blob: d5516ef4695871ef3bacc41a0af4daae07f65b92 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.inputmethod.latin.makedict;
import com.android.inputmethod.annotations.UsedForTesting;
import com.android.inputmethod.latin.Constants;
import com.android.inputmethod.latin.makedict.BinaryDictDecoderUtils.CharEncoding;
import com.android.inputmethod.latin.makedict.BinaryDictDecoderUtils.DictBuffer;
import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader;
import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
import com.android.inputmethod.latin.makedict.FusionDictionary.PtNode;
import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
import com.android.inputmethod.latin.utils.ByteArrayDictBuffer;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.OutputStream;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.Map;
import java.util.Stack;
public final class BinaryDictIOUtils {
private static final boolean DBG = false;
private BinaryDictIOUtils() {
// This utility class is not publicly instantiable.
}
private static final class Position {
public static final int NOT_READ_PTNODE_COUNT = -1;
public int mAddress;
public int mNumOfPtNode;
public int mPosition;
public int mLength;
public Position(int address, int length) {
mAddress = address;
mLength = length;
mNumOfPtNode = NOT_READ_PTNODE_COUNT;
}
}
/**
* Retrieves all node arrays without recursive call.
*/
private static void readUnigramsAndBigramsBinaryInner(final DictDecoder dictDecoder,
final int headerSize, final Map<Integer, String> words,
final Map<Integer, Integer> frequencies,
final Map<Integer, ArrayList<PendingAttribute>> bigrams,
final FormatOptions formatOptions) {
int[] pushedChars = new int[FormatSpec.MAX_WORD_LENGTH + 1];
Stack<Position> stack = new Stack<Position>();
int index = 0;
Position initPos = new Position(headerSize, 0);
stack.push(initPos);
while (!stack.empty()) {
Position p = stack.peek();
if (DBG) {
MakedictLog.d("read: address=" + p.mAddress + ", numOfPtNode=" +
p.mNumOfPtNode + ", position=" + p.mPosition + ", length=" + p.mLength);
}
if (dictDecoder.getPosition() != p.mAddress) dictDecoder.setPosition(p.mAddress);
if (index != p.mLength) index = p.mLength;
if (p.mNumOfPtNode == Position.NOT_READ_PTNODE_COUNT) {
p.mNumOfPtNode = dictDecoder.readPtNodeCount();
p.mAddress += getPtNodeCountSize(p.mNumOfPtNode);
p.mPosition = 0;
}
if (p.mNumOfPtNode == 0) {
stack.pop();
continue;
}
PtNodeInfo info = dictDecoder.readPtNode(p.mAddress, formatOptions);
for (int i = 0; i < info.mCharacters.length; ++i) {
pushedChars[index++] = info.mCharacters[i];
}
p.mPosition++;
final boolean isMovedPtNode = isMovedPtNode(info.mFlags,
formatOptions);
final boolean isDeletedPtNode = isDeletedPtNode(info.mFlags,
formatOptions);
if (!isMovedPtNode && !isDeletedPtNode
&& info.mFrequency != FusionDictionary.PtNode.NOT_A_TERMINAL) {// found word
words.put(info.mOriginalAddress, new String(pushedChars, 0, index));
frequencies.put(info.mOriginalAddress, info.mFrequency);
if (info.mBigrams != null) bigrams.put(info.mOriginalAddress, info.mBigrams);
}
if (p.mPosition == p.mNumOfPtNode) {
if (formatOptions.mSupportsDynamicUpdate) {
final boolean hasValidForwardLinkAddress =
dictDecoder.readAndFollowForwardLink();
if (hasValidForwardLinkAddress && dictDecoder.hasNextPtNodeArray()) {
// The node array has a forward link.
p.mNumOfPtNode = Position.NOT_READ_PTNODE_COUNT;
p.mAddress = dictDecoder.getPosition();
} else {
stack.pop();
}
} else {
stack.pop();
}
} else {
// The Ptnode array has more PtNodes.
p.mAddress = dictDecoder.getPosition();
}
if (!isMovedPtNode && hasChildrenAddress(info.mChildrenAddress)) {
final Position childrenPos = new Position(info.mChildrenAddress, index);
stack.push(childrenPos);
}
}
}
/**
* Reads unigrams and bigrams from the binary file.
* Doesn't store a full memory representation of the dictionary.
*
* @param dictDecoder the dict decoder.
* @param words the map to store the address as a key and the word as a value.
* @param frequencies the map to store the address as a key and the frequency as a value.
* @param bigrams the map to store the address as a key and the list of address as a value.
* @throws IOException if the file can't be read.
* @throws UnsupportedFormatException if the format of the file is not recognized.
*/
/* package */ static void readUnigramsAndBigramsBinary(final DictDecoder dictDecoder,
final Map<Integer, String> words, final Map<Integer, Integer> frequencies,
final Map<Integer, ArrayList<PendingAttribute>> bigrams) throws IOException,
UnsupportedFormatException {
// Read header
final FileHeader header = dictDecoder.readHeader();
readUnigramsAndBigramsBinaryInner(dictDecoder, header.mHeaderSize, words,
frequencies, bigrams, header.mFormatOptions);
}
/**
* Gets the address of the last PtNode of the exact matching word in the dictionary.
* If no match is found, returns NOT_VALID_WORD.
*
* @param dictDecoder the dict decoder.
* @param word the word we search for.
* @return the address of the terminal node.
* @throws IOException if the file can't be read.
* @throws UnsupportedFormatException if the format of the file is not recognized.
*/
@UsedForTesting
/* package */ static int getTerminalPosition(final DictDecoder dictDecoder,
final String word) throws IOException, UnsupportedFormatException {
if (word == null) return FormatSpec.NOT_VALID_WORD;
dictDecoder.setPosition(0);
final FileHeader header = dictDecoder.readHeader();
int wordPos = 0;
final int wordLen = word.codePointCount(0, word.length());
for (int depth = 0; depth < Constants.DICTIONARY_MAX_WORD_LENGTH; ++depth) {
if (wordPos >= wordLen) return FormatSpec.NOT_VALID_WORD;
do {
final int ptNodeCount = dictDecoder.readPtNodeCount();
boolean foundNextPtNode = false;
for (int i = 0; i < ptNodeCount; ++i) {
final int ptNodePos = dictDecoder.getPosition();
final PtNodeInfo currentInfo = dictDecoder.readPtNode(ptNodePos,
header.mFormatOptions);
final boolean isMovedNode = isMovedPtNode(currentInfo.mFlags,
header.mFormatOptions);
final boolean isDeletedNode = isDeletedPtNode(currentInfo.mFlags,
header.mFormatOptions);
if (isMovedNode) continue;
boolean same = true;
for (int p = 0, j = word.offsetByCodePoints(0, wordPos);
p < currentInfo.mCharacters.length;
++p, j = word.offsetByCodePoints(j, 1)) {
if (wordPos + p >= wordLen
|| word.codePointAt(j) != currentInfo.mCharacters[p]) {
same = false;
break;
}
}
if (same) {
// found the PtNode matches the word.
if (wordPos + currentInfo.mCharacters.length == wordLen) {
if (currentInfo.mFrequency == PtNode.NOT_A_TERMINAL
|| isDeletedNode) {
return FormatSpec.NOT_VALID_WORD;
} else {
return ptNodePos;
}
}
wordPos += currentInfo.mCharacters.length;
if (currentInfo.mChildrenAddress == FormatSpec.NO_CHILDREN_ADDRESS) {
return FormatSpec.NOT_VALID_WORD;
}
foundNextPtNode = true;
dictDecoder.setPosition(currentInfo.mChildrenAddress);
break;
}
}
// If we found the next PtNode, it is under the file pointer.
// But if not, we are at the end of this node array so we expect to have
// a forward link address that we need to consult and possibly resume
// search on the next node array in the linked list.
if (foundNextPtNode) break;
if (!header.mFormatOptions.mSupportsDynamicUpdate) {
return FormatSpec.NOT_VALID_WORD;
}
final boolean hasValidForwardLinkAddress =
dictDecoder.readAndFollowForwardLink();
if (!hasValidForwardLinkAddress || !dictDecoder.hasNextPtNodeArray()) {
return FormatSpec.NOT_VALID_WORD;
}
} while(true);
}
return FormatSpec.NOT_VALID_WORD;
}
/**
* @return the size written, in bytes. Always 3 bytes.
*/
static int writeSInt24ToBuffer(final DictBuffer dictBuffer,
final int value) {
final int absValue = Math.abs(value);
dictBuffer.put((byte)(((value < 0 ? 0x80 : 0) | (absValue >> 16)) & 0xFF));
dictBuffer.put((byte)((absValue >> 8) & 0xFF));
dictBuffer.put((byte)(absValue & 0xFF));
return 3;
}
/**
* @return the size written, in bytes. Always 3 bytes.
*/
static int writeSInt24ToStream(final OutputStream destination, final int value)
throws IOException {
final int absValue = Math.abs(value);
destination.write((byte)(((value < 0 ? 0x80 : 0) | (absValue >> 16)) & 0xFF));
destination.write((byte)((absValue >> 8) & 0xFF));
destination.write((byte)(absValue & 0xFF));
return 3;
}
/**
* @return the size written, in bytes. 1, 2, or 3 bytes.
*/
private static int writeVariableAddress(final OutputStream destination, final int value)
throws IOException {
switch (BinaryDictEncoderUtils.getByteSize(value)) {
case 1:
destination.write((byte)value);
break;
case 2:
destination.write((byte)(0xFF & (value >> 8)));
destination.write((byte)(0xFF & value));
break;
case 3:
destination.write((byte)(0xFF & (value >> 16)));
destination.write((byte)(0xFF & (value >> 8)));
destination.write((byte)(0xFF & value));
break;
}
return BinaryDictEncoderUtils.getByteSize(value);
}
static void skipString(final DictBuffer dictBuffer,
final boolean hasMultipleChars) {
if (hasMultipleChars) {
int character = CharEncoding.readChar(dictBuffer);
while (character != FormatSpec.INVALID_CHARACTER) {
character = CharEncoding.readChar(dictBuffer);
}
} else {
CharEncoding.readChar(dictBuffer);
}
}
/**
* Write a string to a stream.
*
* @param destination the stream to write.
* @param word the string to be written.
* @return the size written, in bytes.
* @throws IOException
*/
private static int writeString(final OutputStream destination, final String word)
throws IOException {
int size = 0;
final int length = word.length();
for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
final int codePoint = word.codePointAt(i);
if (CharEncoding.getCharSize(codePoint) == 1) {
destination.write((byte)codePoint);
size++;
} else {
destination.write((byte)(0xFF & (codePoint >> 16)));
destination.write((byte)(0xFF & (codePoint >> 8)));
destination.write((byte)(0xFF & codePoint));
size += 3;
}
}
destination.write((byte)FormatSpec.PTNODE_CHARACTERS_TERMINATOR);
size += FormatSpec.PTNODE_TERMINATOR_SIZE;
return size;
}
/**
* Write a PtNode to an output stream from a PtNodeInfo.
* A PtNode is an in-memory representation of a node in the patricia trie.
* A PtNode info is a container for low-level information about how the
* PtNode is stored in the binary format.
*
* @param destination the stream to write.
* @param info the PtNode info to be written.
* @return the size written, in bytes.
*/
private static int writePtNode(final OutputStream destination, final PtNodeInfo info)
throws IOException {
int size = FormatSpec.PTNODE_FLAGS_SIZE;
destination.write((byte)info.mFlags);
final int parentOffset = info.mParentAddress == FormatSpec.NO_PARENT_ADDRESS ?
FormatSpec.NO_PARENT_ADDRESS : info.mParentAddress - info.mOriginalAddress;
size += writeSInt24ToStream(destination, parentOffset);
for (int i = 0; i < info.mCharacters.length; ++i) {
if (CharEncoding.getCharSize(info.mCharacters[i]) == 1) {
destination.write((byte)info.mCharacters[i]);
size++;
} else {
size += writeSInt24ToStream(destination, info.mCharacters[i]);
}
}
if (info.mCharacters.length > 1) {
destination.write((byte)FormatSpec.PTNODE_CHARACTERS_TERMINATOR);
size++;
}
if ((info.mFlags & FormatSpec.FLAG_IS_TERMINAL) != 0) {
destination.write((byte)info.mFrequency);
size++;
}
if (DBG) {
MakedictLog.d("writePtNode origin=" + info.mOriginalAddress + ", size=" + size
+ ", child=" + info.mChildrenAddress + ", characters ="
+ new String(info.mCharacters, 0, info.mCharacters.length));
}
final int childrenOffset = info.mChildrenAddress == FormatSpec.NO_CHILDREN_ADDRESS ?
0 : info.mChildrenAddress - (info.mOriginalAddress + size);
writeSInt24ToStream(destination, childrenOffset);
size += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
if (info.mShortcutTargets != null && info.mShortcutTargets.size() > 0) {
final int shortcutListSize =
BinaryDictEncoderUtils.getShortcutListSize(info.mShortcutTargets);
destination.write((byte)(shortcutListSize >> 8));
destination.write((byte)(shortcutListSize & 0xFF));
size += 2;
final Iterator<WeightedString> shortcutIterator = info.mShortcutTargets.iterator();
while (shortcutIterator.hasNext()) {
final WeightedString target = shortcutIterator.next();
destination.write((byte)BinaryDictEncoderUtils.makeShortcutFlags(
shortcutIterator.hasNext(), target.mFrequency));
size++;
size += writeString(destination, target.mWord);
}
}
if (info.mBigrams != null) {
// TODO: Consolidate this code with the code that computes the size of the bigram list
// in BinaryDictEncoderUtils#computeActualNodeArraySize
for (int i = 0; i < info.mBigrams.size(); ++i) {
final int bigramFrequency = info.mBigrams.get(i).mFrequency;
int bigramFlags = (i < info.mBigrams.size() - 1)
? FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_HAS_NEXT : 0;
size++;
final int bigramOffset = info.mBigrams.get(i).mAddress - (info.mOriginalAddress
+ size);
bigramFlags |= (bigramOffset < 0) ? FormatSpec.FLAG_BIGRAM_ATTR_OFFSET_NEGATIVE : 0;
switch (BinaryDictEncoderUtils.getByteSize(bigramOffset)) {
case 1:
bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_ONEBYTE;
break;
case 2:
bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_TWOBYTES;
break;
case 3:
bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_THREEBYTES;
break;
}
bigramFlags |= bigramFrequency & FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_FREQUENCY;
destination.write((byte)bigramFlags);
size += writeVariableAddress(destination, Math.abs(bigramOffset));
}
}
return size;
}
/**
* Compute the size of the PtNode.
*/
static int computePtNodeSize(final PtNodeInfo info, final FormatOptions formatOptions) {
int size = FormatSpec.PTNODE_FLAGS_SIZE + FormatSpec.PARENT_ADDRESS_SIZE
+ BinaryDictEncoderUtils.getPtNodeCharactersSize(info.mCharacters)
+ getChildrenAddressSize(info.mFlags, formatOptions);
if ((info.mFlags & FormatSpec.FLAG_IS_TERMINAL) != 0) {
size += FormatSpec.PTNODE_FREQUENCY_SIZE;
}
if (info.mShortcutTargets != null && !info.mShortcutTargets.isEmpty()) {
size += BinaryDictEncoderUtils.getShortcutListSize(info.mShortcutTargets);
}
if (info.mBigrams != null) {
for (final PendingAttribute attr : info.mBigrams) {
size += FormatSpec.PTNODE_FLAGS_SIZE;
size += BinaryDictEncoderUtils.getByteSize(attr.mAddress);
}
}
return size;
}
/**
* Write a node array to the stream.
*
* @param destination the stream to write.
* @param infos an array of PtNodeInfo to be written.
* @return the size written, in bytes.
* @throws IOException
*/
static int writeNodes(final OutputStream destination, final PtNodeInfo[] infos)
throws IOException {
int size = getPtNodeCountSize(infos.length);
switch (getPtNodeCountSize(infos.length)) {
case 1:
destination.write((byte)infos.length);
break;
case 2:
final int encodedPtNodeCount =
infos.length | FormatSpec.LARGE_PTNODE_ARRAY_SIZE_FIELD_SIZE_FLAG;
destination.write((byte)(encodedPtNodeCount >> 8));
destination.write((byte)(encodedPtNodeCount & 0xFF));
break;
default:
throw new RuntimeException("Invalid node count size.");
}
for (final PtNodeInfo info : infos) size += writePtNode(destination, info);
writeSInt24ToStream(destination, FormatSpec.NO_FORWARD_LINK_ADDRESS);
return size + FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
}
private static final int HEADER_READING_BUFFER_SIZE = 16384;
/**
* Convenience method to read the header of a binary file.
*
* This is quite resource intensive - don't call when performance is critical.
*
* @param file The file to read.
* @param offset The offset in the file where to start reading the data.
* @param length The length of the data file.
*/
private static FileHeader getDictionaryFileHeader(
final File file, final long offset, final long length)
throws FileNotFoundException, IOException, UnsupportedFormatException {
final byte[] buffer = new byte[HEADER_READING_BUFFER_SIZE];
final DictDecoder dictDecoder = FormatSpec.getDictDecoder(file,
new DictDecoder.DictionaryBufferFactory() {
@Override
public DictBuffer getDictionaryBuffer(File file)
throws FileNotFoundException, IOException {
final FileInputStream inStream = new FileInputStream(file);
try {
inStream.skip(offset);
inStream.read(buffer);
return new ByteArrayDictBuffer(buffer);
} finally {
inStream.close();
}
}
}
);
return dictDecoder.readHeader();
}
public static FileHeader getDictionaryFileHeaderOrNull(final File file, final long offset,
final long length) {
try {
final FileHeader header = getDictionaryFileHeader(file, offset, length);
return header;
} catch (UnsupportedFormatException e) {
return null;
} catch (IOException e) {
return null;
}
}
/**
* Helper method to hide the actual value of the no children address.
*/
public static boolean hasChildrenAddress(final int address) {
return FormatSpec.NO_CHILDREN_ADDRESS != address;
}
/**
* Helper method to check whether the node is moved.
*/
public static boolean isMovedPtNode(final int flags, final FormatOptions options) {
return options.mSupportsDynamicUpdate
&& ((flags & FormatSpec.MASK_CHILDREN_ADDRESS_TYPE) == FormatSpec.FLAG_IS_MOVED);
}
/**
* Helper method to check whether the dictionary can be updated dynamically.
*/
public static boolean supportsDynamicUpdate(final FormatOptions options) {
return options.mVersion >= FormatSpec.FIRST_VERSION_WITH_DYNAMIC_UPDATE
&& options.mSupportsDynamicUpdate;
}
/**
* Helper method to check whether the node is deleted.
*/
public static boolean isDeletedPtNode(final int flags, final FormatOptions formatOptions) {
return formatOptions.mSupportsDynamicUpdate
&& ((flags & FormatSpec.MASK_CHILDREN_ADDRESS_TYPE) == FormatSpec.FLAG_IS_DELETED);
}
/**
* Compute the binary size of the node count
* @param count the node count
* @return the size of the node count, either 1 or 2 bytes.
*/
public static int getPtNodeCountSize(final int count) {
if (FormatSpec.MAX_PTNODES_FOR_ONE_BYTE_PTNODE_COUNT >= count) {
return 1;
} else if (FormatSpec.MAX_PTNODES_IN_A_PT_NODE_ARRAY >= count) {
return 2;
} else {
throw new RuntimeException("Can't have more than "
+ FormatSpec.MAX_PTNODES_IN_A_PT_NODE_ARRAY + " PtNode in a PtNodeArray (found "
+ count + ")");
}
}
static int getChildrenAddressSize(final int optionFlags,
final FormatOptions formatOptions) {
if (formatOptions.mSupportsDynamicUpdate) return FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
switch (optionFlags & FormatSpec.MASK_CHILDREN_ADDRESS_TYPE) {
case FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_ONEBYTE:
return 1;
case FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_TWOBYTES:
return 2;
case FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_THREEBYTES:
return 3;
case FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_NOADDRESS:
default:
return 0;
}
}
/**
* Calculate bigram frequency from compressed value
*
* @param unigramFrequency
* @param bigramFrequency compressed frequency
* @return approximate bigram frequency
*/
public static int reconstructBigramFrequency(final int unigramFrequency,
final int bigramFrequency) {
final float stepSize = (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
/ (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
final float resultFreqFloat = unigramFrequency + stepSize * (bigramFrequency + 1.0f);
return (int)resultFreqFloat;
}
}