blob: ee9ce4f2f2ebaafc4dc0999672c53267b8b96d84 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <array>
#include <android-base/test_utils.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "DnsStats.h"
#include "tests/resolv_test_base.h"
namespace android::net {
using namespace std::chrono_literals;
using android::netdutils::IPSockAddr;
using std::chrono::microseconds;
using std::chrono::milliseconds;
using ::testing::IsEmpty;
using ::testing::UnorderedElementsAreArray;
namespace {
constexpr auto NO_AVERAGE_LATENCY = std::nullopt;
// A helper which can propagate the failure to outside of the stmt to know which line
// of stmt fails. The expectation fails only for the first failed stmt.
#define EXPECT_NO_FAILURE(stmt) \
do { \
bool alreadyFailed = HasFailure(); \
stmt; \
if (!alreadyFailed && HasFailure()) EXPECT_FALSE(HasFailure()); \
} while (0)
DnsQueryEvent makeDnsQueryEvent(const Protocol protocol, const NsRcode rcode,
const milliseconds& latency) {
DnsQueryEvent event;
event.set_protocol(protocol);
event.set_rcode(rcode);
event.set_latency_micros(latency.count() * 1000);
return event;
}
StatsData makeStatsData(const IPSockAddr& server, const int total, const microseconds& latencyUs,
const std::map<int, int>& rcodeCounts) {
StatsData ret(server);
ret.total = total;
ret.latencyUs = latencyUs;
ret.rcodeCounts = rcodeCounts;
return ret;
}
} // namespace
// TODO: add StatsDataTest to ensure its methods return correct outputs.
class StatsRecordsTest : public ResolvTestBase {};
TEST_F(StatsRecordsTest, PushRecord) {
const IPSockAddr server = IPSockAddr::toIPSockAddr("127.0.0.2", 53);
constexpr size_t size = 3;
const StatsRecords::Record recordNoError = {
.rcode = NS_R_NO_ERROR,
.linux_errno = 0,
.latencyUs{10ms},
};
const StatsRecords::Record recordTimeout = {
.rcode = NS_R_TIMEOUT,
.linux_errno = 0,
.latencyUs{250ms},
};
StatsRecords sr(server, size);
EXPECT_EQ(sr.getStatsData(), makeStatsData(server, 0, 0ms, {}));
sr.push(recordNoError);
EXPECT_EQ(sr.getStatsData(), makeStatsData(server, 1, 10ms, {{NS_R_NO_ERROR, 1}}));
sr.push(recordNoError);
EXPECT_EQ(sr.getStatsData(), makeStatsData(server, 2, 20ms, {{NS_R_NO_ERROR, 2}}));
sr.push(recordTimeout);
EXPECT_EQ(sr.getStatsData(),
makeStatsData(server, 3, 270ms, {{NS_R_NO_ERROR, 2}, {NS_R_TIMEOUT, 1}}));
sr.push(recordTimeout);
EXPECT_EQ(sr.getStatsData(),
makeStatsData(server, 3, 510ms, {{NS_R_NO_ERROR, 1}, {NS_R_TIMEOUT, 2}}));
sr.push(recordTimeout);
EXPECT_EQ(sr.getStatsData(),
makeStatsData(server, 3, 750ms, {{NS_R_NO_ERROR, 0}, {NS_R_TIMEOUT, 3}}));
}
class DnsStatsTest : public ResolvTestBase {
protected:
std::string captureDumpOutput() {
netdutils::DumpWriter dw(STDOUT_FILENO);
CapturedStdout captured;
mDnsStats.dump(dw);
return captured.str();
}
// Get the output string from dump() and check the content.
void verifyDumpOutput(const std::vector<StatsData>& tcpData,
const std::vector<StatsData>& udpData,
const std::vector<StatsData>& dotData,
const std::vector<StatsData>& mdnsData,
const std::vector<StatsData>& dohData) {
// A pattern to capture three matches:
// server address (empty allowed), the statistics, and the score.
const std::regex pattern(R"(\s{4,}([0-9a-fA-F:\.\]\[]*)[ ]?([<(].*[>)])[ ]?(\S*))");
std::string dumpString = captureDumpOutput();
const auto check = [&](const std::vector<StatsData>& statsData, const std::string& protocol,
std::string* dumpString) {
SCOPED_TRACE(protocol);
ASSERT_NE(dumpString->find(protocol), std::string::npos);
std::smatch sm;
// Expect to show something even if none of servers or mdns multicast addresses is set.
if (statsData.empty()) {
ASSERT_TRUE(std::regex_search(*dumpString, sm, pattern));
EXPECT_TRUE(sm[1].str().empty());
EXPECT_EQ(sm[2], "<no data>");
EXPECT_TRUE(sm[3].str().empty());
*dumpString = sm.suffix();
return;
}
for (const auto& stats : statsData) {
ASSERT_TRUE(std::regex_search(*dumpString, sm, pattern));
EXPECT_EQ(sm[1], stats.sockAddr.toString());
EXPECT_FALSE(sm[2].str().empty());
EXPECT_FALSE(sm[3].str().empty());
*dumpString = sm.suffix();
}
};
check(udpData, "UDP", &dumpString);
check(dohData, "DOH", &dumpString);
check(dotData, "TLS", &dumpString);
check(tcpData, "TCP", &dumpString);
check(mdnsData, "MDNS", &dumpString);
// Ensure the whole string has been checked.
EXPECT_EQ(dumpString, "\n");
}
void verifyDnsStatsContent(Protocol protocol, const std::vector<StatsData>& expectedStats,
const std::optional<microseconds>& expectedAvgLatency) {
if (expectedStats.empty()) {
EXPECT_THAT(mDnsStats.getStats(protocol), IsEmpty());
} else {
EXPECT_THAT(mDnsStats.getStats(protocol), UnorderedElementsAreArray(expectedStats));
}
EXPECT_EQ(mDnsStats.getAverageLatencyUs(protocol), expectedAvgLatency);
}
DnsStats mDnsStats;
};
TEST_F(DnsStatsTest, SetAddrs) {
// Check before any operation to mDnsStats.
verifyDumpOutput({}, {}, {}, {}, {});
static const struct {
std::vector<std::string> servers;
std::vector<std::string> expectation;
bool isSuccess;
} tests[] = {
// Normal case.
{
{"127.0.0.1", "127.0.0.2", "fe80::1%22", "2001:db8::2", "::1"},
{"127.0.0.1", "127.0.0.2", "fe80::1%22", "2001:db8::2", "::1"},
true,
},
// Duplicate servers.
{
{"127.0.0.1", "2001:db8::2", "127.0.0.1", "2001:db8::2"},
{"127.0.0.1", "2001:db8::2"},
true,
},
// Invalid server addresses. The state remains in previous state.
{
{"not_an_ip", "127.0.0.3", "127.a.b.2"},
{"127.0.0.1", "2001:db8::2"},
false,
},
// Clean up the old servers 127.0.0.1 and 127.0.0.2.
{
{"127.0.0.4", "2001:db8::5"},
{"127.0.0.4", "2001:db8::5"},
true,
},
// Empty list.
{{}, {}, true},
};
for (const auto& [servers, expectation, isSuccess] : tests) {
std::vector<IPSockAddr> ipSockAddrs;
ipSockAddrs.reserve(servers.size());
for (const auto& server : servers) {
ipSockAddrs.push_back(IPSockAddr::toIPSockAddr(server, 53));
}
EXPECT_TRUE(mDnsStats.setAddrs(ipSockAddrs, PROTO_TCP) == isSuccess);
EXPECT_TRUE(mDnsStats.setAddrs(ipSockAddrs, PROTO_UDP) == isSuccess);
EXPECT_TRUE(mDnsStats.setAddrs(ipSockAddrs, PROTO_DOT) == isSuccess);
std::vector<StatsData> expectedStats;
expectedStats.reserve(expectation.size());
for (const auto& exp : expectation) {
expectedStats.push_back(makeStatsData(IPSockAddr::toIPSockAddr(exp, 53), 0, 0ms, {}));
}
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_TCP, expectedStats, NO_AVERAGE_LATENCY));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_UDP, expectedStats, NO_AVERAGE_LATENCY));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_DOT, expectedStats, NO_AVERAGE_LATENCY));
}
verifyDumpOutput({}, {}, {}, {}, {});
}
TEST_F(DnsStatsTest, SetServersDifferentPorts) {
const std::vector<IPSockAddr> servers = {
IPSockAddr::toIPSockAddr("127.0.0.1", 0), IPSockAddr::toIPSockAddr("fe80::1", 0),
IPSockAddr::toIPSockAddr("127.0.0.1", 53), IPSockAddr::toIPSockAddr("127.0.0.1", 853),
IPSockAddr::toIPSockAddr("127.0.0.1", 5353), IPSockAddr::toIPSockAddr("fe80::1", 53),
IPSockAddr::toIPSockAddr("fe80::1", 853), IPSockAddr::toIPSockAddr("fe80::1", 5353),
};
// Servers setup fails due to port unset.
EXPECT_FALSE(mDnsStats.setAddrs(servers, PROTO_TCP));
EXPECT_FALSE(mDnsStats.setAddrs(servers, PROTO_UDP));
EXPECT_FALSE(mDnsStats.setAddrs(servers, PROTO_DOT));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_TCP, {}, NO_AVERAGE_LATENCY));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_UDP, {}, NO_AVERAGE_LATENCY));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_DOT, {}, NO_AVERAGE_LATENCY));
verifyDumpOutput({}, {}, {}, {}, {});
EXPECT_TRUE(mDnsStats.setAddrs(std::vector(servers.begin() + 2, servers.end()), PROTO_TCP));
EXPECT_TRUE(mDnsStats.setAddrs(std::vector(servers.begin() + 2, servers.end()), PROTO_UDP));
EXPECT_TRUE(mDnsStats.setAddrs(std::vector(servers.begin() + 2, servers.end()), PROTO_DOT));
const std::vector<StatsData> expectedStats = {
makeStatsData(servers[2], 0, 0ms, {}), makeStatsData(servers[3], 0, 0ms, {}),
makeStatsData(servers[4], 0, 0ms, {}), makeStatsData(servers[5], 0, 0ms, {}),
makeStatsData(servers[6], 0, 0ms, {}), makeStatsData(servers[7], 0, 0ms, {}),
};
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_TCP, expectedStats, NO_AVERAGE_LATENCY));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_UDP, expectedStats, NO_AVERAGE_LATENCY));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_DOT, expectedStats, NO_AVERAGE_LATENCY));
verifyDumpOutput(expectedStats, expectedStats, expectedStats, {}, {});
}
TEST_F(DnsStatsTest, AddStatsAndClear) {
const std::vector<IPSockAddr> servers = {
IPSockAddr::toIPSockAddr("127.0.0.1", 53),
IPSockAddr::toIPSockAddr("127.0.0.2", 53),
};
const std::vector<IPSockAddr> mdnsaddrs = {
IPSockAddr::toIPSockAddr("ff02::fb", 5353),
IPSockAddr::toIPSockAddr("224.0.0.251", 5353),
};
const DnsQueryEvent record = makeDnsQueryEvent(PROTO_UDP, NS_R_NO_ERROR, 10ms);
const DnsQueryEvent mdnsrecord = makeDnsQueryEvent(PROTO_MDNS, NS_R_NO_ERROR, 10ms);
EXPECT_TRUE(mDnsStats.setAddrs(servers, PROTO_TCP));
EXPECT_TRUE(mDnsStats.setAddrs(servers, PROTO_UDP));
EXPECT_TRUE(mDnsStats.setAddrs(mdnsaddrs, PROTO_MDNS));
// Fail to add stats because of incorrect arguments.
EXPECT_FALSE(mDnsStats.addStats(IPSockAddr::toIPSockAddr("127.0.0.4", 53), record));
EXPECT_FALSE(mDnsStats.addStats(IPSockAddr::toIPSockAddr("127.a.b.4", 53), record));
EXPECT_TRUE(mDnsStats.addStats(servers[0], record));
EXPECT_TRUE(mDnsStats.addStats(servers[0], record));
EXPECT_TRUE(mDnsStats.addStats(servers[1], record));
EXPECT_TRUE(mDnsStats.addStats(mdnsaddrs[0], mdnsrecord));
EXPECT_TRUE(mDnsStats.addStats(mdnsaddrs[1], mdnsrecord));
const std::vector<StatsData> expectedStatsForTcp = {
makeStatsData(servers[0], 0, 0ms, {}),
makeStatsData(servers[1], 0, 0ms, {}),
};
const std::vector<StatsData> expectedStatsForUdp = {
makeStatsData(servers[0], 2, 20ms, {{NS_R_NO_ERROR, 2}}),
makeStatsData(servers[1], 1, 10ms, {{NS_R_NO_ERROR, 1}}),
};
const std::vector<StatsData> expectedStatsForMdns = {
makeStatsData(mdnsaddrs[1], 1, 10ms, {{NS_R_NO_ERROR, 1}}),
makeStatsData(mdnsaddrs[0], 1, 10ms, {{NS_R_NO_ERROR, 1}}),
};
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_TCP, expectedStatsForTcp, NO_AVERAGE_LATENCY));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_UDP, expectedStatsForUdp, 10ms));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_DOT, {}, NO_AVERAGE_LATENCY));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_MDNS, expectedStatsForMdns, 10ms));
verifyDumpOutput(expectedStatsForTcp, expectedStatsForUdp, {}, expectedStatsForMdns, {});
// Clear stats.
EXPECT_TRUE(mDnsStats.setAddrs({}, PROTO_TCP));
EXPECT_TRUE(mDnsStats.setAddrs({}, PROTO_UDP));
EXPECT_TRUE(mDnsStats.setAddrs({}, PROTO_DOT));
EXPECT_TRUE(mDnsStats.setAddrs({}, PROTO_MDNS));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_TCP, {}, NO_AVERAGE_LATENCY));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_UDP, {}, NO_AVERAGE_LATENCY));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_DOT, {}, NO_AVERAGE_LATENCY));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_MDNS, {}, NO_AVERAGE_LATENCY));
verifyDumpOutput({}, {}, {}, {}, {});
}
TEST_F(DnsStatsTest, StatsRemainsInExistentServer) {
std::vector<IPSockAddr> servers = {
IPSockAddr::toIPSockAddr("127.0.0.1", 53),
IPSockAddr::toIPSockAddr("127.0.0.2", 53),
};
const DnsQueryEvent recordNoError = makeDnsQueryEvent(PROTO_UDP, NS_R_NO_ERROR, 10ms);
const DnsQueryEvent recordTimeout = makeDnsQueryEvent(PROTO_UDP, NS_R_TIMEOUT, 250ms);
EXPECT_TRUE(mDnsStats.setAddrs(servers, PROTO_UDP));
// Add a record to 127.0.0.1.
EXPECT_TRUE(mDnsStats.addStats(servers[0], recordNoError));
// Add four records to 127.0.0.2.
EXPECT_TRUE(mDnsStats.addStats(servers[1], recordNoError));
EXPECT_TRUE(mDnsStats.addStats(servers[1], recordNoError));
EXPECT_TRUE(mDnsStats.addStats(servers[1], recordTimeout));
EXPECT_TRUE(mDnsStats.addStats(servers[1], recordTimeout));
std::vector<StatsData> expectedStats = {
makeStatsData(servers[0], 1, 10ms, {{NS_R_NO_ERROR, 1}}),
makeStatsData(servers[1], 4, 520ms, {{NS_R_NO_ERROR, 2}, {NS_R_TIMEOUT, 2}}),
};
EXPECT_THAT(mDnsStats.getStats(PROTO_UDP), UnorderedElementsAreArray(expectedStats));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_UDP, expectedStats, 106ms));
verifyDumpOutput({}, expectedStats, {}, {}, {});
// Update the server list, the stats of 127.0.0.2 will remain.
servers = {
IPSockAddr::toIPSockAddr("127.0.0.2", 53),
IPSockAddr::toIPSockAddr("127.0.0.3", 53),
IPSockAddr::toIPSockAddr("127.0.0.4", 53),
};
EXPECT_TRUE(mDnsStats.setAddrs(servers, PROTO_UDP));
expectedStats = {
makeStatsData(servers[0], 4, 520ms, {{NS_R_NO_ERROR, 2}, {NS_R_TIMEOUT, 2}}),
makeStatsData(servers[1], 0, 0ms, {}),
makeStatsData(servers[2], 0, 0ms, {}),
};
EXPECT_THAT(mDnsStats.getStats(PROTO_UDP), UnorderedElementsAreArray(expectedStats));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_UDP, expectedStats, 130ms));
verifyDumpOutput({}, expectedStats, {}, {}, {});
// Let's add a record to 127.0.0.2 again.
EXPECT_TRUE(mDnsStats.addStats(servers[0], recordNoError));
expectedStats = {
makeStatsData(servers[0], 5, 530ms, {{NS_R_NO_ERROR, 3}, {NS_R_TIMEOUT, 2}}),
makeStatsData(servers[1], 0, 0ms, {}),
makeStatsData(servers[2], 0, 0ms, {}),
};
EXPECT_THAT(mDnsStats.getStats(PROTO_UDP), UnorderedElementsAreArray(expectedStats));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_UDP, expectedStats, 106ms));
verifyDumpOutput({}, expectedStats, {}, {}, {});
}
TEST_F(DnsStatsTest, AddStatsRecords_100000) {
constexpr size_t operations = 100000;
constexpr size_t logSize = DnsStats::kLogSize;
constexpr size_t rcodeNum = 4; // A value by which kLogSize is divisible.
ASSERT_EQ(logSize % rcodeNum, 0U);
const std::vector<IPSockAddr> servers = {
IPSockAddr::toIPSockAddr("127.0.0.1", 53),
IPSockAddr::toIPSockAddr("127.0.0.2", 53),
IPSockAddr::toIPSockAddr("127.0.0.3", 53),
IPSockAddr::toIPSockAddr("127.0.0.4", 53),
};
const std::vector<IPSockAddr> mdnsaddrs = {
IPSockAddr::toIPSockAddr("ff02::fb", 5353),
IPSockAddr::toIPSockAddr("224.0.0.251", 5353),
};
// To test unknown rcode in rcodeToName(), store the elements as type int.
const std::array<int, rcodeNum> rcodes = {
NS_R_NO_ERROR, // NOERROR
NS_R_NXDOMAIN, // NXDOMAIN
99, // UNKNOWN(99)
NS_R_INTERNAL_ERROR, // INTERNAL_ERROR
};
EXPECT_TRUE(mDnsStats.setAddrs(servers, PROTO_TCP));
EXPECT_TRUE(mDnsStats.setAddrs(servers, PROTO_UDP));
EXPECT_TRUE(mDnsStats.setAddrs(servers, PROTO_DOT));
EXPECT_TRUE(mDnsStats.setAddrs(mdnsaddrs, PROTO_MDNS));
for (size_t i = 0; i < operations; i++) {
const NsRcode rcode = static_cast<NsRcode>(rcodes[i % rcodeNum]);
const auto eventTcp = makeDnsQueryEvent(PROTO_TCP, rcode, milliseconds(i));
const auto eventUdp = makeDnsQueryEvent(PROTO_UDP, rcode, milliseconds(i));
const auto eventDot = makeDnsQueryEvent(PROTO_DOT, rcode, milliseconds(i));
for (const auto& server : servers) {
SCOPED_TRACE(server.toString() + "-" + std::to_string(i));
ASSERT_TRUE(mDnsStats.addStats(server, eventTcp));
ASSERT_TRUE(mDnsStats.addStats(server, eventUdp));
ASSERT_TRUE(mDnsStats.addStats(server, eventDot));
}
const auto eventMdns = makeDnsQueryEvent(PROTO_MDNS, rcode, milliseconds(i));
for (const auto& mdnsaddr : mdnsaddrs) {
SCOPED_TRACE(mdnsaddr.toString() + "-" + std::to_string(i));
ASSERT_TRUE(mDnsStats.addStats(mdnsaddr, eventMdns));
}
}
std::map<int, int> expectedRcodeCounts;
for (const auto& rcode : rcodes) {
expectedRcodeCounts.try_emplace(rcode, 32);
}
// The average latency 99935.5 ms is derived from (99872ms + 99873ms + ... + 99999ms) / logSize,
// where logSize is 128.
const std::vector<StatsData> expectedStats = {
makeStatsData(servers[0], logSize, logSize * 99935500us, expectedRcodeCounts),
makeStatsData(servers[1], logSize, logSize * 99935500us, expectedRcodeCounts),
makeStatsData(servers[2], logSize, logSize * 99935500us, expectedRcodeCounts),
makeStatsData(servers[3], logSize, logSize * 99935500us, expectedRcodeCounts),
};
const std::vector<StatsData> expectedMdnsStats = {
makeStatsData(mdnsaddrs[1], logSize, logSize * 99935500us, expectedRcodeCounts),
makeStatsData(mdnsaddrs[0], logSize, logSize * 99935500us, expectedRcodeCounts),
};
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_TCP, expectedStats, 99935500us));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_UDP, expectedStats, 99935500us));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_DOT, expectedStats, 99935500us));
EXPECT_NO_FAILURE(verifyDnsStatsContent(PROTO_MDNS, expectedMdnsStats, 99935500us));
verifyDumpOutput(expectedStats, expectedStats, expectedStats, expectedMdnsStats, {});
}
TEST_F(DnsStatsTest, GetServers_SortingByLatency) {
const IPSockAddr server1 = IPSockAddr::toIPSockAddr("127.0.0.1", 53);
const IPSockAddr server2 = IPSockAddr::toIPSockAddr("127.0.0.2", 53);
const IPSockAddr server3 = IPSockAddr::toIPSockAddr("2001:db8:cafe:d00d::1", 53);
const IPSockAddr server4 = IPSockAddr::toIPSockAddr("2001:db8:cafe:d00d::2", 53);
// Return empty list before setup.
EXPECT_THAT(mDnsStats.getSortedServers(PROTO_UDP), IsEmpty());
// Before there's any stats, the list of the sorted servers is the same as the setup's one.
EXPECT_TRUE(mDnsStats.setAddrs({server1, server2, server3, server4}, PROTO_UDP));
EXPECT_TRUE(mDnsStats.setAddrs({server1, server2, server3, server4}, PROTO_DOT));
EXPECT_THAT(mDnsStats.getSortedServers(PROTO_UDP),
testing::ElementsAreArray({server1, server2, server3, server4}));
// Add a record to server1. The qualities of the other servers increase.
EXPECT_TRUE(mDnsStats.addStats(server1, makeDnsQueryEvent(PROTO_UDP, NS_R_NO_ERROR, 10ms)));
EXPECT_THAT(mDnsStats.getSortedServers(PROTO_UDP),
testing::ElementsAreArray({server2, server3, server4, server1}));
// Add a record, with less repose time than server1, to server3.
EXPECT_TRUE(mDnsStats.addStats(server3, makeDnsQueryEvent(PROTO_UDP, NS_R_NO_ERROR, 5ms)));
EXPECT_THAT(mDnsStats.getSortedServers(PROTO_UDP),
testing::ElementsAreArray({server2, server4, server3, server1}));
// Even though server2 has zero response time, select server4 as the first server because it
// doesn't have stats yet.
EXPECT_TRUE(mDnsStats.addStats(server2, makeDnsQueryEvent(PROTO_UDP, NS_R_NO_ERROR, 0ms)));
EXPECT_THAT(mDnsStats.getSortedServers(PROTO_UDP),
testing::ElementsAreArray({server4, server2, server3, server1}));
// Updating DoT record to server4 changes nothing.
EXPECT_TRUE(mDnsStats.addStats(server4, makeDnsQueryEvent(PROTO_DOT, NS_R_NO_ERROR, 10ms)));
EXPECT_THAT(mDnsStats.getSortedServers(PROTO_UDP),
testing::ElementsAreArray({server4, server2, server3, server1}));
// Add a record, with a very large value of respose time, to server4.
EXPECT_TRUE(mDnsStats.addStats(server4, makeDnsQueryEvent(PROTO_UDP, NS_R_NO_ERROR, 500000ms)));
EXPECT_THAT(mDnsStats.getSortedServers(PROTO_UDP),
testing::ElementsAreArray({server2, server3, server1, server4}));
// Add some internal_error records with permission error to server2.
// The internal_error won't cause the priority of server2 drop. (but some of the other
// quality factors will still be counted, such as skipped_count and latency)
auto recordFromNetworkRestricted = makeDnsQueryEvent(PROTO_UDP, NS_R_INTERNAL_ERROR, 1ms);
recordFromNetworkRestricted.set_linux_errno(static_cast<LinuxErrno>(EPERM));
for (int i = 0; i < 3; i++) {
EXPECT_TRUE(mDnsStats.addStats(server2, recordFromNetworkRestricted));
}
EXPECT_THAT(mDnsStats.getSortedServers(PROTO_UDP),
testing::ElementsAreArray({server2, server3, server1, server4}));
// The list of the DNS servers changed.
EXPECT_TRUE(mDnsStats.setAddrs({server2, server4}, PROTO_UDP));
EXPECT_THAT(mDnsStats.getSortedServers(PROTO_UDP),
testing::ElementsAreArray({server2, server4}));
// It fails to add records to an non-existing server, and nothing is changed in getting
// the sorted servers.
EXPECT_FALSE(mDnsStats.addStats(server1, makeDnsQueryEvent(PROTO_UDP, NS_R_NO_ERROR, 10ms)));
EXPECT_THAT(mDnsStats.getSortedServers(PROTO_UDP),
testing::ElementsAreArray({server2, server4}));
}
TEST_F(DnsStatsTest, GetServers_DeprioritizingBadServers) {
const IPSockAddr server1 = IPSockAddr::toIPSockAddr("127.0.0.1", 53);
const IPSockAddr server2 = IPSockAddr::toIPSockAddr("127.0.0.2", 53);
const IPSockAddr server3 = IPSockAddr::toIPSockAddr("127.0.0.3", 53);
const IPSockAddr server4 = IPSockAddr::toIPSockAddr("127.0.0.4", 53);
EXPECT_TRUE(mDnsStats.setAddrs({server1, server2, server3, server4}, PROTO_UDP));
int server1Counts = 0;
int server2Counts = 0;
for (int i = 0; i < 5000; i++) {
const auto servers = mDnsStats.getSortedServers(PROTO_UDP);
EXPECT_EQ(servers.size(), 4U);
if (servers[0] == server1) {
// server1 is relatively slowly responsive.
EXPECT_TRUE(mDnsStats.addStats(servers[0],
makeDnsQueryEvent(PROTO_UDP, NS_R_NO_ERROR, 200ms)));
server1Counts++;
} else if (servers[0] == server2) {
// server2 is relatively quickly responsive.
EXPECT_TRUE(mDnsStats.addStats(servers[0],
makeDnsQueryEvent(PROTO_UDP, NS_R_NO_ERROR, 100ms)));
server2Counts++;
} else if (servers[0] == server3) {
// server3 always times out.
EXPECT_TRUE(mDnsStats.addStats(servers[0],
makeDnsQueryEvent(PROTO_UDP, NS_R_TIMEOUT, 1000ms)));
} else if (servers[0] == server4) {
// server4 is unusable.
EXPECT_TRUE(mDnsStats.addStats(servers[0],
makeDnsQueryEvent(PROTO_UDP, NS_R_INTERNAL_ERROR, 1ms)));
}
}
const std::vector<StatsData> allStatsData = mDnsStats.getStats(PROTO_UDP);
for (const auto& data : allStatsData) {
EXPECT_EQ(data.rcodeCounts.size(), 1U);
if (data.sockAddr == server1 || data.sockAddr == server2) {
const auto it = data.rcodeCounts.find(NS_R_NO_ERROR);
ASSERT_NE(it, data.rcodeCounts.end());
EXPECT_GT(server2Counts, 2 * server1Counts); // At least twice larger.
} else if (data.sockAddr == server3) {
const auto it = data.rcodeCounts.find(NS_R_TIMEOUT);
ASSERT_NE(it, data.rcodeCounts.end());
EXPECT_LT(it->second, 10);
} else if (data.sockAddr == server4) {
const auto it = data.rcodeCounts.find(NS_R_INTERNAL_ERROR);
ASSERT_NE(it, data.rcodeCounts.end());
EXPECT_LT(it->second, 10);
}
}
}
} // namespace android::net