blob: 3286a1cdaa63ad9dde798031ed4a6ef07868b65d [file] [log] [blame]
/*
* Copyright 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "sco_connection.h"
#include <log.h>
#include <packets/hci_packets.h>
#include <vector>
using namespace rootcanal;
using namespace bluetooth::hci;
ScoConnection::~ScoConnection() { ASSERT(!stream_handle_.has_value()); }
bool ScoConnectionParameters::IsExtended() const {
uint16_t legacy = (uint16_t)SynchronousPacketTypeBits::HV1_ALLOWED |
(uint16_t)SynchronousPacketTypeBits::HV2_ALLOWED |
(uint16_t)SynchronousPacketTypeBits::HV3_ALLOWED;
uint16_t edr = (uint16_t)SynchronousPacketTypeBits::NO_2_EV3_ALLOWED |
(uint16_t)SynchronousPacketTypeBits::NO_3_EV3_ALLOWED |
(uint16_t)SynchronousPacketTypeBits::NO_2_EV5_ALLOWED |
(uint16_t)SynchronousPacketTypeBits::NO_3_EV5_ALLOWED;
return ((packet_type ^ edr) & ~legacy) != 0;
}
std::optional<ScoLinkParameters> ScoConnectionParameters::GetLinkParameters()
const {
// Coding conversion.
uint8_t air_coding_to_air_mode[] = {
0x02, // CVSD
0x00, // u-law
0x01, // A-law
0x03, // transparent data
};
// Prioritize eSCO connections.
// Packets HV1, HV2, HV3 are tested in a second phase.
struct Packet {
unsigned length;
unsigned slots;
Packet(unsigned length, unsigned slots) : length(length), slots(slots) {}
};
std::vector<Packet> accepted_packets;
accepted_packets.push_back(Packet(0, 1)); // POLL/NULL
if (packet_type & (uint16_t)SynchronousPacketTypeBits::EV3_ALLOWED) {
accepted_packets.push_back(Packet(30, 1));
}
if (packet_type & (uint16_t)SynchronousPacketTypeBits::EV4_ALLOWED) {
accepted_packets.push_back(Packet(120, 3));
}
if (packet_type & (uint16_t)SynchronousPacketTypeBits::EV5_ALLOWED) {
accepted_packets.push_back(Packet(180, 3));
}
if ((packet_type & (uint16_t)SynchronousPacketTypeBits::NO_2_EV3_ALLOWED) ==
0) {
accepted_packets.push_back(Packet(60, 1));
}
if ((packet_type & (uint16_t)SynchronousPacketTypeBits::NO_3_EV3_ALLOWED) ==
0) {
accepted_packets.push_back(Packet(360, 3));
}
if ((packet_type & (uint16_t)SynchronousPacketTypeBits::NO_2_EV5_ALLOWED) ==
0) {
accepted_packets.push_back(Packet(90, 1));
}
if ((packet_type & (uint16_t)SynchronousPacketTypeBits::NO_3_EV5_ALLOWED) ==
0) {
accepted_packets.push_back(Packet(540, 3));
}
// Ignore empty bandwidths for now.
if (transmit_bandwidth == 0 || receive_bandwidth == 0) {
WARNING("eSCO transmissions with null bandwidths are not supported");
return {};
}
// Bandwidth usage of the optimal selection.
double best_bandwidth_usage = 1.0;
std::optional<ScoLinkParameters> best_parameters = {};
// Explore all packet combinations, select the valid one
// with smallest actual bandwidth usage.
for (auto tx : accepted_packets) {
if (tx.length == 0) {
continue;
}
unsigned tx_max_interval = (1600 * tx.length) / transmit_bandwidth;
for (auto rx : accepted_packets) {
if (rx.length == 0) {
continue;
}
INFO("Testing combination {}/{} : {}/{}", tx.length, tx.slots, rx.length,
rx.slots);
unsigned rx_max_interval = (1600 * rx.length) / receive_bandwidth;
// Choose the best interval satisfying both.
unsigned transmission_interval =
std::min(tx_max_interval, rx_max_interval);
transmission_interval -= transmission_interval % 2;
transmission_interval = std::min(transmission_interval, 254U);
INFO("Transmission interval: {} slots", transmission_interval);
// Compute retransmission window.
unsigned retransmission_window =
retransmission_effort ==
(uint8_t)RetransmissionEffort::NO_RETRANSMISSION
? 0
: retransmission_effort ==
(uint8_t)RetransmissionEffort::OPTIMIZED_FOR_POWER
? rx.slots + tx.slots
: retransmission_effort ==
(uint8_t)RetransmissionEffort::OPTIMIZED_FOR_LINK_QUALITY
? 2 * (rx.slots + tx.slots)
: 0;
INFO("Retransmission window: {} slots", retransmission_window);
// Compute transmission window and validate latency.
unsigned transmission_window =
tx.slots + rx.slots + retransmission_window;
// Validate window.
if (transmission_window > transmission_interval) {
// Oops
continue;
}
// Compute and validate latency.
unsigned latency = (transmission_window * 1250) / 2;
INFO("Latency: {} us (max {} us)", latency, max_latency * 1000U);
if (latency > (1000 * max_latency)) {
// Oops
continue;
}
// We got a valid configuration.
// Evaluate the actual bandwidth usage.
double bandwidth_usage =
(double)transmission_window / (double)transmission_interval;
if (bandwidth_usage <= best_bandwidth_usage) {
INFO("Valid combination!");
uint16_t tx_packet_length =
(transmit_bandwidth * transmission_interval + 1600 - 1) / 1600;
uint16_t rx_packet_length =
(receive_bandwidth * transmission_interval + 1600 - 1) / 1600;
uint8_t air_coding = voice_setting & 0x3;
best_bandwidth_usage = bandwidth_usage;
best_parameters = {
(uint8_t)transmission_interval,
(uint8_t)retransmission_window,
rx_packet_length,
tx_packet_length,
air_coding_to_air_mode[air_coding],
true,
};
}
}
}
if (best_parameters.has_value()) {
return best_parameters;
}
// Parameter negotiation for SCO connections:
// Check packet types and validate bandwidth and latency requirements.
if (retransmission_effort ==
(uint8_t)RetransmissionEffort::OPTIMIZED_FOR_POWER ||
retransmission_effort ==
(uint8_t)RetransmissionEffort::OPTIMIZED_FOR_LINK_QUALITY) {
WARNING("SCO Retransmission effort must be None or Don't care");
return {};
}
uint8_t transmission_interval;
uint16_t packet_length;
uint8_t air_coding = voice_setting & 0x3;
if (packet_type & (uint16_t)SynchronousPacketTypeBits::HV3_ALLOWED) {
transmission_interval = 6;
packet_length = 30;
} else if (packet_type & (uint16_t)SynchronousPacketTypeBits::HV2_ALLOWED) {
transmission_interval = 4;
packet_length = 20;
} else if (packet_type & (uint16_t)SynchronousPacketTypeBits::HV1_ALLOWED) {
transmission_interval = 2;
packet_length = 10;
} else {
WARNING("No SCO packet type enabled");
return {};
}
best_parameters = {
transmission_interval,
0,
packet_length,
packet_length,
air_coding_to_air_mode[air_coding],
false,
};
return best_parameters;
}
bool ScoConnection::NegotiateLinkParameters(
ScoConnectionParameters const& peer) {
if (peer.transmit_bandwidth != 0xffff &&
peer.transmit_bandwidth != parameters_.receive_bandwidth) {
WARNING("Transmit bandwidth requirements cannot be met");
return false;
}
if (state_ == SCO_STATE_SENT_ESCO_CONNECTION_REQUEST &&
peer.receive_bandwidth != 0xffff &&
peer.receive_bandwidth != parameters_.transmit_bandwidth) {
WARNING("Receive bandwidth requirements cannot be met");
return false;
}
// mask out the air coding format bits before comparison, as per 5.3 Vol
// 4E 6.12
if ((peer.voice_setting & ~0x3) != (parameters_.voice_setting & ~0x3)) {
WARNING("Voice setting requirements cannot be met");
WARNING("Remote voice setting: 0x{:04x}", parameters_.voice_setting);
WARNING("Local voice setting: 0x{:04x}", peer.voice_setting);
return false;
}
uint16_t packet_type = (peer.packet_type & parameters_.packet_type) & 0x3f;
packet_type |= (peer.packet_type | parameters_.packet_type) & 0x3c0;
if (packet_type == 0x3c0) {
WARNING("Packet type requirements cannot be met");
WARNING("Remote packet type: 0x{:04x}", parameters_.packet_type);
WARNING("Local packet type: 0x{:04x}", peer.packet_type);
return false;
}
uint16_t max_latency =
peer.max_latency == 0xffff ? parameters_.max_latency
: parameters_.max_latency == 0xffff
? peer.max_latency
: std::min(peer.max_latency, parameters_.max_latency);
uint8_t retransmission_effort;
if (state_ == SCO_STATE_SENT_SCO_CONNECTION_REQUEST) {
retransmission_effort = (uint8_t)RetransmissionEffort::NO_RETRANSMISSION;
} else if (peer.retransmission_effort == parameters_.retransmission_effort ||
peer.retransmission_effort ==
(uint8_t)RetransmissionEffort::DO_NOT_CARE) {
retransmission_effort = parameters_.retransmission_effort;
} else if (parameters_.retransmission_effort ==
(uint8_t)RetransmissionEffort::DO_NOT_CARE) {
retransmission_effort = peer.retransmission_effort;
} else if (peer.retransmission_effort ==
(uint8_t)RetransmissionEffort::NO_RETRANSMISSION ||
parameters_.retransmission_effort ==
(uint8_t)RetransmissionEffort::NO_RETRANSMISSION) {
WARNING("Retransmission effort requirements cannot be met");
WARNING("Remote retransmission effort: 0x{:02x}",
parameters_.retransmission_effort);
WARNING("Local retransmission effort: 0x{:02x}",
peer.retransmission_effort);
return false;
} else {
retransmission_effort = (uint8_t)RetransmissionEffort::OPTIMIZED_FOR_POWER;
}
ScoConnectionParameters negotiated_parameters = {
parameters_.transmit_bandwidth,
parameters_.receive_bandwidth,
max_latency,
parameters_.voice_setting,
retransmission_effort,
packet_type};
auto link_parameters = negotiated_parameters.GetLinkParameters();
if (link_parameters.has_value()) {
link_parameters_ = link_parameters.value();
INFO("Negotiated link parameters for SCO connection:");
INFO(" Transmission interval: {} slots",
link_parameters_.transmission_interval);
INFO(" Retransmission window: {} slots",
link_parameters_.retransmission_window);
INFO(" RX packet length: {} bytes", link_parameters_.rx_packet_length);
INFO(" TX packet length: {} bytes", link_parameters_.tx_packet_length);
INFO(" Air mode: {}", link_parameters_.air_mode);
} else {
WARNING("Failed to derive link parameters");
}
return link_parameters.has_value();
}
void ScoConnection::StartStream(std::function<TaskId()> startStream) {
ASSERT(!stream_handle_.has_value());
if (datapath_ == ScoDatapath::SPOOFED) {
stream_handle_ = startStream();
}
}
void ScoConnection::StopStream(std::function<void(TaskId)> stopStream) {
if (stream_handle_.has_value()) {
stopStream(*stream_handle_);
}
stream_handle_ = std::nullopt;
}