blob: f3250a005c8733916fb84e3a0aa59568781a496d [file] [log] [blame]
#pragma version(1)
#pragma stateVertex(PV)
#pragma stateFragment(PFTexNearest)
#pragma stateStore(PSIcons)
#define PI 3.14159f
int g_SpecialHWWar;
// Attraction to center values from page edge to page center.
float g_AttractionTable[9];
float g_FrictionTable[9];
float g_PhysicsTableSize;
float g_PosPage;
float g_PosVelocity;
float g_LastPositionX;
int g_LastTouchDown;
float g_DT;
int g_LastTime;
int g_PosMax;
float g_Zoom;
float g_OldPosPage;
float g_OldPosVelocity;
float g_OldZoom;
float g_MoveToTotalTime;
float g_MoveToTime;
float g_MoveToOldPos;
// Drawing constants, should be parameters ======
#define VIEW_ANGLE 1.28700222f
int g_DrawLastFrame;
int lastFrame(int draw) {
// We draw one extra frame to work around the last frame post bug.
// We also need to track if we drew the last frame to deal with large DT
// in the physics.
int ret = g_DrawLastFrame | draw;
g_DrawLastFrame = draw;
return ret; // should return draw instead.
}
void updateReadback() {
if ((g_OldPosPage != g_PosPage) ||
(g_OldPosVelocity != g_PosVelocity) ||
(g_OldZoom != g_Zoom)) {
g_OldPosPage = g_PosPage;
g_OldPosVelocity = g_PosVelocity;
g_OldZoom = g_Zoom;
int i[3];
i[0] = g_PosPage * (1 << 16);
i[1] = g_PosVelocity * (1 << 16);
i[2] = g_OldZoom * (1 << 16);
sendToClient(&i[0], 1, 12, 1);
}
}
void setColor(float r, float g, float b, float a) {
if (g_SpecialHWWar) {
color(0, 0, 0, 0.001f);
} else {
color(r, g, b, a);
}
}
void init() {
g_AttractionTable[0] = 20.0f;
g_AttractionTable[1] = 20.0f;
g_AttractionTable[2] = 20.0f;
g_AttractionTable[3] = 10.0f;
g_AttractionTable[4] = -10.0f;
g_AttractionTable[5] = -20.0f;
g_AttractionTable[6] = -20.0f;
g_AttractionTable[7] = -20.0f;
g_AttractionTable[8] = -20.0f; // dup 7 to avoid a clamp later
g_FrictionTable[0] = 10.0f;
g_FrictionTable[1] = 10.0f;
g_FrictionTable[2] = 11.0f;
g_FrictionTable[3] = 15.0f;
g_FrictionTable[4] = 15.0f;
g_FrictionTable[5] = 11.0f;
g_FrictionTable[6] = 10.0f;
g_FrictionTable[7] = 10.0f;
g_FrictionTable[8] = 10.0f; // dup 7 to avoid a clamp later
g_PhysicsTableSize = 7;
g_PosVelocity = 0;
g_PosPage = 0;
g_LastTouchDown = 0;
g_LastPositionX = 0;
g_Zoom = 0;
g_SpecialHWWar = 1;
g_MoveToTime = 0;
g_MoveToOldPos = 0;
g_MoveToTotalTime = 0.2f; // Duration of scrolling 1 line
}
void resetHWWar() {
g_SpecialHWWar = 1;
}
void move() {
if (g_LastTouchDown) {
float dx = -(state->newPositionX - g_LastPositionX);
g_PosVelocity = 0;
g_PosPage += dx * 5.2f;
float pmin = -0.49f;
float pmax = g_PosMax + 0.49f;
g_PosPage = clampf(g_PosPage, pmin, pmax);
}
g_LastTouchDown = state->newTouchDown;
g_LastPositionX = state->newPositionX;
g_MoveToTime = 0;
//debugF("Move P", g_PosPage);
}
void moveTo() {
g_MoveToTime = g_MoveToTotalTime;
g_PosVelocity = 0;
g_MoveToOldPos = g_PosPage;
// debugF("======= moveTo", state->targetPos);
}
void setZoom() {
g_Zoom = state->zoomTarget;
g_DrawLastFrame = 1;
updateReadback();
}
void fling() {
g_LastTouchDown = 0;
g_PosVelocity = -state->flingVelocity * 4;
float av = fabsf(g_PosVelocity);
float minVel = 3.5f;
minVel *= 1.f - (fabsf(fracf(g_PosPage + 0.5f) - 0.5f) * 0.45f);
if (av < minVel && av > 0.2f) {
if (g_PosVelocity > 0) {
g_PosVelocity = minVel;
} else {
g_PosVelocity = -minVel;
}
}
if (g_PosPage <= 0) {
g_PosVelocity = maxf(0, g_PosVelocity);
}
if (g_PosPage > g_PosMax) {
g_PosVelocity = minf(0, g_PosVelocity);
}
}
float
modf(float x, float y)
{
return x-(y*floorf(x/y));
}
/*
* Interpolates values in the range 0..1 to a curve that eases in
* and out.
*/
float
getInterpolation(float input) {
return (cosf((input + 1) * PI) / 2.0f) + 0.5f;
}
void updatePos() {
if (g_LastTouchDown) {
return;
}
float tablePosNorm = fracf(g_PosPage + 0.5f);
float tablePosF = tablePosNorm * g_PhysicsTableSize;
int tablePosI = tablePosF;
float tablePosFrac = tablePosF - tablePosI;
float accel = lerpf(g_AttractionTable[tablePosI],
g_AttractionTable[tablePosI + 1],
tablePosFrac) * g_DT;
float friction = lerpf(g_FrictionTable[tablePosI],
g_FrictionTable[tablePosI + 1],
tablePosFrac) * g_DT;
if (g_MoveToTime) {
// New position is old posiition + (total distance) * (interpolated time)
g_PosPage = g_MoveToOldPos + (state->targetPos - g_MoveToOldPos) * getInterpolation((g_MoveToTotalTime - g_MoveToTime) / g_MoveToTotalTime);
g_MoveToTime -= g_DT;
if (g_MoveToTime <= 0) {
g_MoveToTime = 0;
g_PosPage = state->targetPos;
}
return;
}
// If our velocity is low OR acceleration is opposing it, apply it.
if (fabsf(g_PosVelocity) < 4.0f || (g_PosVelocity * accel) < 0) {
g_PosVelocity += accel;
}
//debugF("g_PosPage", g_PosPage);
//debugF(" g_PosVelocity", g_PosVelocity);
//debugF(" friction", friction);
//debugF(" accel", accel);
// Normal physics
if (g_PosVelocity > 0) {
g_PosVelocity -= friction;
g_PosVelocity = maxf(g_PosVelocity, 0);
} else {
g_PosVelocity += friction;
g_PosVelocity = minf(g_PosVelocity, 0);
}
if ((friction > fabsf(g_PosVelocity)) && (friction > fabsf(accel))) {
// Special get back to center and overcome friction physics.
float t = tablePosNorm - 0.5f;
if (fabsf(t) < (friction * g_DT)) {
// really close, just snap
g_PosPage = roundf(g_PosPage);
g_PosVelocity = 0;
} else {
if (t > 0) {
g_PosVelocity = -friction;
} else {
g_PosVelocity = friction;
}
}
}
// Check for out of boundry conditions.
if (g_PosPage < 0 && g_PosVelocity < 0) {
float damp = 1.0 + (g_PosPage * 4);
damp = clampf(damp, 0.f, 0.9f);
g_PosVelocity *= damp;
}
if (g_PosPage > g_PosMax && g_PosVelocity > 0) {
float damp = 1.0 - ((g_PosPage - g_PosMax) * 4);
damp = clampf(damp, 0.f, 0.9f);
g_PosVelocity *= damp;
}
g_PosPage += g_PosVelocity * g_DT;
g_PosPage = clampf(g_PosPage, -0.49, g_PosMax + 0.49);
}
int positionStrip(float row, float column, int isTop, float p, int isText)
{
float mat1[16];
float x = 0.5f * (column - 1.5f);
float scale = 72.f * 3 / getWidth();
if (isTop) {
matrixLoadTranslate(mat1, x, 0.8f, 0.f);
matrixScale(mat1, scale, scale, 1.f);
} else {
matrixLoadTranslate(mat1, x, -0.9f, 0.f);
matrixScale(mat1, scale, -scale, 1.f);
}
matrixTranslate(mat1, 0, p * 2, 0.f);
matrixRotate(mat1, -p * 50, 1, 0, 0);
vpLoadModelMatrix(mat1);
float soff = -(row * 1.4);
if (isTop) {
matrixLoadScale(mat1, 1.f, -0.85f, 1.f);
if (isText) {
matrixScale(mat1, 1.f, 2.f, 1.f);
}
matrixTranslate(mat1, 0, soff - 0.95f + 0.18f, 0);
} else {
matrixLoadScale(mat1, 1.f, 0.85f, 1.f);
if (isText) {
matrixScale(mat1, 1.f, 2.f, 1.f);
}
matrixTranslate(mat1, 0, soff - 0.65f, 0);
}
vpLoadTextureMatrix(mat1);
return -(soff + 0.3f) * 10.f;
}
void
draw_home_button()
{
setColor(1.0f, 1.0f, 1.0f, 1.0f);
bindTexture(NAMED_PFTexNearest, 0, state->homeButtonId);
float x = (SCREEN_WIDTH_PX - params->homeButtonTextureWidth) / 2;
float y = (g_Zoom - 1.f) * params->homeButtonTextureHeight;
y -= 30; // move the house to the edge of the screen as it doesn't fill the texture.
drawSpriteScreenspace(x, y, 0, params->homeButtonTextureWidth, params->homeButtonTextureHeight);
}
void drawFrontGrid(float rowOffset, float p)
{
float h = getHeight();
float w = getWidth();
int intRowOffset = rowOffset;
float rowFrac = rowOffset - intRowOffset;
float colWidth = getWidth() / 4;
float rowHeight = colWidth + 25.f;
float yoff = h - ((h - (rowHeight * 4.f)) / 2);
yoff -= 110;
int row, col;
int iconNum = intRowOffset * 4;
float ymax = yoff + rowHeight;
float ymin = yoff - (3 * rowHeight) - 70;
float gridTop = yoff -3;
float gridBottom = ymin;
gridBottom += 50;
for (row = 0; row < 5; row++) {
float y = yoff - ((-rowFrac + row) * rowHeight);
for (col=0; col < 4; col++) {
if (iconNum >= state->iconCount) {
return;
}
if (iconNum >= 0) {
float x = colWidth * col - ((128 - colWidth) / 2);
if ((y >= ymin) && (y <= ymax)) {
float iconY = y - 20;
setColor(1.f, 1.f, 1.f, 1.f);
if (state->selectedIconIndex == iconNum && !p) {
bindTexture(NAMED_PFTexNearest, 0, state->selectedIconTexture);
drawSpriteScreenspace(x, iconY, 0, 128, 128);
}
bindTexture(NAMED_PFTexNearest, 0, loadI32(ALLOC_ICON_IDS, iconNum));
if (!p) {
int cropT = 0;
if (y > gridTop) {
cropT = y - gridTop;
}
int cropB = 0;
if (y < gridBottom) {
cropB = gridBottom - y;
}
drawSpriteScreenspaceCropped(x, iconY+cropB, 0, 128, 128-cropT-cropB,
0, 128-cropB, 128, -128+cropT+cropB);
} else {
float px = ((x + 64) - (getWidth() / 2)) / (getWidth() / 2);
float py = ((iconY + 64) - (getHeight() / 2)) / (getWidth() / 2);
float d = 64.f / (getWidth() / 2);
px *= p + 1;
py *= p + 1;
drawQuadTexCoords(px - d, py - d, -p, 0, 1,
px - d, py + d, -p, 0, 0,
px + d, py + d, -p, 1, 0,
px + d, py - d, -p, 1, 1);
}
}
}
iconNum++;
}
}
}
void drawStrip(float row, float column, int isTop, int iconNum, float p)
{
if (iconNum < 0) return;
int offset = positionStrip(row, column, isTop, p, 0);
bindTexture(NAMED_PFTexMip, 0, loadI32(ALLOC_ICON_IDS, iconNum));
if (offset < -20) return;
offset = clamp(offset, 0, 199 - 20);
int len = 20;
if (isTop && (offset < 7)) {
len -= 7 - offset;
offset = 7;
}
drawSimpleMeshRange(NAMED_SMMesh, offset * 6, len * 6);
//drawSimpleMesh(NAMED_SMMesh);
}
void drawTop(float rowOffset, float p)
{
int row, col;
int iconNum = 0;
for (row = 0; row <= (int)(rowOffset+1); row++) {
for (col=0; col < 4; col++) {
if (iconNum >= state->iconCount) {
return;
}
drawStrip(rowOffset - row, col, 1, iconNum, p);
iconNum++;
}
}
}
void drawBottom(float rowOffset, float p)
{
float pos = -1.f;
int intRowOffset = rowOffset;
pos -= rowOffset - intRowOffset;
int row, col;
int iconNum = (intRowOffset + 3) * 4;
while (1) {
for (col=0; col < 4; col++) {
if (iconNum >= state->iconCount) {
return;
}
if (pos > -1) {
drawStrip(pos, col, 0, iconNum, p);
}
iconNum++;
}
pos += 1.f;
}
}
int
main(int launchID)
{
// Compute dt in seconds.
int newTime = uptimeMillis();
g_DT = (newTime - g_LastTime) / 1000.f;
g_LastTime = newTime;
if (!g_DrawLastFrame) {
// If we stopped rendering we cannot use DT.
// assume 30fps in this case.
g_DT = 0.033f;
}
// physics may break if DT is large.
g_DT = minf(g_DT, 0.2f);
if (g_Zoom != state->zoomTarget) {
float dz;
if (state->zoomTarget > 0.5f) {
dz = (1 - g_Zoom) * 0.2f;
} else {
dz = -g_DT - (1 - g_Zoom) * 0.2f;
}
if (dz && (fabsf(dz) < 0.02f)) {
if (dz > 0) {
dz = 0.02f;
} else {
dz = -0.02f;
}
}
if (fabsf(g_Zoom - state->zoomTarget) < fabsf(dz)) {
g_Zoom = state->zoomTarget;
} else {
g_Zoom += dz;
}
updateReadback();
}
// Set clear value to dim the background based on the zoom position.
if ((g_Zoom < 0.001f) && (state->zoomTarget < 0.001f) && !g_SpecialHWWar) {
pfClearColor(0.0f, 0.0f, 0.0f, 0.0f);
// When we're zoomed out and not tracking motion events, reset the pos to 0.
if (!g_LastTouchDown) {
g_PosPage = 0;
}
return lastFrame(0);
} else {
pfClearColor(0.0f, 0.0f, 0.0f, g_Zoom);
}
// icons & labels
int iconCount = state->iconCount;
g_PosMax = ((iconCount + 3) / 4) - 4;
if (g_PosMax < 0) g_PosMax = 0;
updatePos(0.1f);
updateReadback();
//debugF(" draw g_PosPage", g_PosPage);
// Draw the icons ========================================
/*
bindProgramFragment(NAMED_PFColor);
positionStrip(1, 0, 1, 0, 0);
drawSimpleMesh(NAMED_SMMesh);
*/
bindProgramFragment(NAMED_PFTexMip);
drawTop(g_PosPage, 1-g_Zoom);
drawBottom(g_PosPage, 1-g_Zoom);
bindProgramFragment(NAMED_PFTexMip);
{
float mat1[16];
matrixLoadIdentity(mat1);
vpLoadModelMatrix(mat1);
vpLoadTextureMatrix(mat1);
}
bindProgramFragment(NAMED_PFTexNearest);
drawFrontGrid(g_PosPage, 1-g_Zoom);
draw_home_button();
// This is a WAR to do a rendering pass without drawing during init to
// force the driver to preload and compile its shaders.
// Without this the first animation does not appear due to the time it
// takes to init the driver state.
if (g_SpecialHWWar) {
g_SpecialHWWar = 0;
return 1;
}
// Bug workaround where the last frame is not always displayed
// So we keep rendering until the bug is fixed.
return lastFrame((g_PosVelocity != 0) || fracf(g_PosPage) || g_Zoom != state->zoomTarget || (g_MoveToTime != 0));
}