIMUM},
{V1_3::OperationType::POW, kFirstEncodingPOW},
{V1_3::OperationType::PRELU, kFirstEncodingPRELU},
{V1_3::OperationType::HARD_SWISH, kFirstEncodingHARD_SWISH},
};
// Sorted in reverse order (std::greater) so that we can use map::lower_bound to
// find an entry whose key is numerically less than or equal to a search value.
// mapped_type is (OperandCode, hasFuseCode).
const std::map<uint32_t, std::pair<uint32_t, bool>, std::greater<>> firstEncodingToOperation = {
{kFirstEncodingADD, {ANEURALNETWORKS_ADD, true}},
{kFirstEncodingMUL, {ANEURALNETWORKS_MUL, true}},
{kFirstEncodingDIV, {ANEURALNETWORKS_DIV, true}},
{kFirstEncodingSUB, {ANEURALNETWORKS_SUB, true}},
{kFirstEncodingMAXIMUM, {ANEURALNETWORKS_MAXIMUM, false}},
{kFirstEncodingMINIMUM, {ANEURALNETWORKS_MINIMUM, false}},
{kFirstEncodingPOW, {ANEURALNETWORKS_POW, false}},
{kFirstEncodingPRELU, {ANEURALNETWORKS_PRELU, false}},
{kFirstEncodingHARD_SWISH, {ANEURALNETWORKS_HARD_SWISH, false}},
};
// Look up the operation with the specified index in a graph, and return the
// operation encoding; or, if for some reason this is not one of the encoded
// operations, then return kBadOperation.
uint32_t lookupOperation(std::function<const V1_3::Operation&(uint32_t)> getOperation,
std::function<const V1_3::Operand&(uint32_t)> getOperand,
std::function<const uint8_t*(uint32_t)> getValue,
uint32_t operationIndex) {
const V1_3::Operation& operation = getOperation(operationIndex);
switch (operation.type) {
case V1_3::OperationType::ADD:
case V1_3::OperationType::MUL:
case V1_3::OperationType::DIV:
case V1_3::OperationType::SUB: {
// input2 is the fused activation function
const V1_3::Operand& input2 = getOperand(operation.inputs[2]);
if ((input2.type == V1_3::OperandType::INT32) &&
(input2.lifetime == V1_3::OperandLifeTime::CONSTANT_COPY)) {
int32_t value;
CHECK_EQ(sizeof(value), input2.location.length);
memcpy(&value, getValue(input2.location.offset), input2.location.length);
return value + operationToFirstEncoding.at(operation.type);
}
break;
}
default: {
auto it = operationToFirstEncoding.find(operation.type);
if (it != operationToFirstEncoding.end()) {
return it->second;
}
break;
}
}
return kBadOperation;
}
uint32_t lookupOperation(const HidlModel& model, const V1_3::Subgraph& subgraph,
uint32_t operationIndex) {
return lookupOperation(
[&subgraph](uint32_t index) -> const V1_3::Operation& {
return subgraph.operations[index];
},
[&subgraph](uint32_t index) -> const V1_3::Operand& {
return subgraph.operands[index];
},
[&model](uint32_t offset) { return &model.operandValues[offset]; }, operationIndex);
}
#ifdef VERBOSE
// This is a debugging utility function
void dump(const char* name, const ModelBuilder* model) {
const HidlModel hidlModel = model->makeHidlModel();
std::cout << name << ": " << hidlModel << std::endl;
std::cout << "inputs: " << hidlModel.main.inputIndexes << std::endl;
std::cout << "outputs: " << hidlModel.main.outputIndexes << std::endl;
for (size_t i = 0, e = hidlModel.main.operations.size(); i < e; i++) {
std::cout << "operation[" << i << "]: " << hidlModel.main.operations[i] << std::endl;
}
}
#endif
// This is an IDevice for testing purposes. It only has a few interesting
// properties, all of which are specified as constructor arguments: device
// capabilities; which subset of operation kinds (0..19) does the device
// support; does the device support the OEM operation; does the device support
// other operations. The subset is represented with a bitmask, in which
// operation kind K corresponds to the bit (1 << K). The other operations are
// represented by a set of OperationType.
class PartitioningDriver : public SampleDriver {
public:
enum OEM {
OEMNo, // rejected by getSupportedOperations and prepareModel
OEMIndecisive, // accepted by getSupportedOperations but not prepareModel
OEMYes, // accepted by getSupportedOperations and prepareModel
};
PartitioningDriver(const char* name, const char* version, V1_3::Capabilities capabilities,
uint32_t operationMask, OEM oem = OEMNo,
std::set<V1_3::OperationType> operationTypes = {})
: SampleDriver(name),
mVersionString(version),
mCapabilities(capabilities),
mOperationMask(operationMask),
mOEM(oem),
mOperationTypes(std::move(operationTypes)) {
CHECK_EQ(mOperationTypes.count(V1_3::OperationType::OEM_OPERATION), size_t(0));
if (operationMask) {
std::for_each(mOperationTypes.begin(), mOperationTypes.end(),
[](V1_3::OperationType type) {
CHECK_EQ(operationToFirstEncoding.count(type), size_t(0));
});
}
}
~PartitioningDriver() override {}
hardware::Return<void> getVersionString(getVersionString_cb cb) override {
cb(V1_0::ErrorStatus::NONE, mVersionString);
return hardware::Void();
}
hardware::Return<V1_3::ErrorStatus> prepareModel_1_3(
const V1_3::Model& model, V1_1::ExecutionPreference preference, V1_3::Priority priority,
const V1_3::OptionalTimePoint& deadline,
const hardware::hidl_vec<hardware::hidl_handle>& modelCache,
const hardware::hidl_vec<hardware::hidl_handle>& dataCache, const HalCacheToken& token,
const sp<V1_3::IPreparedModelCallback>& callback) override {
if (mOEM == OEMIndecisive) {
for (const auto& operation : model.main.operations) {
if (operation.type == V1_3::OperationType::OEM_OPERATION) {
callback->notify_1_3(V1_3::ErrorStatus::INVALID_ARGUMENT, nullptr);
return V1_3::ErrorStatus::INVALID_ARGUMENT;
}
}
}
// NOTE: We verify that all operations in the model are supported.
V1_3::ErrorStatus outStatus = V1_3::ErrorStatus::INVALID_ARGUMENT;
auto ret = getSupportedOperations_1_3(
model, [&outStatus](V1_3::ErrorStatus inStatus,
const hardware::hidl_vec<bool>& supportedOperations) {
if (inStatus == V1_3::ErrorStatus::NONE) {
if (std::all_of(supportedOperations.begin(), supportedOperations.end(),
[](bool v) { return v; })) {
outStatus = V1_3::ErrorStatus::NONE;
}
}
});
if (ret.isOk() && (outStatus == V1_3::ErrorStatus::NONE)) {
return SampleDriver::prepareModel_1_3(model, preference, priority, deadline, modelCache,
dataCache, token, callback);
} else {
callback->notify_1_3(V1_3::ErrorStatus::INVALID_ARGUMENT, nullptr);
return V1_3::ErrorStatus::INVALID_ARGUMENT;
}
}
hardware::Return<V1_0::DeviceStatus> getStatus() override {
return V1_0::DeviceStatus::AVAILABLE;
}
hardware::Return<void> getCapabilities_1_3(getCapabilities_1_3_cb cb) override {
cb(V1_3::ErrorStatus::NONE, mCapabilities);
return hardware::Void();
}
hardware::Return<void> getSupportedOperations_1_3(const V1_3::Model& model,
getSupportedOperations_1_3_cb cb) override {
if (!android::nn::validateModel(model)) {
cb(V1_3::ErrorStatus::INVALID_ARGUMENT, std::vector<bool>());
return hardware::Void();
}
cb(V1_3::ErrorStatus::NONE, getSupportedOperationsForSubgraph(model, model.main));
return hardware::Void();
}
hardware::Return<void> getNumberOfCacheFilesNeeded(getNumberOfCacheFilesNeeded_cb cb) override {
cb(V1_0::ErrorStatus::NONE, /*numModelCache=*/1, /*numDataCache=*/1);
return hardware::Void();
}
private:
std::vector<bool> getSupportedOperationsForSubgraph(const V1_3::Model& model,
const V1_3::Subgraph& subgraph) {
CHECK(&subgraph == &model.main ||
std::find_if(model.referenced.begin(), model.referenced.end(),
[&subgraph](const V1_3::Subgraph& refSubgraph) {
return &subgraph == &refSubgraph;
}) != model.referenced.end());
auto supportsEntireSubgraph = [this, &model, &subgraph](uint32_t refSubgraphOperandIndex) {
CHECK_LT(refSubgraphOperandIndex, subgraph.operands.size());
const V1_3::Operand& refSubgraphOperand = subgraph.operands[refSubgraphOperandIndex];
CHECK(refSubgraphOperand.lifetime == V1_3::OperandLifeTime::SUBGRAPH);
CHECK_LT(refSubgraphOperand.location.offset, model.referenced.size());
const V1_3::Subgraph& refSubgraph =
model.referenced[refSubgraphOperand.location.offset];
std::vector<bool> supported = getSupportedOperationsForSubgraph(model, refSubgraph);
return std::all_of(supported.begin(), supported.end(), [](bool x) { return x; });
};
const size_t count = subgraph.operations.size();
std::vector<bool> supported(count);
for (size_t i = 0; i < count; i++) {
const V1_3::Operation& operation = subgraph.operations[i];
if (mOperationTypes.count(operation.type)) {
if (operation.type == V1_3::OperationType::IF) {
namespace op = android::nn::operation_if;
CHECK_GE(operation.inputs.size(), op::kFirstInput);
supported[i] =
supportsEntireSubgraph(operation.inputs[op::kThenModelOperand]) &&
supportsEntireSubgraph(operation.inputs[op::kElseModelOperand]);
} else if (operation.type == V1_3::OperationType::WHILE) {
namespace op = android::nn::operation_while;
CHECK_GE(operation.inputs.size(), op::kFirstInput);
supported[i] =
supportsEntireSubgraph(operation.inputs[op::kCondModelOperand]) &&
supportsEntireSubgraph(operation.inputs[op::kBodyModelOperand]);
} else {
supported[i] = true;
}
continue;
}
if (operation.type == V1_3::OperationType::OEM_OPERATION) {
supported[i] = (mOEM != OEMNo);
continue;
}
supported[i] = false;
uint32_t operationEncoding = lookupOperation(model, subgraph, i);
if ((operationEncoding != kBadOperation) &&
(mOperationMask & (1 << operationEncoding))) {
supported[i] = true;
}
}
return supported;
}
std::string mVersionString;
V1_3::Capabilities mCapabilities;
uint32_t mOperationMask;
OEM mOEM;
std::set<V1_3::OperationType> mOperationTypes;
};
// Like PartitioningDriver, but implementing 1.2
class PartitioningDriverV1_2 : public V1_2::IDevice {
public:
PartitioningDriverV1_2(const char* name, const char* version, V1_3::Capabilities capabilities,
uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
std::set<V1_3::OperationType> operationTypes = {})
: mLatestDriver(new PartitioningDriver(name, version, capabilities, operationMask, oem,
operationTypes)) {}
hardware::Return<void> getCapabilities_1_2(getCapabilities_1_2_cb _hidl_cb) override {
return mLatestDriver->getCapabilities_1_2(_hidl_cb);
}
hardware::Return<void> getSupportedOperations_1_2(
const V1_2::Model& model, getSupportedOperations_1_2_cb _hidl_cb) override {
return mLatestDriver->getSupportedOperations_1_2(model, _hidl_cb);
}
hardware::Return<V1_0::ErrorStatus> prepareModel_1_2(
const V1_2::Model& model, V1_1::ExecutionPreference preference,
const hardware::hidl_vec<hardware::hidl_handle>& modelCache,
const hardware::hidl_vec<hardware::hidl_handle>& dataCache, const HalCacheToken& token,
const sp<V1_2::IPreparedModelCallback>& actualCallback) override {
return mLatestDriver->prepareModel_1_2(model, preference, modelCache, dataCache, token,
actualCallback);
}
hardware::Return<void> getVersionString(getVersionString_cb _hidl_cb) override {
return mLatestDriver->getVersionString(_hidl_cb);
}
hardware::Return<void> getType(getType_cb _hidl_cb) override {
return mLatestDriver->getType(_hidl_cb);
}
hardware::Return<void> getSupportedExtensions(getSupportedExtensions_cb _hidl_cb) {
return mLatestDriver->getSupportedExtensions(_hidl_cb);
}
hardware::Return<void> getNumberOfCacheFilesNeeded(getNumberOfCacheFilesNeeded_cb _hidl_cb) {
return mLatestDriver->getNumberOfCacheFilesNeeded(_hidl_cb);
}
hardware::Return<V1_0::ErrorStatus> prepareModelFromCache(
const hardware::hidl_vec<hardware::hidl_handle>& modelCache,
const hardware::hidl_vec<hardware::hidl_handle>& dataCache, const HalCacheToken& token,
const sp<V1_2::IPreparedModelCallback>& callback) {
return mLatestDriver->prepareModelFromCache(modelCache, dataCache, token, callback);
}
hardware::Return<void> getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override {
return mLatestDriver->getCapabilities_1_1(_hidl_cb);
}
hardware::Return<void> getSupportedOperations_1_1(
const V1_1::Model& model, getSupportedOperations_1_1_cb _hidl_cb) override {
return mLatestDriver->getSupportedOperations_1_1(model, _hidl_cb);
}
hardware::Return<V1_0::ErrorStatus> prepareModel_1_1(
const V1_1::Model& model, V1_1::ExecutionPreference preference,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return mLatestDriver->prepareModel_1_1(model, preference, actualCallback);
}
hardware::Return<V1_0::DeviceStatus> getStatus() override { return mLatestDriver->getStatus(); }
hardware::Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
return mLatestDriver->getCapabilities(_hidl_cb);
}
hardware::Return<void> getSupportedOperations(const V1_0::Model& model,
getSupportedOperations_cb _hidl_cb) override {
return mLatestDriver->getSupportedOperations(model, _hidl_cb);
}
hardware::Return<V1_0::ErrorStatus> prepareModel(
const V1_0::Model& model,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return mLatestDriver->prepareModel(model, actualCallback);
}
private:
const sp<V1_3::IDevice> mLatestDriver;
};
// Like PartitioningDriver, but implementing 1.1
class PartitioningDriverV1_1 : public V1_1::IDevice {
public:
PartitioningDriverV1_1(const char* name, const char* version, V1_3::Capabilities capabilities,
uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
std::set<V1_3::OperationType> operationTypes = {})
: mLatestDriver(new PartitioningDriver(name, version, capabilities, operationMask, oem,
operationTypes)) {}
hardware::Return<void> getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override {
return mLatestDriver->getCapabilities_1_1(_hidl_cb);
}
hardware::Return<void> getSupportedOperations_1_1(
const V1_1::Model& model, getSupportedOperations_1_1_cb _hidl_cb) override {
return mLatestDriver->getSupportedOperations_1_1(model, _hidl_cb);
}
hardware::Return<V1_0::ErrorStatus> prepareModel_1_1(
const V1_1::Model& model, V1_1::ExecutionPreference preference,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return mLatestDriver->prepareModel_1_1(model, preference, actualCallback);
}
hardware::Return<V1_0::DeviceStatus> getStatus() override { return mLatestDriver->getStatus(); }
hardware::Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
return mLatestDriver->getCapabilities(_hidl_cb);
}
hardware::Return<void> getSupportedOperations(const V1_0::Model& model,
getSupportedOperations_cb _hidl_cb) override {
return mLatestDriver->getSupportedOperations(model, _hidl_cb);
}
hardware::Return<V1_0::ErrorStatus> prepareModel(
const V1_0::Model& model,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return mLatestDriver->prepareModel(model, actualCallback);
}
private:
const sp<V1_3::IDevice> mLatestDriver;
};
// Like PartitioningDriver, but implementing 1.0
class PartitioningDriverV1_0 : public V1_0::IDevice {
public:
PartitioningDriverV1_0(const char* name, const char* version, V1_3::Capabilities capabilities,
uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
std::set<V1_3::OperationType> operationTypes = {})
: mLatestDriver(new PartitioningDriver(name, version, capabilities, operationMask, oem,
operationTypes)) {}
hardware::Return<void> getCapabilities(getCapabilities_cb _hidl_cb) override {
return mLatestDriver->getCapabilities(_hidl_cb);
}
hardware::Return<void> getSupportedOperations(const V1_0::Model& model,
getSupportedOperations_cb _hidl_cb) override {
return mLatestDriver->getSupportedOperations(model, _hidl_cb);
}
hardware::Return<V1_0::ErrorStatus> prepareModel(
const V1_0::Model& model,
const sp<V1_0::IPreparedModelCallback>& actualCallback) override {
return mLatestDriver->prepareModel(model, actualCallback);
}
hardware::Return<V1_0::DeviceStatus> getStatus() override { return mLatestDriver->getStatus(); }
private:
const sp<V1_3::IDevice> mLatestDriver;
};
enum class Dimensioned {
NO, // either a scalar, or a tensor of either unspecified rank (usually)
// or specified rank but with no specified dimensions (where
// specifically stated)
RANK_1, // tensor of shape { 0 } -- i.e., rank 1, unspecified dimensions
RANK_2, // tensor of shape { 0, 0 } -- i.e., rank 2, unspecified dimensions
YES_1, // tensor of shape { 1 }
YES_2, // tensor of shape { 2 }
YES_4, // tensor of shape { 4 }
YES = YES_1
};
std::vector<uint32_t> dimensions(Dimensioned dimensioned) {
switch (dimensioned) {
default:
EXPECT_TRUE(false) << "Unknown value";
FALLTHROUGH_INTENDED;
case Dimensioned::NO:
return {};
case Dimensioned::RANK_1:
return {0};
case Dimensioned::RANK_2:
return {0, 0};
case Dimensioned::YES_1:
return {1};
case Dimensioned::YES_2:
return {2};
case Dimensioned::YES_4:
return {4};
}
}
std::string toString(Dimensioned dimensioned) {
switch (dimensioned) {
default:
return "<Unknown value>";
case Dimensioned::NO:
return "NO";
case Dimensioned::RANK_1:
return "RANK_1";
case Dimensioned::RANK_2:
return "RANK_2";
case Dimensioned::YES_1:
return "YES_1";
case Dimensioned::YES_2:
return "YES_2";
case Dimensioned::YES_4:
return "YES_4";
}
}
// This class adds some simple abstractions and utilities on top of
// WrapperModel. For example, it provides methods that work in terms of
// operation kind (0..7); and because we care about graph topology rather than
// details of operand types and values, it greatly simplifies the process of
// creating operands.
class PartitioningModel : private WrapperModel {
public:
using WrapperModel::finish;
using WrapperModel::getHandle;
using WrapperModel::identifyInputsAndOutputs;
using WrapperModel::isValid;
using WrapperModel::relaxComputationFloat32toFloat16;
using WrapperModel::setOperandValue;
// Create a tensor operand of the specified type, and return the
// corresponding operand index.
uint32_t addIntOperand(Dimensioned dimensioned = Dimensioned::YES) {
return addOperand(WrapperType::TENSOR_INT32, dimensioned);
}
uint32_t addIntScalarOperand(std::optional<int> v = std::nullopt) {
uint32_t opnd = addOperand(WrapperType::INT32);
if (v.has_value()) {
setOperandValue(opnd, &v.value());
}
return opnd;
}
uint32_t addFloatOperand(Dimensioned dimensioned = Dimensioned::YES) {
return addOperand(WrapperType::TENSOR_FLOAT32, dimensioned);
}
uint32_t addQuantOperand(Dimensioned dimensioned = Dimensioned::YES) {
return addOperand(WrapperType::TENSOR_QUANT8_ASYMM, dimensioned);
}
uint32_t addBooleanOperand(Dimensioned dimensioned = Dimensioned::YES) {
return addOperand(WrapperType::TENSOR_BOOL8, dimensioned);
}
// Create an operand of the specified type, and return the corresponding
// operand index.
uint32_t addOperand(WrapperType wrapperType, Dimensioned dimensioned = Dimensioned::YES) {
switch (static_cast<int>(wrapperType)) {
case ANEURALNETWORKS_BOOL:
case ANEURALNETWORKS_FLOAT16:
case ANEURALNETWORKS_FLOAT32:
case ANEURALNETWORKS_INT32:
case ANEURALNETWORKS_UINT32:
case ANEURALNETWORKS_MODEL:
case ANEURALNETWORKS_OEM_SCALAR:
return addOperand(WrapperOperandType{wrapperType, {}});
case ANEURALNETWORKS_TENSOR_BOOL8:
case ANEURALNETWORKS_TENSOR_FLOAT16:
case ANEURALNETWORKS_TENSOR_FLOAT32:
case ANEURALNETWORKS_TENSOR_OEM_BYTE:
return addOperand(WrapperOperandType{wrapperType, dimensions(dimensioned)});
case ANEURALNETWORKS_TENSOR_INT32:
case ANEURALNETWORKS_TENSOR_QUANT8_ASYMM:
case ANEURALNETWORKS_TENSOR_QUANT8_ASYMM_SIGNED:
case ANEURALNETWORKS_TENSOR_QUANT8_SYMM:
case ANEURALNETWORKS_TENSOR_QUANT16_ASYMM:
case ANEURALNETWORKS_TENSOR_QUANT16_SYMM:
return addOperand(WrapperOperandType{wrapperType, dimensions(dimensioned), 1.0f});
case ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL:
return addOperand(WrapperOperandType{wrapperType, dimensions(dimensioned),
WrapperSymmPerChannelQuantParams({1.0f}, 0)});
default:
ADD_FAILURE() << "Unexpected type " << static_cast<uint32_t>(wrapperType);
return ~uint32_t(0);
}
}
// Create an operand of the specified operand type, and return the
// corresponding operand index.
uint32_t addOperand(const WrapperOperandType& wrapperOperandType) {
mWrapperOperandType.push_back(wrapperOperandType);
return WrapperModel::addOperand(&wrapperOperandType);
}
// Create an operation with any number of inputs and one output, specifying
// the operation type (e.g., ANEURALNETWORKS_ADD), the input operand
// indexes, and the output type (e.g., WrapperType::TENSOR_FLOAT32).
// Returns the output operand index.
uint32_t addExplicitOperationXTo1(ANeuralNetworksOperationType operationType,
const std::vector<uint32_t>& inputs, WrapperType outputType,
Dimensioned dimensionedOutput = Dimensioned::YES) {
uint32_t output = addOperand(outputType, dimensionedOutput);
addOperation(operationType, inputs, {output});
return output;
}
// Create a V1_0 operation with two inputs and one output, specifying the
// operation kind (where 0 is the first V1_0 operation) and the input
// operand indexes.
// Returns the output operand index.
uint32_t addOperation2To1V1_0(uint32_t operation, const uint32_t input0, const uint32_t input1,
Dimensioned dimensionedOutput = Dimensioned::YES) {
CHECK_LE(operation, kLastEncodingV1_0 - kFirstEncodingV1_0);
return addOperation2To1(operation + kFirstEncodingV1_0, input0, input1, dimensionedOutput);
}
// Create a V1_1 operation with two inputs and one output, specifying the
// operation kind (where 0 is the first V1_1 operation) and the input
// operand indexes.
// Returns the output operand index.
uint32_t addOperation2To1V1_1(uint32_t operation, const uint32_t input0, const uint32_t input1,
Dimensioned dimensionedOutput = Dimensioned::YES) {
CHECK_LE(operation, kLastEncodingV1_1 - kFirstEncodingV1_1);
return addOperation2To1(operation + kFirstEncodingV1_1, input0, input1, dimensionedOutput);
}
// Create a V1_2 operation with two inputs and one output, specifying the
// operation kind (where 0 is the first V1_2 operation) and the input
// operand indexes.
// Returns the output operand index.
uint32_t addOperation2To1V1_2(uint32_t operation, const uint32_t input0, const uint32_t input1,
Dimensioned dimensionedOutput = Dimensioned::YES) {
CHECK_LE(operation, kLastEncodingV1_2 - kFirstEncodingV1_2);
return addOperation2To1(operation + kFirstEncodingV1_2, input0, input1, dimensionedOutput);
}
// Create a V1_3 operation with two inputs and one output, specifying the
// operation kind (where 0 is the first V1_3 operation) and the input
// operand indexes.
// Returns the output operand index.
uint32_t addOperation1To1V1_3(uint32_t operation, const uint32_t input0,
Dimensioned dimensionedOutput = Dimensioned::YES) {
CHECK_LE(operation, kLastEncodingV1_3 - kFirstEncodingV1_3);
return addOperation1To1(operation + kFirstEncodingV1_3, input0, dimensionedOutput);
}
// Create an OEM operation with one input and one output,
// specifying the input operand index. Returns the output operand
// index.
uint32_t addOperationOEM1To1(const uint32_t input,
Dimensioned dimensionedOutput = Dimensioned::YES) {
uint32_t output = addOperandOfSameType(input, dimensionedOutput);
addOperation(ANEURALNETWORKS_OEM_OPERATION, {input}, {output});
return output;
}
// Create an IF operation with the given condition operand and two
// referenced models for the true and false cases.
void addIfOperation(const uint32_t cond, const PartitioningModel& trueModel,
const PartitioningModel& falseModel, const std::vector<uint32_t>& inputs,
const std::vector<uint32_t>& outputs) {
const uint32_t opndTrue = addRefModelOperand(trueModel);
const uint32_t opndFalse = addRefModelOperand(falseModel);
std::vector<uint32_t> ifInputs = {cond, opndTrue, opndFalse};
ifInputs.insert(ifInputs.end(), inputs.begin(), inputs.end());
addOperation(ANEURALNETWORKS_IF, ifInputs, outputs);
}
// Create a WHILE operation with the given condition and body referenced models.
void addWhileOperation(const PartitioningModel& condModel, const PartitioningModel& bodyModel,
const std::vector<uint32_t>& inputs,
const std::vector<uint32_t>& outputs) {
const uint32_t condOperand = addRefModelOperand(condModel);
const uint32_t bodyOperand = addRefModelOperand(bodyModel);
std::vector<uint32_t> whileInputs = {condOperand, bodyOperand};
whileInputs.insert(whileInputs.end(), inputs.begin(), inputs.end());
addOperation(ANEURALNETWORKS_WHILE, whileInputs, outputs);
}
// Run the partitioning algorithm to create an ExecutionPlan.
int partitionTheWork(const std::vector<std::shared_ptr<Device>>& devices,
ExecutePreference preference, ExecutePriority priority,
const OptionalTimePoint& deadline, ExecutionPlan* plan) {
return reinterpret_cast<ModelBuilder*>(getHandle())
->partitionTheWork(devices, static_cast<uint32_t>(preference),
static_cast<int32_t>(priority), deadline, plan);
}
#ifdef VERBOSE
// This is a debugging utility function.
void dump(const char* name) const {
const ModelBuilder* mb = reinterpret_cast<const ModelBuilder*>(getHandle());
::dump(name, mb);
}
#endif
private:
// Create an operation with two inputs and one output, specifying
// the operation kind and the input operand indexes.
// Returns the output operand index.
uint32_t addOperation2To1(uint32_t operation, const uint32_t input0, const uint32_t input1,
Dimensioned dimensionedOutput = Dimensioned::YES) {
auto it = firstEncodingToOperation.lower_bound(operation);
CHECK(it != firstEncodingToOperation.end());
ANeuralNetworksOperationType type = it->second.first;
if (it->second.second) {
int32_t fuseCode = operation - it->first;
uint32_t input2 = addIntOperand(fuseCode);
uint32_t output = addOperandOfSameType(input0, dimensionedOutput);
addOperation(type, {input0, input1, input2}, {output});
return output;
} else {
uint32_t output = addOperandOfSameType(input0, dimensionedOutput);
addOperation(type, {input0, input1}, {output});
return output;
}
}
// Create an operation with one inputs and one output, specifying
// the operation kind and the input operand indexes.
// Returns the output operand index.
uint32_t addOperation1To1(uint32_t operation, const uint32_t input0,
Dimensioned dimensionedOutput = Dimensioned::YES) {
auto it = firstEncodingToOperation.lower_bound(operation);
CHECK(it != firstEncodingToOperation.end());
ANeuralNetworksOperationType type = it->second.first;
uint32_t output = addOperandOfSameType(input0, dimensionedOutput);
addOperation(type, {input0}, {output});
return output;
}
// Create a scalar integer operand of the specified value, and
// return the corresponding operand index.
uint32_t addIntOperand(int32_t value) {
uint32_t operand = addOperand(WrapperType::INT32);
setOperandValue(operand, &value, sizeof(value));
return operand;
}
// Create an operand from a model for control flow graphs.
uint32_t addRefModelOperand(const PartitioningModel& model) {
const uint32_t index = addOperand(WrapperType::MODEL);
WrapperModel::setOperandValueFromModel(index, &model);
return index;
}
// Create an operand of the same type as the specified operand,
// and return the operand index of the new operand.
//
// If a tensor, the new operand will have the same rank as the specified
// operand. If dimensioned == Dimensioned::NO, then all dimensions of a new
// tensor operand will be unspecified. If dimensioned != Dimensioned::NO,
// then all dimensions of a new tensor operand will have the implied value
// (e.g., YES_1 means each dimension will have the value "1").
uint32_t addOperandOfSameType(uint32_t operand, Dimensioned dimensioned = Dimensioned::YES) {
WrapperOperandType type = mWrapperOperandType.at(operand);
const auto d = dimensions(dimensioned);
EXPECT_TRUE(d.size() <= 1);
for (auto& dimension : type.dimensions) {
dimension = (dimensioned == Dimensioned::NO ? 0 : d[0]);
}
mWrapperOperandType.push_back(type);
return WrapperModel::addOperand(&type);
}
// operand index to operand type
std::vector<WrapperOperandType> mWrapperOperandType;
};
// This class adds some utilities on top of WrapperCompilation.
class PartitioningCompilation : public WrapperCompilation {
public:
PartitioningCompilation(const PartitioningModel* model,
const std::vector<std::shared_ptr<Device>>& devices) {
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model->getHandle());
CompilationBuilder* c = nullptr;
int result = m->createCompilation(&c, devices);
EXPECT_EQ(result, 0);
mCompilation = reinterpret_cast<ANeuralNetworksCompilation*>(c);
}
Result setPartitioning(uint32_t partitioning) {
return static_cast<Result>(builder()->forTest_setPartitioning(partitioning));
}
// Simulate recoverable partitioning failure.
Result failPartitioning() {
return static_cast<Result>(
builder()->forTest_failPartitioning(static_cast<int>(Result::OP_FAILED)));
}
using WrapperCompilation::finish;
const ExecutionPlan& getExecutionPlan() const { return builder()->forTest_getExecutionPlan(); }
private:
CompilationBuilder* builder() { return reinterpret_cast<CompilationBuilder*>(getHandle()); }
const CompilationBuilder* builder() const {
return reinterpret_cast<const CompilationBuilder*>(getHandle());
}
};
#ifdef VERBOSE
#define RETURN_TRUE() \
{ \
std::cerr << "returning true from " << __LINE__ << std::endl; \
return true; \
}
#else
#define RETURN_TRUE() \
{ return true; }
#endif
#ifdef VERBOSE
#define RETURN_FALSE(MESSAGE) \
{ \
std::cerr << "returning false from " << __LINE__ MESSAGE << std::endl; \
return false; \
}
#else
#define RETURN_FALSE(MESSAGE) \
{ return false; }
#endif
class PartitioningTest : public ::testing::Test {
protected:
using DynamicTemporariesType = decltype(ExecutionPlan().forTest_flatGetDynamicTemporaries());
using RemapVectorType = ExecutionStep::RemapVectorType;
using StepModelOutputSetType = ExecutionStep::StepModelOutputSetType;
virtual void SetUp() {}
// From a vector of DeviceSpecification, create a vector of
// Devices.
struct DeviceSpecification {
DeviceSpecification(const std::string& name, const V1_3::Capabilities& capabilities,
uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo)
: mName(name),
mVersionString(kVersionString),
mCapabilities(capabilities),
mOperationMask(operationMask),
mOEM(oem) {}
DeviceSpecification(const std::string& name, float perf, uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
HalVersion halVersion = HalVersion::LATEST,
std::set<V1_3::OperationType> operationTypes = {})
: DeviceSpecification(name, perf, perf, operationMask, oem, halVersion,
operationTypes) {}
DeviceSpecification(const std::string& name, float perf, float perfRelaxed,
uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
HalVersion halVersion = HalVersion::LATEST,
std::set<V1_3::OperationType> operationTypes = {})
: DeviceSpecification(name, kVersionString, perf, perfRelaxed, operationMask, oem,
halVersion, operationTypes) {}
DeviceSpecification(const std::string& name, const std::string& version, float perf,
uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
HalVersion halVersion = HalVersion::LATEST,
std::set<V1_3::OperationType> operationTypes = {})
: DeviceSpecification(name, version, perf, perf, operationMask, oem, halVersion,
operationTypes) {}
DeviceSpecification(const std::string& name, const std::string& version, float perf,
float perfRelaxed, uint32_t operationMask,
PartitioningDriver::OEM oem = PartitioningDriver::OEMNo,
HalVersion halVersion = HalVersion::LATEST,
std::set<V1_3::OperationType> operationTypes = {})
: mName(name),
mVersionString(version),
mHalVersion(halVersion),
mOperationMask(operationMask),
mOEM(oem),
mOperationTypes(std::move(operationTypes)) {
V1_0::PerformanceInfo perfInfo = {.execTime = perf, .powerUsage = perf};
V1_0::PerformanceInfo perfRelaxedInfo = {.execTime = perfRelaxed,
.powerUsage = perfRelaxed};
mCapabilities = {
.relaxedFloat32toFloat16PerformanceScalar = perfRelaxedInfo,
.relaxedFloat32toFloat16PerformanceTensor = perfRelaxedInfo,
.operandPerformance =
::android::nn::nonExtensionOperandPerformance<HalVersion::V1_3>(
perfInfo),
.ifPerformance = perfInfo,
.whilePerformance = perfInfo};
}
DeviceSpecification(const std::string& name, float perf, HalVersion halVersion,
uint32_t operationMaskV1_0, uint32_t operationMaskV1_1 = 0,
uint32_t operationMaskV1_2 = 0, uint32_t operationMaskV1_3 = 0)
: DeviceSpecification(
name, perf, perf,
makeOperationMask(halVersion, operationMaskV1_0, operationMaskV1_1,
operationMaskV1_2, operationMaskV1_3)) {
mHalVersion = halVersion;
}
std::string mName;
std::string mVersionString;
V1_3::Capabilities mCapabilities;
HalVersion mHalVersion = HalVersion::LATEST;
uint32_t mOperationMask;
PartitioningDriver::OEM mOEM = PartitioningDriver::OEMNo;
std::set<V1_3::OperationType> mOperationTypes;
static constexpr char kVersionString[] = "JUST_AN_EXAMPLE";
private:
// This function takes three operation masks aligned at the low-order
// bit -- one mask each for V1_0, V1_1, and V1_2 -- and produces a single
// composite operation mask, formed by shifting each of the input
// operation masks appropriately and ORing the results together.
//
// For convenience, any bits of an input mask that are too high order
// for that mask are discarded -- this allows ~0 to be a legal input
// mask.
//
// For the sake of example, assume that each low order mask is 4 bits
// wide, and take some artistic license to write literals in binary.
// Then:
//
// assert(makeOperationMask(HalVersion::V1_2, 0b0110, 0b1001, 0b0101) ==
// 0b 0101 1001 0110);
//
// This is used by a DeviceSpecification constructor to build a mask of
// operations to be supported by the device.
static uint32_t makeOperationMask(HalVersion halVersion, uint32_t operationMaskV1_0,
uint32_t operationMaskV1_1, uint32_t operationMaskV1_2,
uint32_t operationMaskV1_3) {
if (halVersion < HalVersion::V1_3) {
CHECK(!operationMaskV1_3);
}
if (halVersion < HalVersion::V1_2) {
CHECK(!operationMaskV1_2);
}
if (halVersion < HalVersion::V1_1) {
CHECK(!operationMaskV1_1);
}
auto maskOfWidth = [](uint32_t width) -> uint32_t { return (1U << width) - 1; };
static const uint32_t kOperationMaskV1_0 =
maskOfWidth(kLastEncodingV1_0 - kFirstEncodingV1_0 + 1);
static const uint32_t kOperationMaskV1_1 =
maskOfWidth(kLastEncodingV1_1 - kFirstEncodingV1_1 + 1);
static const uint32_t kOperationMaskV1_2 =
maskOfWidth(kLastEncodingV1_2 - kFirstEncodingV1_2 + 1);
static const uint32_t kOperationMaskV1_3 =
maskOfWidth(kLastEncodingV1_3 - kFirstEncodingV1_3 + 1);
return ((operationMaskV1_0 & kOperationMaskV1_0) << kFirstEncodingV1_0) |
((operationMaskV1_1 & kOperationMaskV1_1) << kFirstEncodingV1_1) |
((operationMaskV1_2 & kOperationMaskV1_2) << kFirstEncodingV1_2) |
((operationMaskV1_3 & kOperationMaskV1_3) << kFirstEncodingV1_3);
}
};
static std::vector<std::shared_ptr<Device>> makeDevices(
std::vector<DeviceSpecification> specifications) {
std::vector<std::shared_ptr<Device>> devices;
for (const auto& specification : specifications) {
SharedDevice device = nullptr;
switch (specification.mHalVersion) {
case HalVersion::V1_3:
device = android::nn::makeSharedDevice(
specification.mName,
new PartitioningDriver(specification.mName.c_str(),
specification.mVersionString.c_str(),
specification.mCapabilities,
specification.mOperationMask, specification.mOEM,
specification.mOperationTypes));
break;
case HalVersion::V1_2:
device = android::nn::makeSharedDevice(
specification.mName,
new PartitioningDriverV1_2(
specification.mName.c_str(),
specification.mVersionString.c_str(),
specification.mCapabilities, specification.mOperationMask,
specification.mOEM, specification.mOperationTypes));
break;
case HalVersion::V1_1:
device = android::nn::makeSharedDevice(
specification.mName,
new PartitioningDriverV1_1(
specification.mName.c_str(),
specification.mVersionString.c_str(),
specification.mCapabilities, specification.mOperationMask,
specification.mOEM, specification.mOperationTypes));
break;
case HalVersion::V1_0:
device = android::nn::makeSharedDevice(
specification.mName,
new PartitioningDriverV1_0(
specification.mName.c_str(),
specification.mVersionString.c_str(),
specification.mCapabilities, specification.mOperationMask,
specification.mOEM, specification.mOperationTypes));
break;
default:
ADD_FAILURE() << "Unexpected";
}
auto driverDevice = DeviceManager::forTest_makeDriverDevice(device);
devices.push_back(std::move(driverDevice));
}
devices.push_back(DeviceManager::getCpuDevice());
return devices;
}
/*-- Graph comparision ----------------------------------------------------------------*/
// An operand with certain values for its lifetime does not have a
// defining operation in the graph. For the purposes of the graph
// comparison algorithm, we encode the "defining operation" index of
// such an operand as follows:
// - NO_VALUE kPseudoDefiningOperationNoValue
// - SUBGRAPH_INPUT kPseudoDefiningOperationModelInput0 + (position in list of inputs)
// - CONSTANT_COPY kPseudoDefiningOperationConstantCopy0 + (constant value)
// Note: For the graphs we build in this test, we
// only expect to see 4-byte constants within
// a very restricted range, so we only make
// room for such constants in our encoding
// space.
// We do not expect to see CONSTANT_REFERENCE, and so we do not handle
// it.
//
// The encoding is intended to be relatively human readable; it is not
// designed to represent some optimal balance of ranges for the items
// within its scope (actual operations, inputs, constants).
enum PseudoDefiningOperationEncodings : uint32_t {
kPseudoDefiningOperationModelInput0 = 0x80000000U,
kPseudoDefiningOperationConstantCopy0 = 0x90000000U,
kPseudoDefiningOperationNoValue = 0xeeeeeeeeU,
// lowest value for special encoding
kPseudoDefiningOperationBase = 0x80000000U,
// range of encoded input or constant
kPseudoDefiningOperationRange = 0x10000000U,
};
// Build a map from operand to defining operation.
// TODO: Replace map with vector?
void buildDefinitionMap(const ModelBuilder* model, std::map<uint32_t, uint32_t>* defMap) {
// actual definitions
ASSERT_LT(model->operationCount(), kPseudoDefiningOperationBase);
for (uint32_t i = 0, e = model->operationCount(); i < e; i++) {
const V1_3::Operation& operation = android::nn::convertToV1_3(model->getOperation(i));
for (uint32_t output : operation.outputs) {
(*defMap)[output] = i;
}
}
// inputs
ASSERT_LT(model->inputCount(), kPseudoDefiningOperationRange);
for (uint32_t i = 0, e = model->inputCount(); i < e; i++) {
(*defMap)[model->getInputOperandIndex(i)] = kPseudoDefiningOperationModelInput0 + i;
}
// look for NO_VALUE and CONSTANT_COPY
for (uint32_t i = 0, e = model->operandCount(); i < e; i++) {
const V1_3::Operand& operand = android::nn::convertToV1_3(model->getOperand(i));
switch (operand.lifetime) {
case V1_3::OperandLifeTime::NO_VALUE:
(*defMap)[i] = kPseudoDefiningOperationNoValue;
break;
case V1_3::OperandLifeTime::CONSTANT_COPY: {
ASSERT_EQ(operand.location.length, sizeof(uint32_t));
uint32_t value;
memcpy(&value, model->getPointerToOperandValue(operand.location.offset),
sizeof(uint32_t));
ASSERT_LT(value, kPseudoDefiningOperationNoValue);
(*defMap)[i] = kPseudoDefiningOperationConstantCopy0 + value;
break;
}
case V1_3::OperandLifeTime::TEMPORARY_VARIABLE:
case V1_3::OperandLifeTime::SUBGRAPH_INPUT:
case V1_3::OperandLifeTime::SUBGRAPH_OUTPUT:
// already handled
break;
default:
FAIL();
break;
}
}
// validity check
ASSERT_EQ(model->operandCount(), defMap->size());
}
#ifdef VERBOSE
void dump(const char* name, const std::map<uint32_t, uint32_t>* aMap) {
auto writeNum = [](uint32_t num) {
if (num >= kPseudoDefiningOperationBase) {
std::cout << "0x" << std::hex << num << std::dec;
} else {
std::cout << num;
}
};
std::cout << name << ": { ";
bool gotOne = false;
for (const auto& entry : *aMap) {
if (gotOne) {
std::cout << ", ";
} else {
gotOne = true;
}
std::cout << "(";
writeNum(entry.first);
std::cout << ", ";
writeNum(entry.second);
std::cout << ")";
}
std::cout << " }" << std::endl;
}
#endif
bool compare(const Operand& operandA, const Operand& operandB) {
if (operandA.type != operandB.type || operandA.dimensions != operandB.dimensions ||
operandA.scale != operandB.scale || operandA.zeroPoint != operandB.zeroPoint) {
return false;
}
return true;
}
// Compare two graphs. We ignore operand and operation indexes (i.e.,
// two nodes can be the same even if they are numbered differently)
// but we also ignore semantics (e.g., even if an operation kind is
// such that the operand is commutative, we still pay attention to the
// order of its input operands).
//
// The comparison algorithm works by walking modelA from outputs
// towards inputs, along the edge from each operand to its
// defining operation, and then along the edges to the operation's
// input operands. At each step along the way, we try to match up
// operands and operations from modelA with equivalent operands
// and operations from modelB.
//
// We start by assuming that modelA's outputs and modelB's outputs
// match positionally (e.g., modelA's first output operand is
// equivalent to modelB's first output operand). Once we've
// discovered two equivalent operands (such as those outputs), we
// place them in a work queue. We repeatedly pull operands off
// the queue and compare their defining operations and those
// operations' input operands, to discover more pairs of
// equivalent operands. If we ever find operations that do not
// match (e.g., because operation kind differs), or operands that
// do not match (e.g., because operand type differs); or if we
// ever find a conflict (we've already decided that operand A's
// equivalent operand is B0, but it looks like we need its
// equivalent operand to be B1); then the graphs compare unequal.
// Otherwise, we'll eventually exhaust the work queue, and
// conclude that the graphs compare equal.
//
// As a side effect of the comparison, we produce a map
// *inputsAndOutputsBToA that maps from each of the model input and output
// operand numbers of modelB to the corresponding operand numbers of modelA.
// If the comparison returns false, the contents of the map are undefined.
bool compare(const ModelBuilder* modelA, const ModelBuilder* modelB,
std::map<uint32_t, uint32_t>* inputsAndOutputsBToA) {
CHECK(inputsAndOutputsBToA != nullptr);
EXPECT_TRUE(inputsAndOutputsBToA->empty());
#ifdef VERBOSE
::dump("compare(A)", modelA);
::dump("compare(B)", modelB);
#endif
if (modelA->operandCount() != modelB->operandCount() ||
modelA->operationCount() != modelB->operationCount() ||
modelA->inputCount() != modelB->inputCount() ||
modelA->outputCount() != modelB->outputCount()) {
RETURN_FALSE();
}
// Maps from operand index to index of defining operation.
std::map<uint32_t, uint32_t> defsA, defsB;
buildDefinitionMap(modelA, &defsA);
buildDefinitionMap(modelB, &defsB);
if (HasFatalFailure()) return false;
// Maps from operand index in modelA to equivalent operand index
// in modelB; and from operation index in modelA to equivalent
// operation index in modelB.
std::map<uint32_t, uint32_t> equivalentOperandsAToB;
std::map<uint32_t, uint32_t> equivalentOperationsAToB;
// Queue of operand indexes from modelA, each of whose defining
// operations are to be checked for equivalence with modelB.
std::queue<uint32_t> workQueueOperandsA;
// Seed operand equivalence map and work queue from model outputs.
for (uint32_t i = 0, e = modelA->outputCount(); i < e; i++) {
uint32_t outputA = modelA->getOutputOperandIndex(i);
uint32_t outputB = modelB->getOutputOperandIndex(i);
if (!compare(modelA->getOperand(outputA), modelB->getOperand(outputB))) {
#ifdef VERBOSE
std::cout << "modelA.output[" << i << "] = operand[" << outputA
<< "] = " << toString(modelA->getOperand(outputA)) << std::endl;
std::cout << "modelB.output[" << i << "] = operand[" << outputB
<< "] = " << toString(modelB->getOperand(outputB)) << std::endl;
#endif
RETURN_FALSE();
}
equivalentOperandsAToB[outputA] = outputB;
workQueueOperandsA.push(outputA);
}
#ifdef VERBOSE
dump("defsA", &defsA);
dump("defsB", &defsB);
#endif
// Process the queue.
uint32_t pseudoDefinitionCount = 0;
while (!workQueueOperandsA.empty()) {
#ifdef VERBOSE
dump("equivalentOperandsAToB", &equivalentOperandsAToB);
dump("equivalentOperationsAToB", &equivalentOperationsAToB);
#endif
uint32_t operandIndexA = workQueueOperandsA.front();
#ifdef VERBOSE
std::cout << "operandIndexA: " << operandIndexA << std::endl;
#endif
workQueueOperandsA.pop();
uint32_t operandIndexB = equivalentOperandsAToB.at(operandIndexA);
uint32_t operationIndexA = defsA.at(operandIndexA);
uint32_t operationIndexB = defsB.at(operandIndexB);
auto it = equivalentOperationsAToB.find(operationIndexA);
if (it != equivalentOperationsAToB.end()) {
if (it->second != operationIndexB) {
RETURN_FALSE();
}
continue;
}
// We haven't identified an equivalent operation for
// operationIndexA.
if ((operationIndexA >= kPseudoDefiningOperationBase) !=
(operationIndexB >= kPseudoDefiningOperationBase)) {
RETURN_FALSE();
}
// Either both operands have pseudo-definitions, or neither
// does.
if (operationIndexA >= kPseudoDefiningOperationBase) {
// Both operands have pseudo-definitions.
if (operationIndexA != operationIndexB) {
RETURN_FALSE();
}
equivalentOperationsAToB[operationIndexA] = operationIndexB;
++pseudoDefinitionCount;
continue;
}
// If we get here, neither operation A nor operation B is a
// pseudo-definition.
const Operation& operationA = modelA->getOperation(operationIndexA);
const Operation& operationB = modelB->getOperation(operationIndexB);
if (operationA.type != operationB.type ||
operationA.inputs.size() != operationB.inputs.size() ||
operationA.outputs.size() != operationB.outputs.size()) {
RETURN_FALSE();
}
equivalentOperationsAToB[operationIndexA] = operationIndexB;
for (uint32_t i = 0, e = operationA.inputs.size(); i < e; i++) {
uint32_t inputA = operationA.inputs[i];
uint32_t inputB = operationB.inputs[i];
auto it = equivalentOperandsAToB.find(inputA);
if (it != equivalentOperandsAToB.end()) {
if (it->second != inputB) {
RETURN_FALSE();
}
continue;
}
// We haven't identified an equivalent operand for inputA.
if (!compare(modelA->getOperand(inputA), modelB->getOperand(inputB))) {
#ifdef VERBOSE
std::cout << "modelA.input[" << i << "] = operand[" << inputA
<< "] = " << toString(modelA->getOperand(inputA)) << std::endl;
std::cout << "modelB.input[" << i << "] = operand[" << inputB
<< "] = " << toString(modelB->getOperand(inputB)) << std::endl;
#endif
RETURN_FALSE();
}
equivalentOperandsAToB[inputA] = inputB;
workQueueOperandsA.push(inputA);
}
}
// Validity check
if (modelA->operandCount() != defsA.size() || modelA->operandCount() != defsB.size() ||
modelA->operandCount() != equivalentOperandsAToB.size() ||
modelA->operationCount() + pseudoDefinitionCount != equivalentOperationsAToB.size()) {
RETURN_FALSE();
}
// Build *inputsAndOutputsBToA
for (uint32_t aInputIndex : modelA->getInputOperandIndexes()) {
(*inputsAndOutputsBToA)[equivalentOperandsAToB.at(aInputIndex)] = aInputIndex;
}
for (uint32_t aOutputIndex : modelA->getOutputOperandIndexes()) {
(*inputsAndOutputsBToA)[equivalentOperandsAToB.at(aOutputIndex)] = aOutputIndex;
}
RETURN_TRUE();
}
/*-------------------------------------------------------------------------------------*/
// As a side effect of the comparison, we produce a map
// *inputsAndOutputsModelToStep that maps from each of the model input and
// output operand numbers of "model" to the corresponding operand numbers of
// the step model from "step". If the comparison returns false, the contents
// of the map are undefined.
bool compare(const ExecutionStep* step, const PartitioningModel* model,
std::shared_ptr<Device> device,
std::map<uint32_t, uint32_t>* inputsAndOutputsModelToStep) {
return (step->getDevice() == device) &&
compare(step->getStepModel(),
reinterpret_cast<const ModelBuilder*>(model->getHandle()),
inputsAndOutputsModelToStep);
}
void compare(const std::shared_ptr<LogicalStep> logicalStep, const PartitioningModel* model,
std::shared_ptr<Device> device, const RemapVectorType& modelInputs,
const RemapVectorType& modelOutputs, const RemapVectorType& tempsAsStepModelInputs,
const StepModelOutputSetType& tempsAsStepModelOutputs,
const RemapVectorType& outputsAsStepModelInputs,
const std::set<uint32_t>& modelOutputsThatAreDownstreamInputs) {
ASSERT_TRUE(logicalStep->isExecution());
const ExecutionStep* step = logicalStep->executionStep();
std::map<uint32_t, uint32_t> inputsAndOutputsModelToStep;
ASSERT_NO_FATAL_FAILURE(
ASSERT_TRUE(compare(step, model, device, &inputsAndOutputsModelToStep)));
ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep, step->getModelInputs(),
modelInputs));
ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep, step->getModelOutputs(),
modelOutputs));
ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep,
step->getTempsAsStepModelInputs(), tempsAsStepModelInputs));
ASSERT_TRUE(compareStepModelOutputSets(inputsAndOutputsModelToStep,
step->getTempsAsStepModelOutputs(),
tempsAsStepModelOutputs));
ASSERT_TRUE(compareRemapVectors(inputsAndOutputsModelToStep,
step->getOutputsAsStepModelInputs(),
outputsAsStepModelInputs));
ASSERT_TRUE(modelOutputsThatAreDownstreamInputs ==
step->getModelOutputsThatAreDownstreamInputs());
}
private:
static bool compareRemapVectors(const std::map<uint32_t, uint32_t>& inputsAndOutputsModelToStep,
const RemapVectorType& step, RemapVectorType model) {
std::transform(model.begin(), model.end(), model.begin(),
[&inputsAndOutputsModelToStep](const RemapVectorType::value_type& val) {
return std::make_pair(val.first,
inputsAndOutputsModelToStep.at(val.second));
});
return step == model;
}
static bool compareStepModelOutputSets(
const std::map<uint32_t, uint32_t>& inputsAndOutputsModelToStep,
const StepModelOutputSetType& step, const StepModelOutputSetType& model) {
StepModelOutputSetType modelTransformed;
std::transform(
model.begin(), model.end(), std::inserter(modelTransformed, modelTransformed.end()),
[&inputsAndOutputsModelToStep](const StepModelOutputSetType::value_type& val) {
return std::make_pair(val.first, inputsAndOutputsModelToStep.at(val.second));
});
return step == modelTransformed;
}
};
TEST_F(PartitioningTest, SimpleModel) {
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1);
uint32_t opnd3 = model.addFloatOperand();
uint32_t opnd4 = model.addOperation2To1V1_0(1, opnd2, opnd3);
model.identifyInputsAndOutputs({opnd0, opnd1, opnd3}, {opnd4});
model.finish();
ASSERT_TRUE(model.isValid());
// Simple partition (two devices are each capable of everything, one is the best).
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
const auto devicesA = makeDevices({{"bad", 0.9, ~0U}, {"good", 0.5, ~0U}});
ExecutionPlan planA;
ASSERT_EQ(model.partitionTheWork(devicesA, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &planA),
ANEURALNETWORKS_NO_ERROR);
EXPECT_TRUE(planA.forTest_flatGetDynamicTemporaries().empty());
ASSERT_EQ(planA.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_NE(planA.forTest_simpleGetDevice().get(), nullptr);
ASSERT_EQ(planA.forTest_simpleGetDevice()->getName(), "good");
// Simple partition (two devices are each capable of everything, none better than CPU).
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
const auto devicesC = makeDevices({{"bad", 1.1, ~0U}, {"bad2", 1.0, ~0U}});
ExecutionPlan planC;
ASSERT_EQ(model.partitionTheWork(devicesC, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &planC),
ANEURALNETWORKS_NO_ERROR);
EXPECT_TRUE(planC.forTest_flatGetDynamicTemporaries().empty());
ASSERT_EQ(planC.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(planC.forTest_simpleGetDevice(), DeviceManager::getCpuDevice());
// Compound partition (two devices, each is capable of one of the
// two operations). We could do more extensive checking here --
// for example, verify that each step within the plan has the
// correct (model and step model)x(inputs and outputs).
const auto devicesB = makeDevices({{"0", 0.9, 1 << 0}, {"1", 0.5, 1 << 1}});
ExecutionPlan planB;
ASSERT_EQ(model.partitionTheWork(devicesB, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &planB),
ANEURALNETWORKS_NO_ERROR);
EXPECT_TRUE(planB.forTest_flatGetDynamicTemporaries().empty());
ASSERT_EQ(planB.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
const auto& stepsB = planB.forTest_compoundGetSteps();
ASSERT_EQ(stepsB.size(), size_t(2));
{
// Build a model to compare against the step model from stepsB[0].
PartitioningModel modelB0;
uint32_t b0Opnd0 = modelB0.addFloatOperand();
uint32_t b0Opnd1 = modelB0.addFloatOperand();
uint32_t b0Opnd2 = modelB0.addOperation2To1V1_0(0, b0Opnd0, b0Opnd1);
modelB0.identifyInputsAndOutputs({b0Opnd0, b0Opnd1}, {b0Opnd2});
modelB0.finish();
ASSERT_TRUE(modelB0.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(stepsB[0], &modelB0, devicesB[0],
RemapVectorType{{opnd0, b0Opnd0}, {opnd1, b0Opnd1}}, // modelInputs
RemapVectorType{}, // modelOutputs
RemapVectorType{}, // tempsAsStepModelInputs
StepModelOutputSetType{{opnd2, b0Opnd2}}, // tempsAsStepModelOutputs
RemapVectorType{}, // outputsAsStepModelInputs
{})); // modelOutputsThatAreDownstreamInputs
}
{
// Build a model to compare against the step model from stepsB[1].
PartitioningModel modelB1;
uint32_t b1Opnd2 = modelB1.addFloatOperand();
uint32_t b1Opnd3 = modelB1.addFloatOperand();
uint32_t b1Opnd4 = modelB1.addOperation2To1V1_0(1, b1Opnd2, b1Opnd3);
// Note: In the partitioning algorithm, step model inputs follow
// model inputs. In the original model "model", opnd2 is not
// an input; so in the step model "modelB1", the corresponding
// input b1Opnd2 is a step model input, and must follow the
// model input b1Opnd3.
modelB1.identifyInputsAndOutputs({b1Opnd3, b1Opnd2}, {b1Opnd4});
modelB1.finish();
ASSERT_TRUE(modelB1.isValid());
ASSERT_NO_FATAL_FAILURE(compare(
stepsB[1], &modelB1, devicesB[1], RemapVectorType{{opnd3, b1Opnd3}}, // modelInputs
RemapVectorType{{opnd4, b1Opnd4}}, // modelOutputs
RemapVectorType{{opnd2, b1Opnd2}}, // tempsAsStepModelInputs
StepModelOutputSetType{}, // tempsAsStepModelOutputs
RemapVectorType{}, // outputsAsStepModelInputs
{})); // modelOutputsThatAreDownstreamInputs
}
}
TEST_F(PartitioningTest, SliceModel) {
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1);
uint32_t opnd3 = model.addOperation2To1V1_0(1, opnd0, opnd1);
uint32_t opnd4 = model.addOperation2To1V1_1(0, opnd0, opnd1);
uint32_t opnd5 = model.addOperation2To1V1_2(0, opnd2, opnd3);
uint32_t opnd6 = model.addOperation1To1V1_3(0, opnd2);
model.identifyInputsAndOutputs({opnd0, opnd1}, {opnd2, opnd4, opnd5, opnd6});
model.finish();
ASSERT_TRUE(model.isValid());
// Simple partition (V1_0, V1_1, V1_2, V1_3 devices are available; V1_3 has best perf).
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
const auto devicesA = makeDevices({{"V1_0", 0.8, HalVersion::V1_0, ~0U},
{"V1_1", 0.7, HalVersion::V1_1, ~0U, ~0U},
{"V1_2", 0.6, HalVersion::V1_2, ~0U, ~0U, ~0U},
{"V1_3", 0.5, HalVersion::V1_3, ~0U, ~0U, ~0U, ~0U}});
ExecutionPlan planA;
ASSERT_EQ(model.partitionTheWork(devicesA, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &planA),
ANEURALNETWORKS_NO_ERROR);
EXPECT_TRUE(planA.forTest_flatGetDynamicTemporaries().empty());
ASSERT_EQ(planA.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_NE(planA.forTest_simpleGetDevice().get(), nullptr);
ASSERT_EQ(planA.forTest_simpleGetDevice()->getName(), "V1_3");
// Compound partition (V1_0, V1_1, V1_2 devices are available, in decreasing
// order of performance; model is distributed across all three devices).
const auto devicesB = makeDevices({{"V1_0", 0.6, HalVersion::V1_0, ~0U},
{"V1_1", 0.7, HalVersion::V1_1, ~0U, ~0U},
{"V1_2", 0.8, HalVersion::V1_2, ~0U, ~0U, ~0U},
{"V1_3", 0.9, HalVersion::V1_3, ~0U, ~0U, ~0U, ~0U}});
ExecutionPlan planB;
ASSERT_EQ(model.partitionTheWork(devicesB, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &planB),
ANEURALNETWORKS_NO_ERROR);
EXPECT_TRUE(planB.forTest_flatGetDynamicTemporaries().empty());
ASSERT_EQ(planB.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
const auto& stepsB = planB.forTest_compoundGetSteps();
ASSERT_EQ(stepsB.size(), size_t(4));
{
// Build a model to compare against the step model from stepsB[0].
PartitioningModel modelB0;
uint32_t b0Opnd0 = modelB0.addFloatOperand();
uint32_t b0Opnd1 = modelB0.addFloatOperand();
uint32_t b0Opnd2 = modelB0.addOperation2To1V1_1(0, b0Opnd0, b0Opnd1);
modelB0.identifyInputsAndOutputs({b0Opnd0, b0Opnd1}, {b0Opnd2});
modelB0.finish();
ASSERT_TRUE(modelB0.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(stepsB[0], &modelB0, devicesB[1],
RemapVectorType{{opnd0, b0Opnd0}, {opnd1, b0Opnd1}}, // modelInputs
RemapVectorType{{opnd4, b0Opnd2}}, // modelOutputs
RemapVectorType{}, // tempsAsStepModelInputs
StepModelOutputSetType{}, // tempsAsStepModelOutputs
RemapVectorType{}, // outputsAsStepModelInputs
{})); // modelOutputsThatAreDownstreamInputs
}
{
// Build a model to compare against the step model from stepsB[1].
PartitioningModel modelB1;
uint32_t b1Opnd0 = modelB1.addFloatOperand();
uint32_t b1Opnd1 = modelB1.addFloatOperand();
uint32_t b1Opnd2 = modelB1.addOperation2To1V1_0(0, b1Opnd0, b1Opnd1);
uint32_t b1Opnd3 = modelB1.addOperation2To1V1_0(1, b1Opnd0, b1Opnd1);
modelB1.identifyInputsAndOutputs({b1Opnd0, b1Opnd1}, {b1Opnd2, b1Opnd3});
modelB1.finish();
ASSERT_TRUE(modelB1.isValid());
// Note that this is also an important test that we can detect
// modelOutputsThatAreDownstreamInputs.
ASSERT_NO_FATAL_FAILURE(
compare(stepsB[1], &modelB1, devicesB[0],
RemapVectorType{{opnd0, b1Opnd0}, {opnd1, b1Opnd1}}, // modelInputs
RemapVectorType{{opnd2, b1Opnd2}}, // modelOutputs
RemapVectorType{}, // tempsAsStepModelInputs
StepModelOutputSetType{{opnd3, b1Opnd3}}, // tempsAsStepModelOutputs
RemapVectorType{}, // outputsAsStepModelInputs
{0u})); // modelOutputsThatAreDownstreamInputs
}
{
// Build a model to compare against the step model from stepsB[2].
PartitioningModel modelB2;
uint32_t b2Opnd0 = modelB2.addFloatOperand();
uint32_t b2Opnd1 = modelB2.addOperation1To1V1_3(0, b2Opnd0);
// Note: In the partitioning algorithm, temps that are
// step model inputs precede model outputs that are step model
// inputs.
modelB2.identifyInputsAndOutputs({b2Opnd0}, {b2Opnd1});
modelB2.finish();
ASSERT_TRUE(modelB2.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(stepsB[2], &modelB2, devicesB[3], RemapVectorType{}, // modelInputs
RemapVectorType{{opnd6, b2Opnd1}}, // modelOutputs
RemapVectorType{}, // tempsAsStepModelInputs
StepModelOutputSetType{}, // tempsAsStepModelOutputs
RemapVectorType{{opnd2, b2Opnd0}}, // outputsAsStepModelInputs
{})); // modelOutputsThatAreDownstreamInputs
}
{
// Build a model to compare against the step model from stepsB[3].
PartitioningModel modelB3;
uint32_t b3Opnd0 = modelB3.addFloatOperand();
uint32_t b3Opnd1 = modelB3.addFloatOperand();
uint32_t b3Opnd2 = modelB3.addOperation2To1V1_2(0, b3Opnd0, b3Opnd1);
// Note: In the partitioning algorithm, temps that are
// step model inputs precede model outputs that are step model
// inputs. In the original model "model", opnd3 is a temp and
// opnd2 is a model output; so in the step model "modelB3", the
// corresponding inputs b3Opnd1 and b3Opnd0 must appear in
// that order.
modelB3.identifyInputsAndOutputs({b3Opnd1, b3Opnd0}, {b3Opnd2});
modelB3.finish();
ASSERT_TRUE(modelB3.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(stepsB[3], &modelB3, devicesB[2], RemapVectorType{}, // modelInputs
RemapVectorType{{opnd5, b3Opnd2}}, // modelOutputs
RemapVectorType{{opnd3, b3Opnd1}}, // tempsAsStepModelInputs
StepModelOutputSetType{}, // tempsAsStepModelOutputs
RemapVectorType{{opnd2, b3Opnd0}}, // outputsAsStepModelInputs
{})); // modelOutputsThatAreDownstreamInputs
}
// TODO: Make sure this still works when we have multiple devices
// of same version available for slicing. An easy (?) choice would
// be to route the two different V1_0 operations to different
// devices.
}
TEST_F(PartitioningTest, SliceModelToEmpty) {
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addOperation1To1V1_3(0, opnd0);
model.identifyInputsAndOutputs({opnd0}, {opnd1});
model.finish();
ASSERT_TRUE(model.isValid());
// Only the V1_3 device can handle any operations in the model.
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
const auto devices = makeDevices({{"V1_0", 0.6, HalVersion::V1_0, ~0U},
{"V1_1", 0.7, HalVersion::V1_1, ~0U, ~0U},
{"V1_2", 0.8, HalVersion::V1_2, ~0U, ~0U, ~0U},
{"V1_3", 0.9, HalVersion::V1_3, ~0U, ~0U, ~0U, ~0U}});
ExecutionPlan plan;
ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &plan),
ANEURALNETWORKS_NO_ERROR);
EXPECT_TRUE(plan.forTest_flatGetDynamicTemporaries().empty());
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_NE(plan.forTest_simpleGetDevice().get(), nullptr);
ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), "V1_3");
}
TEST_F(PartitioningTest, Cpu) {
// Here's a model where some operations execute only on the Cpu.
// To make things interesting, we produce three partitions --
// device, cpu, same-device.
static const uint32_t kCpuOp = 1;
static const uint32_t kDevOp = 2;
const auto devices = makeDevices({{"1", 0.5, 1 << kDevOp}});
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 = model.addOperation2To1V1_0(kDevOp, opnd0, opnd1);
uint32_t opnd3 = model.addOperation2To1V1_0(kDevOp, opnd0, opnd2);
uint32_t opnd4 = model.addOperation2To1V1_0(kCpuOp, opnd0, opnd3);
uint32_t opnd5 = model.addOperation2To1V1_0(kCpuOp, opnd2, opnd4);
uint32_t opnd6 = model.addFloatOperand();
uint32_t opnd7 = model.addOperation2To1V1_0(kDevOp, opnd3, opnd5);
uint32_t opnd8 = model.addOperation2To1V1_0(kDevOp, opnd6, opnd7);
model.identifyInputsAndOutputs({opnd0, opnd1, opnd6}, {opnd4, opnd8});
model.finish();
ASSERT_TRUE(model.isValid());
ExecutionPlan plan;
ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &plan),
ANEURALNETWORKS_NO_ERROR);
EXPECT_TRUE(plan.forTest_flatGetDynamicTemporaries().empty());
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
const auto& steps = plan.forTest_compoundGetSteps();
ASSERT_EQ(steps.size(), size_t(3));
{
const auto& step0 = steps[0];
// Build a model to compare against the step model from steps[0].
PartitioningModel model0;
uint32_t m0Opnd0 = model0.addFloatOperand();
uint32_t m0Opnd1 = model0.addFloatOperand();
uint32_t m0Opnd2 = model0.addOperation2To1V1_0(kDevOp, m0Opnd0, m0Opnd1);
uint32_t m0Opnd3 = model0.addOperation2To1V1_0(kDevOp, m0Opnd0, m0Opnd2);
model0.identifyInputsAndOutputs({m0Opnd0, m0Opnd1}, {m0Opnd2, m0Opnd3});
model0.finish();
ASSERT_TRUE(model0.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(step0, &model0, devices[0],
RemapVectorType{{opnd0, m0Opnd0}, {opnd1, m0Opnd1}}, // modelInputs
RemapVectorType{}, // modelOutputs
RemapVectorType{}, // tempsAsStepModelInputs
StepModelOutputSetType{{opnd2, m0Opnd2},
{opnd3, m0Opnd3}}, // tempsAsStepModelOutputs
RemapVectorType{}, // outputsAsStepModelInputs
{})); // modelOutputsThatAreDownstreamInputs
}
{
const auto& step1 = steps[1];
// Build a model to compare against the step model from steps[1].
PartitioningModel model1;
uint32_t m1Opnd0 = model1.addFloatOperand();
uint32_t m1Opnd3 = model1.addFloatOperand();
uint32_t m1Opnd4 = model1.addOperation2To1V1_0(kCpuOp, m1Opnd0, m1Opnd3);
uint32_t m1Opnd2 = model1.addFloatOperand();
uint32_t m1Opnd5 = model1.addOperation2To1V1_0(kCpuOp, m1Opnd2, m1Opnd4);
model1.identifyInputsAndOutputs({m1Opnd0, m1Opnd3, m1Opnd2}, {m1Opnd4, m1Opnd5});
model1.finish();
ASSERT_TRUE(model1.isValid());
ASSERT_NO_FATAL_FAILURE(compare(
step1, &model1, DeviceManager::getCpuDevice(),
RemapVectorType{{opnd0, m1Opnd0}}, // modelInputs
RemapVectorType{{opnd4, m1Opnd4}}, // modelOutputs
RemapVectorType{{opnd3, m1Opnd3}, {opnd2, m1Opnd2}}, // tempsAsStepModelInputs
StepModelOutputSetType{{opnd5, m1Opnd5}}, // tempsAsStepModelOutputs
RemapVectorType{}, // outputsAsStepModelInputs
{})); // modelOutputsThatAreDownstreamInputs
}
{
const auto& step2 = steps[2];
// Build a model to compare against the step model from steps[2].
PartitioningModel model2;
uint32_t m2Opnd3 = model2.addFloatOperand();
uint32_t m2Opnd5 = model2.addFloatOperand();
uint32_t m2Opnd7 = model2.addOperation2To1V1_0(kDevOp, m2Opnd3, m2Opnd5);
uint32_t m2Opnd6 = model2.addFloatOperand();
uint32_t m2Opnd8 = model2.addOperation2To1V1_0(kDevOp, m2Opnd6, m2Opnd7);
model2.identifyInputsAndOutputs({m2Opnd6, m2Opnd3, m2Opnd5}, {m2Opnd8});
model2.finish();
ASSERT_TRUE(model2.isValid());
ASSERT_NO_FATAL_FAILURE(compare(
step2, &model2, devices[0], RemapVectorType{{opnd6, m2Opnd6}}, // modelInputs
RemapVectorType{{opnd8, m2Opnd8}}, // modelOutputs
RemapVectorType{{opnd3, m2Opnd3}, {opnd5, m2Opnd5}}, // tempsAsStepModelInputs
StepModelOutputSetType{}, // tempsAsStepModelOutputs
RemapVectorType{}, // outputsAsStepModelInputs
{})); // modelOutputsThatAreDownstreamInputs
}
}
TEST_F(PartitioningTest, SetPartitioning) {
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1, Dimensioned::NO);
uint32_t opnd3 = model.addFloatOperand();
uint32_t opnd4 = model.addOperation2To1V1_0(1, opnd2, opnd3);
model.identifyInputsAndOutputs({opnd0, opnd1, opnd3}, {opnd4});
model.finish();
ASSERT_TRUE(model.isValid());
// One device that can and should execute operation 0.
const auto devices = makeDevices({{"hw", 0.5, (1 << 0)}});
// Test kPartitioningNo. We should not even attempt partitioning,
// so there should be a SIMPLE plan on CPU.
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
PartitioningCompilation cPNo(&model, devices);
ASSERT_EQ(cPNo.setPartitioning(DeviceManager::kPartitioningNo), Result::NO_ERROR);
ASSERT_EQ(cPNo.failPartitioning(), Result::NO_ERROR);
ASSERT_EQ(cPNo.finish(), Result::NO_ERROR);
ASSERT_EQ(cPNo.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(cPNo.getExecutionPlan().forTest_simpleGetDevice(), DeviceManager::getCpuDevice());
// Test kPartitioningWithFallback. We should attempt partitioning, simulate
// a recoverable failure, then fallback to CPU with a SIMPLE plan, and
// finally return success. No need to compare the original model to the
// model from the plan -- we didn't actually do any partitioning.
PartitioningCompilation cPWithFallback(&model, devices);
ASSERT_EQ(cPWithFallback.setPartitioning(DeviceManager::kPartitioningWithFallback),
Result::NO_ERROR);
ASSERT_EQ(cPWithFallback.failPartitioning(), Result::NO_ERROR);
ASSERT_EQ(cPWithFallback.finish(), Result::NO_ERROR);
ASSERT_EQ(cPWithFallback.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(cPWithFallback.getExecutionPlan().forTest_simpleGetDevice(),
DeviceManager::getCpuDevice());
// Test kPartitioningWithoutFallback. We should attempt partitioning,
// simulate a recoverable failure, and fail.
PartitioningCompilation cPWithoutFallback(&model, devices);
ASSERT_EQ(cPWithoutFallback.setPartitioning(DeviceManager::kPartitioningWithoutFallback),
Result::NO_ERROR);
ASSERT_EQ(cPWithoutFallback.failPartitioning(), Result::NO_ERROR);
ASSERT_EQ(cPWithoutFallback.finish(), Result::OP_FAILED);
ASSERT_EQ(cPWithoutFallback.getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::ERROR);
}
// Regression test for http://b/69166603:
// "partitioned compilation and execution yields wrong results when model output is step model
// input"
TEST_F(PartitioningTest, ModelOutputAsStepModelInput) {
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1);
uint32_t opnd3 = model.addOperation2To1V1_0(1, opnd2, opnd2);
model.identifyInputsAndOutputs({opnd0, opnd1}, {opnd2, opnd3});
model.finish();
ASSERT_TRUE(model.isValid());
// Compound partition (two devices, each is capable of one of the
// two operations). We could do more extensive checking here --
// for example, verify that each step within the plan has the
// correct (model and step model)x(inputs and outputs).
const auto devices = makeDevices({{"0", 0.5, 1 << 0}, {"1", 0.5, 1 << 1}});
ExecutionPlan plan;
ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &plan),
ANEURALNETWORKS_NO_ERROR);
EXPECT_TRUE(plan.forTest_flatGetDynamicTemporaries().empty());
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
const auto& steps = plan.forTest_compoundGetSteps();
ASSERT_EQ(steps.size(), size_t(2));
{
// Build a model to compare against the step model from steps[0].
PartitioningModel model0;
uint32_t m0Opnd0 = model0.addFloatOperand();
uint32_t m0Opnd1 = model0.addFloatOperand();
uint32_t m0Opnd2 = model0.addOperation2To1V1_0(0, m0Opnd0, m0Opnd1);
model0.identifyInputsAndOutputs({m0Opnd0, m0Opnd1}, {m0Opnd2});
model0.finish();
ASSERT_TRUE(model0.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(steps[0], &model0, devices[0],
RemapVectorType{{opnd0, m0Opnd0}, {opnd1, m0Opnd1}}, // modelInputs
RemapVectorType{{opnd2, m0Opnd2}}, // modelOutputs
RemapVectorType{}, // tempsAsStepModelInputs
StepModelOutputSetType{}, // tempsAsStepModelOutputs
RemapVectorType{}, // outputsAsStepModelInputs
{0u})); // modelOutputsThatAreDownstreamInputs
}
{
// Build a model to compare against the step model from steps[1].
PartitioningModel model1;
uint32_t m1Opnd2 = model1.addFloatOperand();
uint32_t m1Opnd3 = model1.addOperation2To1V1_0(1, m1Opnd2, m1Opnd2);
model1.identifyInputsAndOutputs({m1Opnd2}, {m1Opnd3});
model1.finish();
ASSERT_TRUE(model1.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(steps[1], &model1, devices[1], RemapVectorType{}, // modelInputs
RemapVectorType{{opnd3, m1Opnd3}}, // modelOutputs
RemapVectorType{}, // tempsAsStepModelInputs
StepModelOutputSetType{}, // tempsAsStepModelOutputs
RemapVectorType{{opnd2, m1Opnd2}}, // outputsAsStepModelInputs
{})); // modelOutputsThatAreDownstreamInputs
}
}
TEST_F(PartitioningTest, OemOperations) {
// Trivial model consisting solely of OEM operation.
PartitioningModel model;
uint32_t opndIn = model.addFloatOperand();
uint32_t opndOut = model.addOperationOEM1To1(opndIn);
model.identifyInputsAndOutputs({opndIn}, {opndOut});
model.finish();
ASSERT_TRUE(model.isValid());
// Verify that the best driver than can run an OEM operation is
// used, even if it is not better than the CPU.
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
const auto devicesBestOEM = makeDevices({{"badOEM", 1.5, ~0U, PartitioningDriver::OEMYes},
{"noOEM", 0.5, ~0U, PartitioningDriver::OEMNo},
{"goodOEM", 1.2, ~0U, PartitioningDriver::OEMYes}});
PartitioningCompilation compilationBestOEM(&model, devicesBestOEM);
ASSERT_EQ(compilationBestOEM.finish(), Result::NO_ERROR);
const auto& planBestOEM = compilationBestOEM.getExecutionPlan();
ASSERT_EQ(planBestOEM.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_NE(planBestOEM.forTest_simpleGetDevice().get(), nullptr);
ASSERT_EQ(planBestOEM.forTest_simpleGetDevice()->getName(), "goodOEM");
// Verify that we get an error if no driver can run an OEM operation.
const auto devicesNoOEM = makeDevices({{"noOEM", 0.5, ~0U, PartitioningDriver::OEMNo}});
PartitioningCompilation compilationNoOEM(&model, devicesNoOEM);
ASSERT_EQ(compilationNoOEM.finish(), Result::BAD_DATA);
// Verify that we get an error if a driver can SUPPORT but not PREPARE an OEM operation.
const auto devicesIndecisiveOEM =
makeDevices({{"indecisiveOEM", 0.5, ~0U, PartitioningDriver::OEMIndecisive}});
PartitioningCompilation compilationIndecisiveOEM(&model, devicesIndecisiveOEM);
ASSERT_NE(compilationIndecisiveOEM.finish(), Result::NO_ERROR);
// Verify that we get an error if there are no drivers (only CPU fallback).
PartitioningCompilation compilationNoDrivers(&model, makeDevices({}) /* no drivers */);
ASSERT_EQ(compilationNoDrivers.finish(), Result::BAD_DATA);
}
TEST_F(PartitioningTest, RelaxedFP) {
const auto devices = makeDevices({// Best choice for non-relaxed model.
{"f32", 0.8, 0.9 /* relaxed */, ~0U},
// Best choice for relaxed model.
{"f16", 0.9, 0.8 /* relaxed */, ~0U}});
auto TrivialTest = [&devices](bool doRelax, const char* expectDevice) {
// Trivial model consisting solely of one operation.
SCOPED_TRACE(expectDevice);
PartitioningModel model;
uint32_t opnd0 = model.addFloatOperand();
uint32_t opnd1 = model.addFloatOperand();
uint32_t opnd2 = model.addOperation2To1V1_0(0, opnd0, opnd1);
model.identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
model.relaxComputationFloat32toFloat16(doRelax);
model.finish();
ASSERT_TRUE(model.isValid());
// Verify that the model will be executed on the appropriate device.
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
ExecutionPlan plan;
ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &plan),
ANEURALNETWORKS_NO_ERROR);
EXPECT_TRUE(plan.forTest_flatGetDynamicTemporaries().empty());
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), expectDevice);
};
ASSERT_NO_FATAL_FAILURE(TrivialTest(false, "f32"));
ASSERT_NO_FATAL_FAILURE(TrivialTest(true, "f16"));
}
TEST_F(PartitioningTest, Perf) {
// The various type names used here are confusing.
//
// OperandType (from HAL file), WrapperType (from NeuralNetworksWrapper.h),
// and OperandCode (from NeuralNetworks.h) are different enums representing
// the same type kind -- e.g., OperandType::FLOAT32, WrapperType::FLOAT32,
// ANEURALNETWORKS_FLOAT32. Corresponding enumerators have the same value.
//
// WrapperOperandType is the NeuralNetworksWrapper.h representation of a
// full operand type (WrapperType plus dimensions plus other attributes).
auto TestType = [](V1_3::OperandType operandType) {
if (operandType == V1_3::OperandType::SUBGRAPH) {
// SUBGRAPH capabilities are handled differently.
return;
}
SCOPED_TRACE(toString(operandType));
// Trivial model consisting solely of OEM operation. We
// pick OEM operation because this allows us to use
// inputs and outputs of any number and type.
PartitioningModel model;
uint32_t opndIn = model.addOperand(static_cast<WrapperType>(operandType));
uint32_t opndOut = model.addOperationOEM1To1(opndIn);
model.identifyInputsAndOutputs({opndIn}, {opndOut});
model.finish();
ASSERT_TRUE(model.isValid());
const V1_3::Capabilities baseCapabilities = ::android::nn::makeCapabilities(0.5);
{
// better than base
V1_3::Capabilities goodCapabilities = baseCapabilities;
update(&goodCapabilities, operandType, 0.25);
const auto devices =
makeDevices({{"base", baseCapabilities, ~0U, PartitioningDriver::OEMYes},
{"good", goodCapabilities, ~0U, PartitioningDriver::OEMYes}});
// Verify that model will be executed on "good".
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
ExecutionPlan plan;
ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &plan),
ANEURALNETWORKS_NO_ERROR);
EXPECT_TRUE(plan.forTest_flatGetDynamicTemporaries().empty());
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), "good");
}
{
// worse than base
V1_3::Capabilities badCapabilities = baseCapabilities;
update(&badCapabilities, operandType, 0.75);
const auto devices =
makeDevices({{"base", baseCapabilities, ~0U, PartitioningDriver::OEMYes},
{"bad", badCapabilities, ~0U, PartitioningDriver::OEMYes}});
// Verify that model will be executed on "base".
// No need to compare the original model to the model from the plan -- we
// didn't actually do any partitioning.
ExecutionPlan plan;
ASSERT_EQ(model.partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &plan),
ANEURALNETWORKS_NO_ERROR);
EXPECT_TRUE(plan.forTest_flatGetDynamicTemporaries().empty());
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), "base");
}
};
for (uint32_t type = static_cast<uint32_t>(V1_3::OperandTypeRange::FUNDAMENTAL_MIN);
type <= static_cast<uint32_t>(V1_3::OperandTypeRange::FUNDAMENTAL_MAX); ++type) {
TestType(static_cast<V1_3::OperandType>(type));
}
for (uint32_t type = static_cast<uint32_t>(V1_3::OperandTypeRange::OEM_MIN);
type <= static_cast<uint32_t>(V1_3::OperandTypeRange::OEM_MAX); ++type) {
TestType(static_cast<V1_3::OperandType>(type));
}
}
// Test dynamic temporaries and related parts of the partitioning implementation.
//
// opnd0 = model input // tensor to pad
// opnd1 = model input // padding
// opnd2 = PAD(opnd1, opnd0) // model output
// opnd3 = PAD(opnd1, opnd0)
// opnd4 = ADD(opnd2, opnd3, FUSED_NONE) // model output
class DynamicTemporariesTest : public PartitioningTest {
protected:
// Call these functions in sequence in order to perform the test.
// Call to declareOutputDimensions() can be omitted (see the default values below).
// Call to declareHalVersions() can be omitted (defaults to HalVersion::LATEST).
void declareOutputDimensions(bool opnd2ModelAndPartitionOutputSpecified,
bool opnd3PartitionOutputSpecified,
bool opnd4ModelOutputSpecified);
void declareHalVersions(HalVersion padDeviceVersion, HalVersion addDeviceVersion);
void makeModelAndValidate();
void compileModelAndComparePlan(bool noFallback = true);
void executeCompilationAndCompareOutput(bool opnd2ModelOutputBigEnough,
bool opnd4ModelOutputBigEnough);
// set by declareOutputDimensions()
bool mOpnd2ModelAndPartitionOutputSpecified = false;
bool mOpnd3PartitionOutputSpecified = false;
bool mOpnd4ModelOutputSpecified = false;
// set by declareHalVersions()
HalVersion mPadDeviceVersion = HalVersion::LATEST;
HalVersion mAddDeviceVersion = HalVersion::LATEST;
HalVersion mMinDeviceVersion = HalVersion::LATEST; // minimum of the other two device versions
// created by makeModelAndValidate()
std::optional<PartitioningModel> mModel;
std::vector<uint32_t> mOpnds;
// created by compileModelAndComparePlan();
std::optional<PartitioningCompilation> mCompilation;
static bool supportsOutputOfUnknownRank(HalVersion version) {
return version >= HalVersion::V1_2;
}
static Dimensioned dimensionedOutput(HalVersion version, bool specified) {
return specified ? Dimensioned::YES_4
: supportsOutputOfUnknownRank(version) ? Dimensioned::NO
: Dimensioned::RANK_1;
}
};
void DynamicTemporariesTest::declareOutputDimensions(bool opnd2ModelAndPartitionOutputSpecified,
bool opnd3PartitionOutputSpecified,
bool opnd4ModelOutputSpecified) {
ASSERT_FALSE(mModel.has_value());
mOpnd2ModelAndPartitionOutputSpecified = opnd2ModelAndPartitionOutputSpecified;
mOpnd3PartitionOutputSpecified = opnd3PartitionOutputSpecified;
mOpnd4ModelOutputSpecified = opnd4ModelOutputSpecified;
}
void DynamicTemporariesTest::declareHalVersions(HalVersion padDeviceVersion,
HalVersion addDeviceVersion) {
ASSERT_FALSE(mModel.has_value());
mPadDeviceVersion = padDeviceVersion;
mAddDeviceVersion = addDeviceVersion;
mMinDeviceVersion = min(padDeviceVersion, addDeviceVersion);
}
void DynamicTemporariesTest::makeModelAndValidate() {
ASSERT_FALSE(mModel.has_value());
mModel = PartitioningModel();
uint32_t opndActivation = mModel->addIntScalarOperand(ANEURALNETWORKS_FUSED_NONE);
uint32_t opnd0 = mModel->addFloatOperand(Dimensioned::YES_2); // tensor to pad
uint32_t opnd1 = mModel->addIntOperand(Dimensioned::RANK_2); // paddings
uint32_t opnd2 = mModel->addExplicitOperationXTo1(
ANEURALNETWORKS_PAD, {opnd0, opnd1}, WrapperType::TENSOR_FLOAT32,
dimensionedOutput(mMinDeviceVersion, mOpnd2ModelAndPartitionOutputSpecified));
uint32_t opnd3 = mModel->addExplicitOperationXTo1(
ANEURALNETWORKS_PAD, {opnd0, opnd1}, WrapperType::TENSOR_FLOAT32,
dimensionedOutput(mMinDeviceVersion, mOpnd3PartitionOutputSpecified));
uint32_t opnd4 = mModel->addExplicitOperationXTo1(
ANEURALNETWORKS_ADD, {opnd2, opnd3, opndActivation}, WrapperType::TENSOR_FLOAT32,
dimensionedOutput(mMinDeviceVersion, mOpnd4ModelOutputSpecified));
mModel->identifyInputsAndOutputs({opnd0, opnd1}, {opnd2, opnd4});
mModel->finish();
ASSERT_TRUE(mModel->isValid());
mOpnds = {opnd0, opnd1, opnd2, opnd3, opnd4};
}
void DynamicTemporariesTest::compileModelAndComparePlan(bool noFallback) {
ASSERT_TRUE(mModel.has_value());
ASSERT_TRUE(!mCompilation.has_value());
auto devices = makeDevices({{"pad",
0.9,
0U,
PartitioningDriver::OEMNo,
mPadDeviceVersion,
{V1_3::OperationType::PAD}},
{"add",
0.9,
0U,
PartitioningDriver::OEMNo,
mAddDeviceVersion,
{V1_3::OperationType::ADD}}});
mCompilation = PartitioningCompilation(&mModel.value(), devices);
ASSERT_EQ(mCompilation->setPartitioning(DeviceManager::kPartitioningWithoutFallback),
Result::NO_ERROR);
if (noFallback) {
ASSERT_EQ(mCompilation->finish(), Result::NO_ERROR);
const ExecutionPlan& planA = mCompilation->getExecutionPlan();
EXPECT_TRUE(planA.forTest_flatGetDynamicTemporaries() ==
(mOpnd3PartitionOutputSpecified ? DynamicTemporariesType{}
: DynamicTemporariesType{mOpnds[3]}));
ASSERT_EQ(planA.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
const auto& stepsA = planA.forTest_compoundGetSteps();
ASSERT_EQ(stepsA.size(), size_t(2));
{
// Build a model to compare against the step model from stepsA[0].
PartitioningModel modelA0;
uint32_t a0Opnd0 = modelA0.addFloatOperand(Dimensioned::YES_2);
uint32_t a0Opnd1 = modelA0.addIntOperand(Dimensioned::RANK_2);
uint32_t a0Opnd2 = modelA0.addExplicitOperationXTo1(
ANEURALNETWORKS_PAD, {a0Opnd0, a0Opnd1}, WrapperType::TENSOR_FLOAT32,
dimensionedOutput(mMinDeviceVersion, mOpnd3PartitionOutputSpecified));
uint32_t a0Opnd3 = modelA0.addExplicitOperationXTo1(
ANEURALNETWORKS_PAD, {a0Opnd0, a0Opnd1}, WrapperType::TENSOR_FLOAT32,
dimensionedOutput(mMinDeviceVersion, mOpnd2ModelAndPartitionOutputSpecified));
modelA0.identifyInputsAndOutputs({a0Opnd0, a0Opnd1}, {a0Opnd3, a0Opnd2});
modelA0.finish();
ASSERT_TRUE(modelA0.isValid());
ASSERT_NO_FATAL_FAILURE(compare(
stepsA[0], &modelA0, devices[0],
RemapVectorType{{mOpnds[0], a0Opnd0}, {mOpnds[1], a0Opnd1}}, // modelInputs
RemapVectorType{{mOpnds[2], a0Opnd3}}, // modelOutputs
RemapVectorType{}, // tempsAsStepModelInputs
StepModelOutputSetType{{mOpnds[3], a0Opnd2}}, // tempsAsStepModelOutputs
RemapVectorType{}, // outputsAsStepModelInputs
{0u})); // modelOutputsThatAreDownstreamInputs
}
{
// Build a model to compare against the step model from stepsA[1].
PartitioningModel modelA1;
uint32_t a1Opnd2 = modelA1.addFloatOperand(
dimensionedOutput(mMinDeviceVersion, mOpnd2ModelAndPartitionOutputSpecified));
uint32_t a1Opnd3 = modelA1.addFloatOperand(
dimensionedOutput(mMinDeviceVersion, mOpnd3PartitionOutputSpecified));
uint32_t a1Opnd4 = modelA1.addOperation2To1V1_0(
0, a1Opnd2, a1Opnd3,
dimensionedOutput(mMinDeviceVersion, mOpnd4ModelOutputSpecified));
modelA1.identifyInputsAndOutputs({a1Opnd3, a1Opnd2}, {a1Opnd4});
modelA1.finish();
ASSERT_TRUE(modelA1.isValid());
ASSERT_NO_FATAL_FAILURE(
compare(stepsA[1], &modelA1, devices[1], RemapVectorType{}, // modelInputs
RemapVectorType{{mOpnds[4], a1Opnd4}}, // modelOutputs
RemapVectorType{{mOpnds[3], a1Opnd3}}, // tempsAsStepModelInputs
StepModelOutputSetType{}, // tempsAsStepModelOutputs
RemapVectorType{{mOpnds[2], a1Opnd2}}, // outputsAsStepModelInputs
{})); // modelOutputsThatAreDownstreamInputs
}
} else {
ASSERT_EQ(mCompilation->finish(), Result::OP_FAILED);
// Try again, expecting fallback.
mCompilation = PartitioningCompilation(&mModel.value(), devices);
ASSERT_EQ(mCompilation->setPartitioning(DeviceManager::kPartitioningWithFallback),
Result::NO_ERROR);
ASSERT_EQ(mCompilation->finish(), Result::NO_ERROR);
ASSERT_EQ(mCompilation->getExecutionPlan().forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(mCompilation->getExecutionPlan().forTest_simpleGetDevice(),
DeviceManager::getCpuDevice());
}
}
void DynamicTemporariesTest::executeCompilationAndCompareOutput(bool opnd2ModelOutputBigEnough,
bool opnd4ModelOutputBigEnough) {
ASSERT_TRUE(opnd2ModelOutputBigEnough || !mOpnd2ModelAndPartitionOutputSpecified);
ASSERT_TRUE(opnd4ModelOutputBigEnough || !mOpnd4ModelOutputSpecified);
ASSERT_TRUE(mCompilation.has_value());
WrapperExecution e(&mCompilation.value());
WrapperOperandType padTensorValueType(WrapperType::TENSOR_FLOAT32, {2});
const float padTensorValue[] = {3.0f, 5.0f};
e.setInput(0, &padTensorValue, &padTensorValueType.operandType);
WrapperOperandType paddingsType(WrapperType::TENSOR_INT32, {1, 2});
const int paddings[1][2] = {{1, 1}};
e.setInput(1, &paddings, &paddingsType.operandType);
auto setOutput = [&e](uint32_t index, float* buffer, bool bigEnough, bool specified,
HalVersion version) {
const uint32_t elts = bigEnough ? 4 : 3;
std::fill(buffer, buffer + elts, -1.0f);
using DimsType = std::vector<uint32_t>;
WrapperOperandType outputType(
WrapperType::TENSOR_FLOAT32,
specified ? DimsType{elts}
: supportsOutputOfUnknownRank(version) ? DimsType{} : DimsType{0});
e.setOutput(index, buffer, elts * sizeof(float), &outputType.operandType);
};
float opnd2ModelOutput[4], opnd4ModelOutput[4];
setOutput(0, opnd2ModelOutput, opnd2ModelOutputBigEnough,
mOpnd2ModelAndPartitionOutputSpecified, mPadDeviceVersion);
setOutput(1, opnd4ModelOutput, opnd4ModelOutputBigEnough, mOpnd4ModelOutputSpecified,
mAddDeviceVersion);
const Result expectResult = opnd2ModelOutputBigEnough && opnd4ModelOutputBigEnough
? Result::NO_ERROR
: Result::OUTPUT_INSUFFICIENT_SIZE;
ASSERT_EQ(e.compute(), expectResult);
if (expectResult == Result::NO_ERROR) {
float expected[4] = {0.0f, padTensorValue[0], padTensorValue[1], 0.0f};
ASSERT_TRUE(std::equal(std::begin(opnd2ModelOutput), std::end(opnd2ModelOutput),
std::begin(expected)));
for (auto& elt : expected) {
elt *= 2;
}
ASSERT_TRUE(std::equal(std::begin(opnd4ModelOutput), std::end(opnd4ModelOutput),
std::begin(expected)));
}
}
TEST_F(DynamicTemporariesTest, ModelOutputsSufficientSize) {
// The purpose of this test is to confirm that the partitioner and the
// runtime can handle a model output of unspecified dimensions but
// sufficient size that is written by one partition and read by another.
ASSERT_NO_FATAL_FAILURE(declareOutputDimensions(/*opnd2ModelAndPartitionOutputSpecified=*/false,
/*opnd3PartitionOutputSpecified=*/true,
/*opnd4ModelOutputSpecified=*/false));
ASSERT_NO_FATAL_FAILURE(makeModelAndValidate());
ASSERT_NO_FATAL_FAILURE(compileModelAndComparePlan());
ASSERT_NO_FATAL_FAILURE(executeCompilationAndCompareOutput(true, true));
}
// TODO(b/174851714): Fix the partitioner and re-enable this test.
TEST_F(DynamicTemporariesTest, DISABLED_ModelOutputsSufficientSize_V1_1) {
// The purpose of this test is to confirm that the partitioner and the
// runtime can handle a model output of unspecified dimensions but
// sufficient size that is written by one partition and read by another.
// Regression test for http://b/174851714.
ASSERT_NO_FATAL_FAILURE(declareOutputDimensions(/*opnd2ModelAndPartitionOutputSpecified=*/false,
/*opnd3PartitionOutputSpecified=*/true,
/*opnd4ModelOutputSpecified=*/false));
ASSERT_NO_FATAL_FAILURE(declareHalVersions(/*padDeviceVersion=*/HalVersion::V1_1,
/*addDeviceVersion=*/HalVersion::V1_1));
ASSERT_NO_FATAL_FAILURE(makeModelAndValidate());
ASSERT_NO_FATAL_FAILURE(compileModelAndComparePlan());
ASSERT_NO_FATAL_FAILURE(executeCompilationAndCompareOutput(true, true));
}
TEST_F(DynamicTemporariesTest, DynamicTemporariesUnspecifiedOutputs) {
// The purpose of this test is to confirm that the partitioner can produce
// dynamic temporaries and that the runtime can handle them properly. Note
// that all model outputs are of unspecified dimensions but sufficient size.
ASSERT_NO_FATAL_FAILURE(makeModelAndValidate());
ASSERT_NO_FATAL_FAILURE(compileModelAndComparePlan());
ASSERT_NO_FATAL_FAILURE(executeCompilationAndCompareOutput(true, true));
}
TEST_F(DynamicTemporariesTest, DynamicTemporariesSpecifiedOutputs) {
// The purpose of this test is to confirm that the partitioner can produce
// dynamic temporaries and that the runtime can handle them properly. Note
// that all model outputs are of specified dimensions.
ASSERT_NO_FATAL_FAILURE(declareOutputDimensions(/*opnd2ModelAndPartitionOutputSpecified=*/true,
/*opnd3PartitionOutputSpecified=*/false,
/*opnd4ModelOutputSpecified=*/true));
ASSERT_NO_FATAL_FAILURE(makeModelAndValidate());
ASSERT_NO_FATAL_FAILURE(compileModelAndComparePlan());
ASSERT_NO_FATAL_FAILURE(executeCompilationAndCompareOutput(true, true));
}
TEST_F(DynamicTemporariesTest, DynamicTemporariesSpecifiedOutputs_V1_2) {
// The purpose of this test is to confirm that the partitioner can produce
// dynamic temporaries and that the runtime can handle them properly. Note
// that all model outputs are of specified dimensions.
// Regression test for http://b/174851714.
ASSERT_NO_FATAL_FAILURE(declareOutputDimensions(/*opnd2ModelAndPartitionOutputSpecified=*/true,
/*opnd3PartitionOutputSpecified=*/false,
/*opnd4ModelOutputSpecified=*/true));
ASSERT_NO_FATAL_FAILURE(declareHalVersions(/*padDeviceVersion=*/HalVersion::V1_2,
/*addDeviceVersion=*/HalVersion::V1_2));
ASSERT_NO_FATAL_FAILURE(makeModelAndValidate());
ASSERT_NO_FATAL_FAILURE(compileModelAndComparePlan());
ASSERT_NO_FATAL_FAILURE(executeCompilationAndCompareOutput(true, true));
}
TEST_F(DynamicTemporariesTest, DynamicTemporariesSpecifiedOutputs_V1_1) {
// The purpose of this test is to confirm that the partitioner cannot produce
// dynamic temporaries for V1_1 but instead does whole-model CPU fallback. Note
// that all model outputs are of specified dimensions.
// Regression test for http://b/174851714.
ASSERT_NO_FATAL_FAILURE(declareOutputDimensions(/*opnd2ModelAndPartitionOutputSpecified=*/true,
/*opnd3PartitionOutputSpecified=*/false,
/*opnd4ModelOutputSpecified=*/true));
ASSERT_NO_FATAL_FAILURE(declareHalVersions(/*padDeviceVersion=*/HalVersion::V1_1,
/*addDeviceVersion=*/HalVersion::V1_1));
ASSERT_NO_FATAL_FAILURE(makeModelAndValidate());
ASSERT_NO_FATAL_FAILURE(compileModelAndComparePlan(false));
ASSERT_NO_FATAL_FAILURE(executeCompilationAndCompareOutput(true, true));
}
TEST_F(DynamicTemporariesTest, ModelOutputsInsufficientSizeWithDynamicTemporary) {
// The purpose of this test is to confirm that the runtime can detect a
// model output of insufficient size in the presence of a dynamic temporary.
ASSERT_NO_FATAL_FAILURE(makeModelAndValidate());
ASSERT_NO_FATAL_FAILURE(compileModelAndComparePlan());
ASSERT_NO_FATAL_FAILURE(executeCompilationAndCompareOutput(false, false));
}
TEST_F(DynamicTemporariesTest, ModelOutputsInsufficientSizeWithoutDynamicTemporary) {
// The purpose of this test is to confirm that the runtime can detect a
// model output of insufficient size in the absence of a dynamic temporary.
ASSERT_NO_FATAL_FAILURE(declareOutputDimensions(/*opnd2ModelAndPartitionOutputSpecified=*/false,
/*opnd3PartitionOutputSpecified=*/true,
/*opnd4ModelOutputSpecified=*/false));
ASSERT_NO_FATAL_FAILURE(makeModelAndValidate());
ASSERT_NO_FATAL_FAILURE(compileModelAndComparePlan());
ASSERT_NO_FATAL_FAILURE(executeCompilationAndCompareOutput(false, false));
}
TEST_F(DynamicTemporariesTest, ModelOutput2InsufficientSizeWithoutDynamicTemporary) {
// The purpose of this test is to confirm that the runtime can detect a
// model output of insufficient size in the absence of a dynamic temporary.
ASSERT_NO_FATAL_FAILURE(declareOutputDimensions(/*opnd2ModelAndPartitionOutputSpecified=*/false,
/*opnd3PartitionOutputSpecified=*/true,
/*opnd4ModelOutputSpecified=*/false));
ASSERT_NO_FATAL_FAILURE(makeModelAndValidate());
ASSERT_NO_FATAL_FAILURE(compileModelAndComparePlan());
ASSERT_NO_FATAL_FAILURE(executeCompilationAndCompareOutput(false, true));
}
TEST_F(DynamicTemporariesTest, ModelOutput4InsufficientSizeWithoutDynamicTemporary) {
// The purpose of this test is to confirm that the runtime can detect a
// model output of insufficient size in the absence of a dynamic temporary.
ASSERT_NO_FATAL_FAILURE(declareOutputDimensions(/*opnd2ModelAndPartitionOutputSpecified=*/false,
/*opnd3PartitionOutputSpecified=*/true,
/*opnd4ModelOutputSpecified=*/false));
ASSERT_NO_FATAL_FAILURE(makeModelAndValidate());
ASSERT_NO_FATAL_FAILURE(compileModelAndComparePlan());
ASSERT_NO_FATAL_FAILURE(executeCompilationAndCompareOutput(true, false));
}
// Test token rehashing during the compilation step.
class CacheTest : public PartitioningTest {
protected:
virtual void SetUp() override {
PartitioningTest::SetUp();
char cacheDirTemp[] = "/data/local/tmp/TestCompilationCachingXXXXXX";
char* cacheDir = mkdtemp(cacheDirTemp);
ASSERT_NE(cacheDir, nullptr);
mCacheDir = cacheDir;
}
virtual void TearDown() override {
if (!::testing::Test::HasFailure()) {
std::filesystem::remove_all(mCacheDir);
}
PartitioningTest::TearDown();
}
void expectUniqueTokens(const std::vector<std::vector<uint8_t>>& tokens) {
for (uint32_t i = 0; i < tokens.size(); i++) {
SCOPED_TRACE(i);
for (uint32_t j = i + 1; j < tokens.size(); j++) {
SCOPED_TRACE(j);
EXPECT_NE(tokens[i], tokens[j]);
}
}
}
// Launch a single run of the partitioner against the provided model and device list with
// cache token privided as tokenIn. Find the partition for the device with deviceName.
// Record the transformed token into tokenOut. Two or more partitions may be on the same device.
// "devicePartitionIndex" specifies the index of the ExecutionStep corresponding to the
// partition of interest, within the sequence of ExecutionSteps on the target device.
// If tokenIn is empty, no caching information will be provided to the partitioner.
void getTransformedCacheTokenSingle(const PartitioningModel& model,
const std::vector<std::shared_ptr<Device>>& devices,
const char* deviceName, const std::vector<uint8_t>& tokenIn,
ExecutePreference preference, ExecutePriority priority,
uint32_t devicePartitionIndex,
std::vector<uint8_t>* tokenOut) {
// Compile the model and get the execution plan.
PartitioningCompilation compilation(&model, devices);
if (!tokenIn.empty()) {
compilation.setCaching(mCacheDir.c_str(), tokenIn);
}
compilation.setPreference(preference);
compilation.setPriority(priority);
ASSERT_EQ(compilation.finish(), Result::NO_ERROR);
const ExecutionPlan& plan = compilation.getExecutionPlan();
// Find the cache info for the device.
const uint8_t* token = nullptr;
if (plan.forTest_getKind() == ExecutionPlan::Kind::SIMPLE) {
ASSERT_EQ(devicePartitionIndex, 0u);
ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), deviceName);
token = plan.forTest_simpleGetCacheToken();
} else if (plan.forTest_getKind() == ExecutionPlan::Kind::COMPOUND) {
const auto& steps = plan.forTest_compoundGetSteps();
uint32_t executionStepCount = 0;
for (const auto& step : steps) {
if (step->isExecution() &&
step->executionStep()->getDevice()->getName() == deviceName) {
if (devicePartitionIndex == executionStepCount) {
token = step->executionStep()->forTest_getCacheToken();
break;
}
executionStepCount++;
}
}
} else {
FAIL();
}
// Retrieve the transformed token from the cache info.
if (token == nullptr) {
tokenOut->clear();
} else {
tokenOut->resize(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN);
std::copy(token, token + ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, tokenOut->begin());
}
}
// A wrapper of getTransformedCacheTokenSingle, which runs getTransformedCacheTokenSingle
// multiple times and checks if the transformation provides consistent result.
// Two or more partitions may be on the same device. "devicePartitionIndex" specifies the index
// of the ExecutionStep corresponding to the partition of interest, within the sequence of
// ExecutionSteps on the target device.
void getTransformedCacheToken(const PartitioningModel& model,
const std::vector<std::shared_ptr<Device>>& devices,
const char* deviceName, const std::vector<uint8_t>& tokenIn,
ExecutePreference preference, ExecutePriority priority,
std::vector<uint8_t>* tokenOut,
uint32_t devicePartitionIndex = 0) {
getTransformedCacheTokenSingle(model, devices, deviceName, tokenIn, preference, priority,
devicePartitionIndex, tokenOut);
// Test if the runtime maps to the same cache token every time for the same compilation
// setup.
for (uint32_t i = 0; i < 10; i++) {
std::vector<uint8_t> token;
SCOPED_TRACE(i);
getTransformedCacheTokenSingle(model, devices, deviceName, tokenIn, preference,
priority, devicePartitionIndex, &token);
EXPECT_EQ(*tokenOut, token);
}
}
void createModelForCachingTests(PartitioningModel* model) {
uint32_t opnd0 = model->addFloatOperand();
uint32_t opnd1 = model->addFloatOperand();
uint32_t opnd2 = model->addOperation2To1V1_0(0, opnd0, opnd1);
uint32_t opnd3 = model->addFloatOperand();
uint32_t opnd4 = model->addOperation2To1V1_0(1, opnd2, opnd3);
model->identifyInputsAndOutputs({opnd0, opnd1, opnd3}, {opnd4});
model->finish();
ASSERT_TRUE(model->isValid());
}
// The first model returned in "models" is the main model.
void createControlFlowModelForCachingTests(
std::vector<std::unique_ptr<PartitioningModel>>* models) {
CHECK(models != nullptr);
auto trueModel = std::make_unique<PartitioningModel>();
{
const uint32_t opnd0 = trueModel->addFloatOperand();
const uint32_t opnd1 = trueModel->addFloatOperand();
const uint32_t opnd2 = trueModel->addOperation2To1V1_0(0, opnd0, opnd1);
trueModel->identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
trueModel->finish();
ASSERT_TRUE(trueModel->isValid());
}
auto falseModel = std::make_unique<PartitioningModel>();
{
const uint32_t opnd0 = falseModel->addFloatOperand();
const uint32_t opnd1 = falseModel->addFloatOperand();
const uint32_t opnd2 = falseModel->addOperation2To1V1_0(0, opnd0, opnd1);
falseModel->identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
falseModel->finish();
ASSERT_TRUE(falseModel->isValid());
}
auto mainModel = std::make_unique<PartitioningModel>();
{
const uint32_t opnd0 = mainModel->addBooleanOperand();
const uint32_t opnd1 = mainModel->addFloatOperand();
const uint32_t opnd2 = mainModel->addFloatOperand();
const uint32_t opnd3 = mainModel->addFloatOperand();
mainModel->addIfOperation(opnd0, *trueModel, *falseModel, {opnd1, opnd2}, {opnd3});
mainModel->identifyInputsAndOutputs({opnd0, opnd1, opnd2}, {opnd3});
mainModel->finish();
ASSERT_TRUE(mainModel->isValid());
}
models->clear();
models->push_back(std::move(mainModel));
models->push_back(std::move(trueModel));
models->push_back(std::move(falseModel));
}
std::string mCacheDir;
};
// Test the case when no token is provided by the application and the execution plan has a
// simple body.
TEST_F(CacheTest, CacheTokenNoneSimpleBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// deviceA can execute the whole model.
const auto deviceA = makeDevices({
{"deviceA", 0.5, ~0U},
});
std::vector<uint8_t> tokenIn, tokenOut;
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&tokenOut);
EXPECT_TRUE(tokenOut.empty());
}
// Test if the runtime maps to different cache tokens for devices with different names in
// execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentDeviceNamesSimpleBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// Two devices that can both execute the whole model.
const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}});
const auto deviceB = makeDevices({{"deviceB", 0.5, ~0U}});
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> deviceAToken, deviceBToken;
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&deviceAToken);
getTransformedCacheToken(model, deviceB, "deviceB", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&deviceBToken);
expectUniqueTokens({deviceAToken, deviceBToken});
}
// Test if the runtime maps to different cache tokens for devices with different version strings in
// execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentDeviceVersionStringsSimpleBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// Two devices that can both execute the whole model.
const auto deviceA_1_0 = makeDevices({{"deviceA", "1.0", 0.5, ~0U}});
const auto deviceA_1_1 = makeDevices({{"deviceA", "1.1", 0.5, ~0U}});
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> deviceA_1_0_Token, deviceA_1_1_Token;
getTransformedCacheToken(model, deviceA_1_0, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&deviceA_1_0_Token);
getTransformedCacheToken(model, deviceA_1_1, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&deviceA_1_1_Token);
expectUniqueTokens({deviceA_1_0_Token, deviceA_1_1_Token});
}
// Test if the runtime maps to different cache tokens for compilations with different preferences
// in execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentPreferencesSimpleBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// One device that can execute the whole model.
const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}});
std::vector<uint8_t> fastToken, powerToken, sustainedToken;
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&fastToken);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_LOW_POWER, ExecutePriority::DEFAULT,
&powerToken);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_SUSTAINED_SPEED, ExecutePriority::DEFAULT,
&sustainedToken);
expectUniqueTokens({fastToken, powerToken, sustainedToken});
}
// Test if the runtime maps to different cache tokens for compilations with different priorities
// in execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentPrioritiesSimpleBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// One device that can execute the whole model.
const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}});
std::vector<uint8_t> lowToken, mediumToken, highToken;
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::LOW,
&lowToken);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::MEDIUM,
&mediumToken);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::HIGH,
&highToken);
expectUniqueTokens({lowToken, mediumToken, highToken});
}
// Test if the runtime maps to different cache tokens for compilations with different tokens
// provided by application in execution plan with a simple body.
TEST_F(CacheTest, CacheTokenDifferentTokensSimpleBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// One device that can execute the whole model.
const auto deviceA = makeDevices({{"deviceA", 0.5, ~0U}});
std::vector<uint8_t> tokenOut1, tokenOut2;
std::vector<uint8_t> tokenIn1(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> tokenIn2(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 1);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn1,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&tokenOut1);
getTransformedCacheToken(model, deviceA, "deviceA", tokenIn2,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&tokenOut2);
expectUniqueTokens({tokenOut1, tokenOut2});
}
// Test the case when no token is provided by the application and the execution plan has a
// compound body.
TEST_F(CacheTest, CacheTokenNoneCompoundBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// DeviceA executes the first operation only.
const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
std::vector<uint8_t> tokenIn, tokenOut;
getTransformedCacheToken(model, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&tokenOut);
EXPECT_TRUE(tokenOut.empty());
getTransformedCacheToken(model, devices, "deviceB", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&tokenOut);
EXPECT_TRUE(tokenOut.empty());
}
// Test if the runtime maps to different cache tokens for devices with different names in
// execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentDeviceNamesCompoundBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// DeviceA executes the first operation only.
const auto devices1 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceC", 0.5, 1 << 1}});
// DeviceB executes the first operation only.
const auto devices2 = makeDevices({{"deviceB", 0.8, ~0U}, {"deviceC", 0.5, 1 << 1}});
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> deviceAToken, deviceBToken;
getTransformedCacheToken(model, devices1, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&deviceAToken);
getTransformedCacheToken(model, devices2, "deviceB", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&deviceBToken);
expectUniqueTokens({deviceAToken, deviceBToken});
}
// Test if the runtime maps to different cache tokens for devices with different names in
// execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentDeviceVersionStringsCompoundBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// DeviceA executes the first operation only.
const auto devices1 = makeDevices({{"deviceA", "1.0", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
// DeviceB executes the first operation only.
const auto devices2 = makeDevices({{"deviceA", "1.1", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> deviceA_1_0_Token, deviceA_1_1_Token;
getTransformedCacheToken(model, devices1, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&deviceA_1_0_Token);
getTransformedCacheToken(model, devices2, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&deviceA_1_1_Token);
expectUniqueTokens({deviceA_1_0_Token, deviceA_1_1_Token});
}
// Test if the runtime maps to different cache tokens for compilations with different preferences
// in execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentPreferencesCompoundBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// DeviceA executes the first operation only.
const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
std::vector<uint8_t> fastToken, powerToken, sustainedToken;
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
getTransformedCacheToken(model, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&fastToken);
getTransformedCacheToken(model, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_LOW_POWER, ExecutePriority::DEFAULT,
&powerToken);
getTransformedCacheToken(model, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_SUSTAINED_SPEED, ExecutePriority::DEFAULT,
&sustainedToken);
expectUniqueTokens({fastToken, powerToken, sustainedToken});
}
// Test if the runtime maps to different cache tokens for compilations with different priorities
// in execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentPrioritiesCompoundBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// DeviceA executes the first operation only.
const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
std::vector<uint8_t> lowToken, mediumToken, highToken;
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
getTransformedCacheToken(model, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::LOW,
&lowToken);
getTransformedCacheToken(model, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::MEDIUM,
&mediumToken);
getTransformedCacheToken(model, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::HIGH,
&highToken);
expectUniqueTokens({lowToken, mediumToken, highToken});
}
// Test if the runtime maps to different cache tokens for compilations with different tokens
// provided by application in execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentTokensCompoundBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// DeviceA executes the first operation only.
const auto devices = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
std::vector<uint8_t> tokenOut1, tokenOut2;
std::vector<uint8_t> tokenIn1(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> tokenIn2(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 1);
getTransformedCacheToken(model, devices, "deviceA", tokenIn1,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&tokenOut1);
getTransformedCacheToken(model, devices, "deviceA", tokenIn2,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&tokenOut2);
expectUniqueTokens({tokenOut1, tokenOut2});
}
// Test if the runtime maps to different cache tokens for compilations with different partitioning
// outcome in execution plan with a compound body.
TEST_F(CacheTest, CacheTokenDifferentPartitionsCompoundBody) {
PartitioningModel model;
createModelForCachingTests(&model);
// DeviceA executes the whole model.
const auto devices1 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 0U}});
// DeviceA executes the first operation only.
const auto devices2 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 1}});
// DeviceA executes the second operation only.
const auto devices3 = makeDevices({{"deviceA", 0.8, ~0U}, {"deviceB", 0.5, 1 << 0}});
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> tokenOut1, tokenOut2, tokenOut3;
getTransformedCacheToken(model, devices1, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&tokenOut1);
getTransformedCacheToken(model, devices2, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&tokenOut2);
getTransformedCacheToken(model, devices3, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&tokenOut3);
expectUniqueTokens({tokenOut1, tokenOut2, tokenOut3});
}
// Test if the runtime maps different referenced models to different cache tokens.
TEST_F(CacheTest, CacheTokenDifferentReferenceModelPartitions) {
std::vector<std::unique_ptr<PartitioningModel>> models;
createControlFlowModelForCachingTests(&models);
const auto& main = *models[0];
// DeviceA executes the two referenced models but does not support IF.
// There will be two partitions on deviceA.
const auto devices = makeDevices({{"deviceA", 0.8, ~0U}});
std::vector<uint8_t> tokenIn(ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN, 0);
std::vector<uint8_t> tokenOut1, tokenOut2;
getTransformedCacheToken(main, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&tokenOut1, /*devicePartitionIndex=*/0);
getTransformedCacheToken(main, devices, "deviceA", tokenIn,
ExecutePreference::PREFER_FAST_SINGLE_ANSWER, ExecutePriority::DEFAULT,
&tokenOut2, /*devicePartitionIndex=*/1);
expectUniqueTokens({tokenOut1, tokenOut2});
}
// Very basic tests of some of the PerformanceInfo functionality.
// Placed in this file because partitioning is the consumer of this functionality.
class PerfTest : public ::testing::Test {};
TEST_F(PerfTest, Lookup) {
// Derive an arbitrary (but reproducible) performance value from an OperandType.
// We'll use this to ensure that we can save and then recover a type's performance.
auto typePerf = [](V1_3::OperandType type) { return float(static_cast<uint32_t>(type)); };
V1_3::Capabilities capabilities = ::android::nn::makeCapabilities(-1.0f);
for (uint32_t type = static_cast<uint32_t>(V1_3::OperandTypeRange::FUNDAMENTAL_MIN);
type <= static_cast<uint32_t>(V1_3::OperandTypeRange::FUNDAMENTAL_MAX); ++type) {
V1_3::OperandType operandType = static_cast<V1_3::OperandType>(type);
update(&capabilities, operandType, typePerf(operandType));
}
for (uint32_t type = static_cast<uint32_t>(V1_3::OperandTypeRange::OEM_MIN);
type <= static_cast<uint32_t>(V1_3::OperandTypeRange::OEM_MAX); ++type) {
V1_3::OperandType operandType = static_cast<V1_3::OperandType>(type);
update(&capabilities, operandType, typePerf(operandType));
}
// Make sure lookup retrieves the values stored by update
for (uint32_t type = static_cast<uint32_t>(V1_3::OperandTypeRange::FUNDAMENTAL_MIN);
type <= static_cast<uint32_t>(V1_3::OperandTypeRange::FUNDAMENTAL_MAX); ++type) {
V1_3::OperandType operandType = static_cast<V1_3::OperandType>(type);
if (operandType == V1_3::OperandType::SUBGRAPH) {
// SUBGRAPH capabilities are handled differently.
continue;
}
SCOPED_TRACE(toString(operandType));
EXPECT_EQ(lookupExecTime(capabilities, operandType), typePerf(operandType));
}
for (uint32_t type = static_cast<uint32_t>(V1_3::OperandTypeRange::OEM_MIN);
type <= static_cast<uint32_t>(V1_3::OperandTypeRange::OEM_MAX); ++type) {
V1_3::OperandType operandType = static_cast<V1_3::OperandType>(type);
SCOPED_TRACE(toString(operandType));
EXPECT_EQ(lookupExecTime(capabilities, operandType), typePerf(operandType));
}
// Check the behavior of a missing type
V1_3::OperandType operandType = static_cast<V1_3::OperandType>(
static_cast<uint32_t>(V1_3::OperandTypeRange::BASE_MAX) + 1);
EXPECT_EQ(lookupExecTime(capabilities, operandType), FLT_MAX);
}
class ControlFlowPartitioningTest : public PartitioningTest {
protected:
// opnd0 --> +-----+
// | op0 | --> opnd2
// opnd1 --> +-----+
std::unique_ptr<PartitioningModel> createBranchOrBodyModel(Dimensioned dimensioned) {
auto model = std::make_unique<PartitioningModel>();
const uint32_t opnd0 = model->addFloatOperand(dimensioned);
const uint32_t opnd1 = model->addFloatOperand(dimensioned);
const uint32_t opnd2 = model->addOperation2To1V1_0(0, opnd0, opnd1, dimensioned);
model->identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
model->finish();
EXPECT_TRUE(model->isValid());
return model;
}
// opnd0 --> +-------+
// | EQUAL | --> opnd2
// opnd1 --> +-------+
std::unique_ptr<PartitioningModel> createCondModel(Dimensioned dimensioned) {
auto model = std::make_unique<PartitioningModel>();
const uint32_t opnd0 = model->addFloatOperand(dimensioned);
const uint32_t opnd1 = model->addFloatOperand(dimensioned);
const uint32_t opnd2 = model->addExplicitOperationXTo1(
ANEURALNETWORKS_EQUAL, {opnd0, opnd1}, WrapperType::TENSOR_BOOL8);
model->identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
model->finish();
EXPECT_TRUE(model->isValid());
return model;
}
// opnd0 --> +----+
// opnd1 --> | IF | --> opnd3
// opnd2 --> +----+
std::vector<std::unique_ptr<PartitioningModel>> createIfModel(
Dimensioned dimensionedMain = Dimensioned::YES,
Dimensioned dimensionedThen = Dimensioned::YES,
Dimensioned dimensionedElse = Dimensioned::YES) {
auto thenModel = createBranchOrBodyModel(dimensionedThen);
auto elseModel = createBranchOrBodyModel(dimensionedElse);
auto mainModel = std::make_unique<PartitioningModel>();
const uint32_t opnd0 = mainModel->addBooleanOperand();
const uint32_t opnd1 = mainModel->addFloatOperand(dimensionedMain);
const uint32_t opnd2 = mainModel->addFloatOperand(dimensionedMain);
const uint32_t opnd3 = mainModel->addFloatOperand(dimensionedMain);
mainModel->addIfOperation(opnd0, *thenModel, *elseModel, {opnd1, opnd2}, {opnd3});
mainModel->identifyInputsAndOutputs({opnd0, opnd1, opnd2}, {opnd3});
mainModel->finish();
EXPECT_TRUE(mainModel->isValid());
std::vector<std::unique_ptr<PartitioningModel>> models;
models.push_back(std::move(mainModel));
models.push_back(std::move(thenModel));
models.push_back(std::move(elseModel));
return std::move(models);
}
// opnd0 --> +-------+
// | WHILE | --> opnd2
// opnd1 --> +-------+
std::vector<std::unique_ptr<PartitioningModel>> createWhileModel(
Dimensioned dimensionedMain = Dimensioned::YES,
Dimensioned dimensionedCond = Dimensioned::YES,
Dimensioned dimensionedBody = Dimensioned::YES) {
auto condModel = createCondModel(dimensionedCond);
auto bodyModel = createBranchOrBodyModel(dimensionedBody);
auto mainModel = std::make_unique<PartitioningModel>();
const uint32_t opnd0 = mainModel->addFloatOperand(dimensionedMain);
const uint32_t opnd1 = mainModel->addFloatOperand(dimensionedMain);
const uint32_t opnd2 = mainModel->addFloatOperand(dimensionedMain);
mainModel->addWhileOperation(*condModel, *bodyModel, {opnd0, opnd1}, {opnd2});
mainModel->identifyInputsAndOutputs({opnd0, opnd1}, {opnd2});
mainModel->finish();
EXPECT_TRUE(mainModel->isValid());
std::vector<std::unique_ptr<PartitioningModel>> models;
models.push_back(std::move(mainModel));
models.push_back(std::move(condModel));
models.push_back(std::move(bodyModel));
return std::move(models);
}
void testIfUnknownSize(Dimensioned dimensionedMain, Dimensioned dimensionedThen,
Dimensioned dimensionedElse);
void testWhileUnknownSize(Dimensioned dimensionedMain, Dimensioned dimensionedThen,
Dimensioned dimensionedElse);
};
TEST_F(ControlFlowPartitioningTest, IF_Interpreted) {
const auto models = createIfModel();
// The device supports the referenced models but does not support IF.
const auto devices = makeDevices({{"V1_0", 0.9, HalVersion::V1_0, ~0U}});
ExecutionPlan plan;
ASSERT_EQ(models[0]->partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &plan),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
const auto& steps = plan.forTest_compoundGetSteps();
ASSERT_EQ(steps.size(), size_t(4));
ASSERT_TRUE(steps[0]->isIf());
ASSERT_TRUE(steps[1]->isExecution());
ASSERT_TRUE(steps[2]->isGoto());
ASSERT_TRUE(steps[3]->isExecution());
ASSERT_EQ(steps[1]->executionStep()->getDevice()->getName(), "V1_0");
ASSERT_EQ(steps[3]->executionStep()->getDevice()->getName(), "V1_0");
}
TEST_F(ControlFlowPartitioningTest, WHILE_Interpreted) {
const auto models = createWhileModel();
// The device supports the body model but does not support WHILE or the
// condition model (because of EQUAL).
const auto devices = makeDevices({{"V1_0", 0.9, HalVersion::V1_0, ~0U}});
ExecutionPlan plan;
ASSERT_EQ(models[0]->partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &plan),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::COMPOUND);
const auto& steps = plan.forTest_compoundGetSteps();
ASSERT_EQ(steps.size(), size_t(5));
ASSERT_TRUE(steps[0]->isWhile());
ASSERT_TRUE(steps[1]->isExecution());
ASSERT_TRUE(steps[2]->isGoto());
ASSERT_TRUE(steps[3]->isExecution());
ASSERT_TRUE(steps[4]->isGoto());
ASSERT_EQ(steps[1]->executionStep()->getDevice()->getName(),
DeviceManager::getCpuDevice()->getName());
ASSERT_EQ(steps[3]->executionStep()->getDevice()->getName(), "V1_0");
}
TEST_F(ControlFlowPartitioningTest, IF_SimplePlan) {
const auto models = createIfModel();
// The device supports all operations.
const auto devices = makeDevices({{"ALL",
0.9,
~0U,
PartitioningDriver::OEMNo,
HalVersion::LATEST,
{V1_3::OperationType::IF}}});
ExecutionPlan plan;
ASSERT_EQ(models[0]->partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &plan),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), "ALL");
}
TEST_F(ControlFlowPartitioningTest, WHILE_SimplePlan) {
const auto models = createWhileModel();
// The device supports all operations.
const auto devices = makeDevices({{"ALL",
0.9,
~0U,
PartitioningDriver::OEMNo,
HalVersion::LATEST,
{V1_3::OperationType::WHILE, V1_3::OperationType::EQUAL}}});
ExecutionPlan plan;
ASSERT_EQ(models[0]->partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &plan),
ANEURALNETWORKS_NO_ERROR);
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), "ALL");
}
void ControlFlowPartitioningTest::testIfUnknownSize(Dimensioned dimensionedMain,
Dimensioned dimensionedThen,
Dimensioned dimensionedElse) {
if (dimensionedMain != Dimensioned::NO && dimensionedThen != Dimensioned::NO &&
dimensionedElse != Dimensioned::NO) {
// No unknown size.
return;
}
const auto models = createIfModel(dimensionedMain, dimensionedThen, dimensionedElse);
// The device supports all operations but the partitioner ignores its IF
// support due to http://b/159076604#comment5.
const auto devices = makeDevices({{"ALL",
0.9,
~0U,
PartitioningDriver::OEMNo,
HalVersion::LATEST,
{V1_3::OperationType::IF}}});
ExecutionPlan plan;
ASSERT_EQ(models[0]->partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &plan),
ANEURALNETWORKS_NO_ERROR);
// The control flow interpreter does not support unknown size (b/132458982).
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), DeviceManager::getCpuDevice()->getName());
}
TEST_F(ControlFlowPartitioningTest, IF_UnknownSize) {
const std::vector<Dimensioned> configurations = {Dimensioned::NO, Dimensioned::YES};
for (Dimensioned dimensionedMain : configurations) {
SCOPED_TRACE(testing::Message() << "dimensionedMain: " << toString(dimensionedMain));
for (Dimensioned dimensionedThen : configurations) {
SCOPED_TRACE(testing::Message() << "dimensionedThen: " << toString(dimensionedThen));
for (Dimensioned dimensionedElse : configurations) {
SCOPED_TRACE(testing::Message()
<< "dimensionedElse: " << toString(dimensionedElse));
testIfUnknownSize(dimensionedMain, dimensionedThen, dimensionedElse);
}
}
}
}
void ControlFlowPartitioningTest::testWhileUnknownSize(Dimensioned dimensionedMain,
Dimensioned dimensionedCond,
Dimensioned dimensionedBody) {
if (dimensionedMain != Dimensioned::NO && dimensionedCond != Dimensioned::NO &&
dimensionedBody != Dimensioned::NO) {
// No unknown size.
return;
}
const auto models = createWhileModel(dimensionedMain, dimensionedCond, dimensionedBody);
// The device supports all operations but the partitioner ignores its WHILE
// support due to http://b/159076604#comment5.
const auto devices = makeDevices({{"ALL",
0.9,
~0U,
PartitioningDriver::OEMNo,
HalVersion::LATEST,
{V1_3::OperationType::WHILE, V1_3::OperationType::EQUAL}}});
ExecutionPlan plan;
ASSERT_EQ(models[0]->partitionTheWork(devices, ExecutePreference::PREFER_LOW_POWER,
ExecutePriority::DEFAULT, {}, &plan),
ANEURALNETWORKS_NO_ERROR);
// The control flow interpreter does not support unknown size (b/132458982).
ASSERT_EQ(plan.forTest_getKind(), ExecutionPlan::Kind::SIMPLE);
ASSERT_EQ(plan.forTest_simpleGetDevice()->getName(), DeviceManager::getCpuDevice()->getName());
}
TEST_F(ControlFlowPartitioningTest, WHILE_UnknownSize) {
const std::vector<Dimensioned> configurations = {Dimensioned::NO, Dimensioned::YES};
for (Dimensioned dimensionedMain : configurations) {
SCOPED_TRACE(testing::Message() << "dimensionedMain: " << toString(dimensionedMain));
for (Dimensioned dimensionedCond : configurations) {
SCOPED_TRACE(testing::Message() << "dimensionedCond: " << toString(dimensionedCond));
for (Dimensioned dimensionedBody : configurations) {
SCOPED_TRACE(testing::Message()
<< "dimensionedBody: " << toString(dimensionedBody));
testWhileUnknownSize(dimensionedMain, dimensionedCond, dimensionedBody);
}
}
}
}
} // namespace