blob: bf23dbc449eaf14e6bfd56d25e8d23202165b90d [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dns_tls_frontend.h"
#include <arpa/inet.h>
#include <netdb.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/ssl.h>
#include <openssl/x509.h>
#include <sys/eventfd.h>
#include <sys/poll.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
#define LOG_TAG "DnsTlsFrontend"
#include <android-base/logging.h>
#include <netdutils/InternetAddresses.h>
#include <netdutils/SocketOption.h>
#include "dns_tls_certificate.h"
using android::netdutils::enableSockopt;
using android::netdutils::ScopedAddrinfo;
namespace {
static bssl::UniquePtr<X509> stringToX509Certs(const char* certs) {
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(certs, strlen(certs)));
return bssl::UniquePtr<X509>(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
}
// Convert a string buffer containing an RSA Private Key into an OpenSSL RSA struct.
static bssl::UniquePtr<RSA> stringToRSAPrivateKey(const char* key) {
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(key, strlen(key)));
return bssl::UniquePtr<RSA>(PEM_read_bio_RSAPrivateKey(bio.get(), nullptr, nullptr, nullptr));
}
std::string addr2str(const sockaddr* sa, socklen_t sa_len) {
char host_str[NI_MAXHOST] = {0};
int rv = getnameinfo(sa, sa_len, host_str, sizeof(host_str), nullptr, 0, NI_NUMERICHOST);
if (rv == 0) return std::string(host_str);
return std::string();
}
} // namespace
namespace test {
bool DnsTlsFrontend::startServer() {
OpenSSL_add_ssl_algorithms();
// reset queries_ to 0 every time startServer called
// which would help us easy to check queries_ via calling waitForQueries
queries_ = 0;
ctx_.reset(SSL_CTX_new(TLS_server_method()));
if (!ctx_) {
LOG(ERROR) << "SSL context creation failed";
return false;
}
SSL_CTX_set_ecdh_auto(ctx_.get(), 1);
bssl::UniquePtr<X509> ca_certs(stringToX509Certs(kCertificate));
if (!ca_certs) {
LOG(ERROR) << "StringToX509Certs failed";
return false;
}
if (SSL_CTX_use_certificate(ctx_.get(), ca_certs.get()) <= 0) {
LOG(ERROR) << "SSL_CTX_use_certificate failed";
return false;
}
bssl::UniquePtr<RSA> private_key(stringToRSAPrivateKey(kPrivatekey));
if (SSL_CTX_use_RSAPrivateKey(ctx_.get(), private_key.get()) <= 0) {
LOG(ERROR) << "Error loading client RSA Private Key data.";
return false;
}
// Set up TCP server socket for clients.
addrinfo frontend_ai_hints{
.ai_flags = AI_PASSIVE,
.ai_family = AF_UNSPEC,
.ai_socktype = SOCK_STREAM,
};
addrinfo* frontend_ai_res = nullptr;
int rv = getaddrinfo(listen_address_.c_str(), listen_service_.c_str(), &frontend_ai_hints,
&frontend_ai_res);
ScopedAddrinfo frontend_ai_res_cleanup(frontend_ai_res);
if (rv) {
LOG(ERROR) << "frontend getaddrinfo(" << listen_address_.c_str() << ", "
<< listen_service_.c_str() << ") failed: " << gai_strerror(rv);
return false;
}
for (const addrinfo* ai = frontend_ai_res; ai; ai = ai->ai_next) {
android::base::unique_fd s(socket(ai->ai_family, ai->ai_socktype, ai->ai_protocol));
if (s.get() < 0) {
PLOG(INFO) << "ignore creating socket failed " << s.get();
continue;
}
enableSockopt(s.get(), SOL_SOCKET, SO_REUSEPORT).ignoreError();
enableSockopt(s.get(), SOL_SOCKET, SO_REUSEADDR).ignoreError();
std::string host_str = addr2str(ai->ai_addr, ai->ai_addrlen);
if (bind(s.get(), ai->ai_addr, ai->ai_addrlen)) {
PLOG(INFO) << "failed to bind TCP " << host_str.c_str() << ":"
<< listen_service_.c_str();
continue;
}
LOG(INFO) << "bound to TCP " << host_str.c_str() << ":" << listen_service_.c_str();
socket_ = std::move(s);
break;
}
if (listen(socket_.get(), 1) < 0) {
PLOG(INFO) << "failed to listen socket " << socket_.get();
return false;
}
// Set up UDP client socket to backend.
addrinfo backend_ai_hints{.ai_family = AF_UNSPEC, .ai_socktype = SOCK_DGRAM};
addrinfo* backend_ai_res = nullptr;
rv = getaddrinfo(backend_address_.c_str(), backend_service_.c_str(), &backend_ai_hints,
&backend_ai_res);
ScopedAddrinfo backend_ai_res_cleanup(backend_ai_res);
if (rv) {
LOG(ERROR) << "backend getaddrinfo(" << listen_address_.c_str() << ", "
<< listen_service_.c_str() << ") failed: " << gai_strerror(rv);
return false;
}
backend_socket_.reset(socket(backend_ai_res->ai_family, backend_ai_res->ai_socktype,
backend_ai_res->ai_protocol));
if (backend_socket_.get() < 0) {
PLOG(INFO) << "backend socket " << backend_socket_.get() << " creation failed";
return false;
}
// connect() always fails in the test DnsTlsSocketTest.SlowDestructor because of
// no backend server. Don't check it.
connect(backend_socket_.get(), backend_ai_res->ai_addr, backend_ai_res->ai_addrlen);
// Set up eventfd socket.
event_fd_.reset(eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC));
if (event_fd_.get() == -1) {
PLOG(INFO) << "failed to create eventfd " << event_fd_.get();
return false;
}
{
std::lock_guard lock(update_mutex_);
handler_thread_ = std::thread(&DnsTlsFrontend::requestHandler, this);
}
LOG(INFO) << "server started successfully";
return true;
}
void DnsTlsFrontend::requestHandler() {
LOG(DEBUG) << "Request handler started";
enum { EVENT_FD = 0, LISTEN_FD = 1 };
pollfd fds[2] = {{.fd = event_fd_.get(), .events = POLLIN},
{.fd = socket_.get(), .events = POLLIN}};
android::base::unique_fd clientFd;
while (true) {
int poll_code = poll(fds, std::size(fds), -1);
if (poll_code <= 0) {
PLOG(WARNING) << "Poll failed with error " << poll_code;
break;
}
if (fds[EVENT_FD].revents & (POLLIN | POLLERR)) {
handleEventFd();
break;
}
if (fds[LISTEN_FD].revents & (POLLIN | POLLERR)) {
sockaddr_storage addr;
socklen_t len = sizeof(addr);
LOG(DEBUG) << "Trying to accept a client";
android::base::unique_fd client(
accept4(socket_.get(), reinterpret_cast<sockaddr*>(&addr), &len, SOCK_CLOEXEC));
if (client.get() < 0) {
// Stop
PLOG(INFO) << "failed to accept client socket " << client.get();
break;
}
accept_connection_count_++;
if (hangOnHandshake_) {
LOG(DEBUG) << "TEST ONLY: unresponsive to SSL handshake";
// The previous fd already stored in clientFd will be closed automatically.
clientFd = std::move(client);
continue;
}
bssl::UniquePtr<SSL> ssl(SSL_new(ctx_.get()));
SSL_set_fd(ssl.get(), client.get());
LOG(DEBUG) << "Doing SSL handshake";
bool success = false;
if (SSL_accept(ssl.get()) <= 0) {
LOG(INFO) << "SSL negotiation failure";
} else {
LOG(DEBUG) << "SSL handshake complete";
success = handleOneRequest(ssl.get());
}
if (success) {
// Increment queries_ as late as possible, because it represents
// a query that is fully processed, and the response returned to the
// client, including cleanup actions.
++queries_;
}
}
}
LOG(DEBUG) << "Ending loop";
}
bool DnsTlsFrontend::handleOneRequest(SSL* ssl) {
uint8_t queryHeader[2];
if (SSL_read(ssl, &queryHeader, 2) != 2) {
LOG(INFO) << "Not enough header bytes";
return false;
}
const uint16_t qlen = (queryHeader[0] << 8) | queryHeader[1];
uint8_t query[qlen];
size_t qbytes = 0;
while (qbytes < qlen) {
int ret = SSL_read(ssl, query + qbytes, qlen - qbytes);
if (ret <= 0) {
LOG(INFO) << "Error while reading query";
return false;
}
qbytes += ret;
}
int sent = send(backend_socket_.get(), query, qlen, 0);
if (sent != qlen) {
LOG(INFO) << "Failed to send query";
return false;
}
const int max_size = 4096;
uint8_t recv_buffer[max_size];
int rlen = recv(backend_socket_.get(), recv_buffer, max_size, 0);
if (rlen <= 0) {
LOG(INFO) << "Failed to receive response";
return false;
}
uint8_t responseHeader[2];
responseHeader[0] = rlen >> 8;
responseHeader[1] = rlen;
if (SSL_write(ssl, responseHeader, 2) != 2) {
LOG(INFO) << "Failed to write response header";
return false;
}
if (SSL_write(ssl, recv_buffer, rlen) != rlen) {
LOG(INFO) << "Failed to write response body";
return false;
}
return true;
}
bool DnsTlsFrontend::stopServer() {
std::lock_guard lock(update_mutex_);
if (!running()) {
LOG(INFO) << "server not running";
return false;
}
LOG(INFO) << "stopping frontend";
if (!sendToEventFd()) {
return false;
}
handler_thread_.join();
socket_.reset();
backend_socket_.reset();
event_fd_.reset();
ctx_.reset();
LOG(INFO) << "frontend stopped successfully";
return true;
}
// TODO: use a condition variable instead of polling
// TODO: also clear queries_ to eliminate potential race conditions
bool DnsTlsFrontend::waitForQueries(int expected_count) const {
constexpr int intervalMs = 20;
constexpr int timeoutMs = 5000;
int limit = timeoutMs / intervalMs;
for (int count = 0; count <= limit; ++count) {
bool done = queries_ >= expected_count;
// Always sleep at least one more interval after we are done, to wait for
// any immediate post-query actions that the client may take (such as
// marking this server as reachable during validation).
usleep(intervalMs * 1000);
if (done) {
// For ensuring that calls have sufficient headroom for slow machines
LOG(DEBUG) << "Query arrived in " << count << "/" << limit << " of allotted time";
return true;
}
}
return false;
}
bool DnsTlsFrontend::sendToEventFd() {
const uint64_t data = 1;
if (const ssize_t rt = write(event_fd_.get(), &data, sizeof(data)); rt != sizeof(data)) {
PLOG(INFO) << "failed to write eventfd, rt=" << rt;
return false;
}
return true;
}
void DnsTlsFrontend::handleEventFd() {
int64_t data;
if (const ssize_t rt = read(event_fd_.get(), &data, sizeof(data)); rt != sizeof(data)) {
PLOG(INFO) << "ignore reading eventfd failed, rt=" << rt;
}
}
} // namespace test