blob: 75ab1c98919362ae71edb7ca58490668a94e3843 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.android.calculator2;
import android.content.Context;
import android.text.SpannableString;
import android.text.SpannableStringBuilder;
import android.text.Spanned;
import android.text.style.TtsSpan;
import java.io.ByteArrayOutputStream;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.DataOutputStream;
import java.io.IOException;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
/**
* A mathematical expression represented as a sequence of "tokens".
* Many tokens are represented by button ids for the corresponding operator.
* A token may also represent the result of a previously evaluated expression.
* The add() method adds a token to the end of the expression. The delete method() removes one.
* Clear() deletes the entire expression contents. Eval() evaluates the expression,
* producing a UnifiedReal result.
* Expressions are parsed only during evaluation; no explicit parse tree is maintained.
*
* The write() method is used to save the current expression. Note that neither UnifiedReal
* nor the underlying CR provide a serialization facility. Thus we save all previously
* computed values by writing out the expression that was used to compute them, and reevaluate
* when reading it back in.
*/
class CalculatorExpr {
/**
* An interface for resolving expression indices in embedded subexpressions to
* the associated CalculatorExpr, and associating a UnifiedReal result with it.
* All methods are thread-safe in the strong sense; they may be called asynchronously
* at any time from any thread.
*/
public interface ExprResolver {
/*
* Retrieve the expression corresponding to index.
*/
CalculatorExpr getExpr(long index);
/*
* Retrieve the degree mode associated with the expression at index i.
*/
boolean getDegreeMode(long index);
/*
* Retrieve the stored result for the expression at index, or return null.
*/
UnifiedReal getResult(long index);
/*
* Atomically test for an existing result, and set it if there was none.
* Return the prior result if there was one, or the new one if there was not.
* May only be called after getExpr.
*/
UnifiedReal putResultIfAbsent(long index, UnifiedReal result);
}
private ArrayList<Token> mExpr; // The actual representation
// as a list of tokens. Constant
// tokens are always nonempty.
private static enum TokenKind { CONSTANT, OPERATOR, PRE_EVAL };
private static TokenKind[] tokenKindValues = TokenKind.values();
private final static BigInteger BIG_MILLION = BigInteger.valueOf(1000000);
private final static BigInteger BIG_BILLION = BigInteger.valueOf(1000000000);
private static abstract class Token {
abstract TokenKind kind();
/**
* Write token as either a very small Byte containing the TokenKind,
* followed by data needed by subclass constructor,
* or as a byte >= 0x20 directly describing the OPERATOR token.
*/
abstract void write(DataOutput out) throws IOException;
/**
* Return a textual representation of the token.
* The result is suitable for either display as part od the formula or TalkBack use.
* It may be a SpannableString that includes added TalkBack information.
* @param context context used for converting button ids to strings
*/
abstract CharSequence toCharSequence(Context context);
}
/**
* Representation of an operator token
*/
private static class Operator extends Token {
// TODO: rename id.
public final int id; // We use the button resource id
Operator(int resId) {
id = resId;
}
Operator(byte op) throws IOException {
id = KeyMaps.fromByte(op);
}
@Override
void write(DataOutput out) throws IOException {
out.writeByte(KeyMaps.toByte(id));
}
@Override
public CharSequence toCharSequence(Context context) {
String desc = KeyMaps.toDescriptiveString(context, id);
if (desc != null) {
SpannableString result = new SpannableString(KeyMaps.toString(context, id));
Object descSpan = new TtsSpan.TextBuilder(desc).build();
result.setSpan(descSpan, 0, result.length(), Spanned.SPAN_EXCLUSIVE_EXCLUSIVE);
return result;
} else {
return KeyMaps.toString(context, id);
}
}
@Override
TokenKind kind() { return TokenKind.OPERATOR; }
}
/**
* Representation of a (possibly incomplete) numerical constant.
* Supports addition and removal of trailing characters; hence mutable.
*/
private static class Constant extends Token implements Cloneable {
private boolean mSawDecimal;
private String mWhole; // String preceding decimal point.
private String mFraction; // String after decimal point.
private int mExponent; // Explicit exponent, only generated through addExponent.
private static int SAW_DECIMAL = 0x1;
private static int HAS_EXPONENT = 0x2;
Constant() {
mWhole = "";
mFraction = "";
// mSawDecimal = false;
// mExponent = 0;
};
Constant(DataInput in) throws IOException {
mWhole = in.readUTF();
byte flags = in.readByte();
if ((flags & SAW_DECIMAL) != 0) {
mSawDecimal = true;
mFraction = in.readUTF();
} else {
// mSawDecimal = false;
mFraction = "";
}
if ((flags & HAS_EXPONENT) != 0) {
mExponent = in.readInt();
}
}
@Override
void write(DataOutput out) throws IOException {
byte flags = (byte)((mSawDecimal ? SAW_DECIMAL : 0)
| (mExponent != 0 ? HAS_EXPONENT : 0));
out.writeByte(TokenKind.CONSTANT.ordinal());
out.writeUTF(mWhole);
out.writeByte(flags);
if (mSawDecimal) {
out.writeUTF(mFraction);
}
if (mExponent != 0) {
out.writeInt(mExponent);
}
}
// Given a button press, append corresponding digit.
// We assume id is a digit or decimal point.
// Just return false if this was the second (or later) decimal point
// in this constant.
// Assumes that this constant does not have an exponent.
public boolean add(int id) {
if (id == R.id.dec_point) {
if (mSawDecimal || mExponent != 0) return false;
mSawDecimal = true;
return true;
}
int val = KeyMaps.digVal(id);
if (mExponent != 0) {
if (Math.abs(mExponent) <= 10000) {
if (mExponent > 0) {
mExponent = 10 * mExponent + val;
} else {
mExponent = 10 * mExponent - val;
}
return true;
} else { // Too large; refuse
return false;
}
}
if (mSawDecimal) {
mFraction += val;
} else {
mWhole += val;
}
return true;
}
public void addExponent(int exp) {
// Note that adding a 0 exponent is a no-op. That's OK.
mExponent = exp;
}
/**
* Undo the last add or remove last exponent digit.
* Assumes the constant is nonempty.
*/
public void delete() {
if (mExponent != 0) {
mExponent /= 10;
// Once zero, it can only be added back with addExponent.
} else if (!mFraction.isEmpty()) {
mFraction = mFraction.substring(0, mFraction.length() - 1);
} else if (mSawDecimal) {
mSawDecimal = false;
} else {
mWhole = mWhole.substring(0, mWhole.length() - 1);
}
}
public boolean isEmpty() {
return (mSawDecimal == false && mWhole.isEmpty());
}
/**
* Produce human-readable string representation of constant, as typed.
* We do add digit grouping separators to the whole number, even if not typed.
* Result is internationalized.
*/
@Override
public String toString() {
String result;
if (mExponent != 0) {
result = mWhole;
} else {
result = StringUtils.addCommas(mWhole, 0, mWhole.length());
}
if (mSawDecimal) {
result += '.';
result += mFraction;
}
if (mExponent != 0) {
result += "E" + mExponent;
}
return KeyMaps.translateResult(result);
}
/**
* Return BoundedRational representation of constant, if well-formed.
* Result is never null.
*/
public BoundedRational toRational() throws SyntaxException {
String whole = mWhole;
if (whole.isEmpty()) {
if (mFraction.isEmpty()) {
// Decimal point without digits.
throw new SyntaxException();
} else {
whole = "0";
}
}
BigInteger num = new BigInteger(whole + mFraction);
BigInteger den = BigInteger.TEN.pow(mFraction.length());
if (mExponent > 0) {
num = num.multiply(BigInteger.TEN.pow(mExponent));
}
if (mExponent < 0) {
den = den.multiply(BigInteger.TEN.pow(-mExponent));
}
return new BoundedRational(num, den);
}
@Override
public CharSequence toCharSequence(Context context) {
return toString();
}
@Override
public TokenKind kind() {
return TokenKind.CONSTANT;
}
// Override clone to make it public
@Override
public Object clone() {
Constant result = new Constant();
result.mWhole = mWhole;
result.mFraction = mFraction;
result.mSawDecimal = mSawDecimal;
result.mExponent = mExponent;
return result;
}
}
/**
* The "token" class for previously evaluated subexpressions.
* We treat previously evaluated subexpressions as tokens. These are inserted when we either
* continue an expression after evaluating some of it, or copy an expression and paste it back
* in.
* This only contains enough information to allow us to display the expression in a
* formula, or reevaluate the expression with the aid of an ExprResolver; we no longer
* cache the result. The expression corresponding to the index can be obtained through
* the ExprResolver, which looks it up in a subexpression database.
* The representation includes a UnifiedReal value. In order to
* support saving and restoring, we also include the underlying expression itself, and the
* context (currently just degree mode) used to evaluate it. The short string representation
* is also stored in order to avoid potentially expensive recomputation in the UI thread.
*/
private static class PreEval extends Token {
public final long mIndex;
private final String mShortRep; // Not internationalized.
PreEval(long index, String shortRep) {
mIndex = index;
mShortRep = shortRep;
}
@Override
// This writes out only a shallow representation of the result, without
// information about subexpressions. To write out a deep representation, we
// find referenced subexpressions, and iteratively write those as well.
public void write(DataOutput out) throws IOException {
out.writeByte(TokenKind.PRE_EVAL.ordinal());
if (mIndex > Integer.MAX_VALUE || mIndex < Integer.MIN_VALUE) {
// This would be millions of expressions per day for the life of the device.
throw new AssertionError("Expression index too big");
}
out.writeInt((int)mIndex);
out.writeUTF(mShortRep);
}
PreEval(DataInput in) throws IOException {
mIndex = in.readInt();
mShortRep = in.readUTF();
}
@Override
public CharSequence toCharSequence(Context context) {
return KeyMaps.translateResult(mShortRep);
}
@Override
public TokenKind kind() {
return TokenKind.PRE_EVAL;
}
public boolean hasEllipsis() {
return mShortRep.lastIndexOf(KeyMaps.ELLIPSIS) != -1;
}
}
/**
* Read token from in.
*/
public static Token newToken(DataInput in) throws IOException {
byte kindByte = in.readByte();
if (kindByte < 0x20) {
TokenKind kind = tokenKindValues[kindByte];
switch(kind) {
case CONSTANT:
return new Constant(in);
case PRE_EVAL:
PreEval pe = new PreEval(in);
if (pe.mIndex == -1) {
// Database corrupted by earlier bug.
// Return a conspicuously wrong placeholder that won't lead to a crash.
Constant result = new Constant();
result.add(R.id.dec_point);
return result;
} else {
return pe;
}
default: throw new IOException("Bad save file format");
}
} else {
return new Operator(kindByte);
}
}
CalculatorExpr() {
mExpr = new ArrayList<Token>();
}
private CalculatorExpr(ArrayList<Token> expr) {
mExpr = expr;
}
/**
* Construct CalculatorExpr, by reading it from in.
*/
CalculatorExpr(DataInput in) throws IOException {
mExpr = new ArrayList<Token>();
int size = in.readInt();
for (int i = 0; i < size; ++i) {
mExpr.add(newToken(in));
}
}
/**
* Write this expression to out.
*/
public void write(DataOutput out) throws IOException {
int size = mExpr.size();
out.writeInt(size);
for (int i = 0; i < size; ++i) {
mExpr.get(i).write(out);
}
}
/**
* Use write() above to generate a byte array containing a serialized representation of
* this expression.
*/
public byte[] toBytes() {
ByteArrayOutputStream byteArrayStream = new ByteArrayOutputStream();
try (DataOutputStream out = new DataOutputStream(byteArrayStream)) {
write(out);
} catch (IOException e) {
// Impossible; No IO involved.
throw new AssertionError("Impossible IO exception", e);
}
return byteArrayStream.toByteArray();
}
/**
* Does this expression end with a numeric constant?
* As opposed to an operator or preevaluated expression.
*/
boolean hasTrailingConstant() {
int s = mExpr.size();
if (s == 0) {
return false;
}
Token t = mExpr.get(s-1);
return t instanceof Constant;
}
/**
* Does this expression end with a binary operator?
*/
boolean hasTrailingBinary() {
int s = mExpr.size();
if (s == 0) return false;
Token t = mExpr.get(s-1);
if (!(t instanceof Operator)) return false;
Operator o = (Operator)t;
return (KeyMaps.isBinary(o.id));
}
/**
* Append press of button with given id to expression.
* If the insertion would clearly result in a syntax error, either just return false
* and do nothing, or make an adjustment to avoid the problem. We do the latter only
* for unambiguous consecutive binary operators, in which case we delete the first
* operator.
*/
boolean add(int id) {
int s = mExpr.size();
final int d = KeyMaps.digVal(id);
final boolean binary = KeyMaps.isBinary(id);
Token lastTok = s == 0 ? null : mExpr.get(s-1);
int lastOp = lastTok instanceof Operator ? ((Operator) lastTok).id : 0;
// Quietly replace a trailing binary operator with another one, unless the second
// operator is minus, in which case we just allow it as a unary minus.
if (binary && !KeyMaps.isPrefix(id)) {
if (s == 0 || lastOp == R.id.lparen || KeyMaps.isFunc(lastOp)
|| KeyMaps.isPrefix(lastOp) && lastOp != R.id.op_sub) {
return false;
}
while (hasTrailingBinary()) {
delete();
}
// s invalid and not used below.
}
final boolean isConstPiece = (d != KeyMaps.NOT_DIGIT || id == R.id.dec_point);
if (isConstPiece) {
// Since we treat juxtaposition as multiplication, a constant can appear anywhere.
if (s == 0) {
mExpr.add(new Constant());
s++;
} else {
Token last = mExpr.get(s-1);
if(!(last instanceof Constant)) {
if (last instanceof PreEval) {
// Add explicit multiplication to avoid confusing display.
mExpr.add(new Operator(R.id.op_mul));
s++;
}
mExpr.add(new Constant());
s++;
}
}
return ((Constant)(mExpr.get(s-1))).add(id);
} else {
mExpr.add(new Operator(id));
return true;
}
}
/**
* Add exponent to the constant at the end of the expression.
* Assumes there is a constant at the end of the expression.
*/
void addExponent(int exp) {
Token lastTok = mExpr.get(mExpr.size() - 1);
((Constant) lastTok).addExponent(exp);
}
/**
* Remove trailing op_add and op_sub operators.
*/
void removeTrailingAdditiveOperators() {
while (true) {
int s = mExpr.size();
if (s == 0) {
break;
}
Token lastTok = mExpr.get(s-1);
if (!(lastTok instanceof Operator)) {
break;
}
int lastOp = ((Operator) lastTok).id;
if (lastOp != R.id.op_add && lastOp != R.id.op_sub) {
break;
}
delete();
}
}
/**
* Append the contents of the argument expression.
* It is assumed that the argument expression will not change, and thus its pieces can be
* reused directly.
*/
public void append(CalculatorExpr expr2) {
int s = mExpr.size();
int s2 = expr2.mExpr.size();
// Check that we're not concatenating Constant or PreEval tokens, since the result would
// look like a single constant, with very mysterious results for the user.
if (s != 0 && s2 != 0) {
Token last = mExpr.get(s-1);
Token first = expr2.mExpr.get(0);
if (!(first instanceof Operator) && !(last instanceof Operator)) {
// Fudge it by adding an explicit multiplication. We would have interpreted it as
// such anyway, and this makes it recognizable to the user.
mExpr.add(new Operator(R.id.op_mul));
}
}
for (int i = 0; i < s2; ++i) {
mExpr.add(expr2.mExpr.get(i));
}
}
/**
* Undo the last key addition, if any.
* Or possibly remove a trailing exponent digit.
*/
public void delete() {
final int s = mExpr.size();
if (s == 0) {
return;
}
Token last = mExpr.get(s-1);
if (last instanceof Constant) {
Constant c = (Constant)last;
c.delete();
if (!c.isEmpty()) {
return;
}
}
mExpr.remove(s-1);
}
/**
* Remove all tokens from the expression.
*/
public void clear() {
mExpr.clear();
}
public boolean isEmpty() {
return mExpr.isEmpty();
}
/**
* Returns a logical deep copy of the CalculatorExpr.
* Operator and PreEval tokens are immutable, and thus aren't really copied.
*/
public Object clone() {
CalculatorExpr result = new CalculatorExpr();
for (Token t : mExpr) {
if (t instanceof Constant) {
result.mExpr.add((Token)(((Constant)t).clone()));
} else {
result.mExpr.add(t);
}
}
return result;
}
// Am I just a constant?
public boolean isConstant() {
if (mExpr.size() != 1) {
return false;
}
return mExpr.get(0) instanceof Constant;
}
/**
* Return a new expression consisting of a single token representing the current pre-evaluated
* expression.
* The caller supplies the expression index and short string representation.
* The expression must have been previously evaluated.
*/
public CalculatorExpr abbreviate(long index, String sr) {
CalculatorExpr result = new CalculatorExpr();
@SuppressWarnings("unchecked")
Token t = new PreEval(index, sr);
result.mExpr.add(t);
return result;
}
/**
* Internal evaluation functions return an EvalRet pair.
* We compute rational (BoundedRational) results when possible, both as a performance
* optimization, and to detect errors exactly when we can.
*/
private static class EvalRet {
public int pos; // Next position (expression index) to be parsed.
public final UnifiedReal val; // Constructive Real result of evaluating subexpression.
EvalRet(int p, UnifiedReal v) {
pos = p;
val = v;
}
}
/**
* Internal evaluation functions take an EvalContext argument.
*/
private static class EvalContext {
public final int mPrefixLength; // Length of prefix to evaluate. Not explicitly saved.
public final boolean mDegreeMode;
public final ExprResolver mExprResolver; // Reconstructed, not saved.
// If we add any other kinds of evaluation modes, they go here.
EvalContext(boolean degreeMode, int len, ExprResolver er) {
mDegreeMode = degreeMode;
mPrefixLength = len;
mExprResolver = er;
}
EvalContext(DataInput in, int len, ExprResolver er) throws IOException {
mDegreeMode = in.readBoolean();
mPrefixLength = len;
mExprResolver = er;
}
void write(DataOutput out) throws IOException {
out.writeBoolean(mDegreeMode);
}
}
private UnifiedReal toRadians(UnifiedReal x, EvalContext ec) {
if (ec.mDegreeMode) {
return x.multiply(UnifiedReal.RADIANS_PER_DEGREE);
} else {
return x;
}
}
private UnifiedReal fromRadians(UnifiedReal x, EvalContext ec) {
if (ec.mDegreeMode) {
return x.divide(UnifiedReal.RADIANS_PER_DEGREE);
} else {
return x;
}
}
// The following methods can all throw IndexOutOfBoundsException in the event of a syntax
// error. We expect that to be caught in eval below.
private boolean isOperatorUnchecked(int i, int op) {
Token t = mExpr.get(i);
if (!(t instanceof Operator)) {
return false;
}
return ((Operator)(t)).id == op;
}
private boolean isOperator(int i, int op, EvalContext ec) {
if (i >= ec.mPrefixLength) {
return false;
}
return isOperatorUnchecked(i, op);
}
public static class SyntaxException extends Exception {
public SyntaxException() {
super();
}
public SyntaxException(String s) {
super(s);
}
}
// The following functions all evaluate some kind of expression starting at position i in
// mExpr in a specified evaluation context. They return both the expression value (as
// constructive real and, if applicable, as BoundedRational) and the position of the next token
// that was not used as part of the evaluation.
// This is essentially a simple recursive descent parser combined with expression evaluation.
private EvalRet evalUnary(int i, EvalContext ec) throws SyntaxException {
final Token t = mExpr.get(i);
if (t instanceof Constant) {
Constant c = (Constant)t;
return new EvalRet(i+1,new UnifiedReal(c.toRational()));
}
if (t instanceof PreEval) {
final long index = ((PreEval)t).mIndex;
UnifiedReal res = ec.mExprResolver.getResult(index);
if (res == null) {
// We try to minimize this recursive evaluation case, but currently don't
// completely avoid it.
res = nestedEval(index, ec.mExprResolver);
}
return new EvalRet(i+1, res);
}
EvalRet argVal;
switch(((Operator)(t)).id) {
case R.id.const_pi:
return new EvalRet(i+1, UnifiedReal.PI);
case R.id.const_e:
return new EvalRet(i+1, UnifiedReal.E);
case R.id.op_sqrt:
// Seems to have highest precedence.
// Does not add implicit paren.
// Does seem to accept a leading minus.
if (isOperator(i+1, R.id.op_sub, ec)) {
argVal = evalUnary(i+2, ec);
return new EvalRet(argVal.pos, argVal.val.negate().sqrt());
} else {
argVal = evalUnary(i+1, ec);
return new EvalRet(argVal.pos, argVal.val.sqrt());
}
case R.id.lparen:
argVal = evalExpr(i+1, ec);
if (isOperator(argVal.pos, R.id.rparen, ec)) {
argVal.pos++;
}
return new EvalRet(argVal.pos, argVal.val);
case R.id.fun_sin:
argVal = evalExpr(i+1, ec);
if (isOperator(argVal.pos, R.id.rparen, ec)) {
argVal.pos++;
}
return new EvalRet(argVal.pos, toRadians(argVal.val, ec).sin());
case R.id.fun_cos:
argVal = evalExpr(i+1, ec);
if (isOperator(argVal.pos, R.id.rparen, ec)) {
argVal.pos++;
}
return new EvalRet(argVal.pos, toRadians(argVal.val,ec).cos());
case R.id.fun_tan:
argVal = evalExpr(i+1, ec);
if (isOperator(argVal.pos, R.id.rparen, ec)) {
argVal.pos++;
}
UnifiedReal arg = toRadians(argVal.val, ec);
return new EvalRet(argVal.pos, arg.sin().divide(arg.cos()));
case R.id.fun_ln:
argVal = evalExpr(i+1, ec);
if (isOperator(argVal.pos, R.id.rparen, ec)) {
argVal.pos++;
}
return new EvalRet(argVal.pos, argVal.val.ln());
case R.id.fun_exp:
argVal = evalExpr(i+1, ec);
if (isOperator(argVal.pos, R.id.rparen, ec)) {
argVal.pos++;
}
return new EvalRet(argVal.pos, argVal.val.exp());
case R.id.fun_log:
argVal = evalExpr(i+1, ec);
if (isOperator(argVal.pos, R.id.rparen, ec)) {
argVal.pos++;
}
return new EvalRet(argVal.pos, argVal.val.ln().divide(UnifiedReal.TEN.ln()));
case R.id.fun_arcsin:
argVal = evalExpr(i+1, ec);
if (isOperator(argVal.pos, R.id.rparen, ec)) {
argVal.pos++;
}
return new EvalRet(argVal.pos, fromRadians(argVal.val.asin(), ec));
case R.id.fun_arccos:
argVal = evalExpr(i+1, ec);
if (isOperator(argVal.pos, R.id.rparen, ec)) {
argVal.pos++;
}
return new EvalRet(argVal.pos, fromRadians(argVal.val.acos(), ec));
case R.id.fun_arctan:
argVal = evalExpr(i+1, ec);
if (isOperator(argVal.pos, R.id.rparen, ec)) {
argVal.pos++;
}
return new EvalRet(argVal.pos, fromRadians(argVal.val.atan(),ec));
default:
throw new SyntaxException("Unrecognized token in expression");
}
}
private static final UnifiedReal ONE_HUNDREDTH = new UnifiedReal(100).inverse();
private EvalRet evalSuffix(int i, EvalContext ec) throws SyntaxException {
final EvalRet tmp = evalUnary(i, ec);
int cpos = tmp.pos;
UnifiedReal val = tmp.val;
boolean isFact;
boolean isSquared = false;
while ((isFact = isOperator(cpos, R.id.op_fact, ec)) ||
(isSquared = isOperator(cpos, R.id.op_sqr, ec)) ||
isOperator(cpos, R.id.op_pct, ec)) {
if (isFact) {
val = val.fact();
} else if (isSquared) {
val = val.multiply(val);
} else /* percent */ {
val = val.multiply(ONE_HUNDREDTH);
}
++cpos;
}
return new EvalRet(cpos, val);
}
private EvalRet evalFactor(int i, EvalContext ec) throws SyntaxException {
final EvalRet result1 = evalSuffix(i, ec);
int cpos = result1.pos; // current position
UnifiedReal val = result1.val; // value so far
if (isOperator(cpos, R.id.op_pow, ec)) {
final EvalRet exp = evalSignedFactor(cpos + 1, ec);
cpos = exp.pos;
val = val.pow(exp.val);
}
return new EvalRet(cpos, val);
}
private EvalRet evalSignedFactor(int i, EvalContext ec) throws SyntaxException {
final boolean negative = isOperator(i, R.id.op_sub, ec);
int cpos = negative ? i + 1 : i;
EvalRet tmp = evalFactor(cpos, ec);
cpos = tmp.pos;
final UnifiedReal result = negative ? tmp.val.negate() : tmp.val;
return new EvalRet(cpos, result);
}
private boolean canStartFactor(int i) {
if (i >= mExpr.size()) return false;
Token t = mExpr.get(i);
if (!(t instanceof Operator)) return true;
int id = ((Operator)(t)).id;
if (KeyMaps.isBinary(id)) return false;
switch (id) {
case R.id.op_fact:
case R.id.rparen:
return false;
default:
return true;
}
}
private EvalRet evalTerm(int i, EvalContext ec) throws SyntaxException {
EvalRet tmp = evalSignedFactor(i, ec);
boolean is_mul = false;
boolean is_div = false;
int cpos = tmp.pos; // Current position in expression.
UnifiedReal val = tmp.val; // Current value.
while ((is_mul = isOperator(cpos, R.id.op_mul, ec))
|| (is_div = isOperator(cpos, R.id.op_div, ec))
|| canStartFactor(cpos)) {
if (is_mul || is_div) ++cpos;
tmp = evalSignedFactor(cpos, ec);
if (is_div) {
val = val.divide(tmp.val);
} else {
val = val.multiply(tmp.val);
}
cpos = tmp.pos;
is_mul = is_div = false;
}
return new EvalRet(cpos, val);
}
/**
* Is the subexpression starting at pos a simple percent constant?
* This is used to recognize exppressions like 200+10%, which we handle specially.
* This is defined as a Constant or PreEval token, followed by a percent sign, and followed
* by either nothing or an additive operator.
* Note that we are intentionally far more restrictive in recognizing such expressions than
* e.g. http://blogs.msdn.com/b/oldnewthing/archive/2008/01/10/7047497.aspx .
* When in doubt, we fall back to the the naive interpretation of % as 1/100.
* Note that 100+(10)% yields 100.1 while 100+10% yields 110. This may be controversial,
* but is consistent with Google web search.
*/
private boolean isPercent(int pos) {
if (mExpr.size() < pos + 2 || !isOperatorUnchecked(pos + 1, R.id.op_pct)) {
return false;
}
Token number = mExpr.get(pos);
if (number instanceof Operator) {
return false;
}
if (mExpr.size() == pos + 2) {
return true;
}
if (!(mExpr.get(pos + 2) instanceof Operator)) {
return false;
}
Operator op = (Operator) mExpr.get(pos + 2);
return op.id == R.id.op_add || op.id == R.id.op_sub || op.id == R.id.rparen;
}
/**
* Compute the multiplicative factor corresponding to an N% addition or subtraction.
* @param pos position of Constant or PreEval expression token corresponding to N.
* @param isSubtraction this is a subtraction, as opposed to addition.
* @param ec usable evaluation contex; only length matters.
* @return UnifiedReal value and position, which is pos + 2, i.e. after percent sign
*/
private EvalRet getPercentFactor(int pos, boolean isSubtraction, EvalContext ec)
throws SyntaxException {
EvalRet tmp = evalUnary(pos, ec);
UnifiedReal val = isSubtraction ? tmp.val.negate() : tmp.val;
val = UnifiedReal.ONE.add(val.multiply(ONE_HUNDREDTH));
return new EvalRet(pos + 2 /* after percent sign */, val);
}
private EvalRet evalExpr(int i, EvalContext ec) throws SyntaxException {
EvalRet tmp = evalTerm(i, ec);
boolean is_plus;
int cpos = tmp.pos;
UnifiedReal val = tmp.val;
while ((is_plus = isOperator(cpos, R.id.op_add, ec))
|| isOperator(cpos, R.id.op_sub, ec)) {
if (isPercent(cpos + 1)) {
tmp = getPercentFactor(cpos + 1, !is_plus, ec);
val = val.multiply(tmp.val);
} else {
tmp = evalTerm(cpos + 1, ec);
if (is_plus) {
val = val.add(tmp.val);
} else {
val = val.subtract(tmp.val);
}
}
cpos = tmp.pos;
}
return new EvalRet(cpos, val);
}
/**
* Return the starting position of the sequence of trailing binary operators.
*/
private int trailingBinaryOpsStart() {
int result = mExpr.size();
while (result > 0) {
Token last = mExpr.get(result - 1);
if (!(last instanceof Operator)) break;
Operator o = (Operator)last;
if (!KeyMaps.isBinary(o.id)) break;
--result;
}
return result;
}
/**
* Is the current expression worth evaluating?
*/
public boolean hasInterestingOps() {
final int last = trailingBinaryOpsStart();
int first = 0;
if (last > first && isOperatorUnchecked(first, R.id.op_sub)) {
// Leading minus is not by itself interesting.
first++;
}
for (int i = first; i < last; ++i) {
Token t1 = mExpr.get(i);
if (t1 instanceof Operator
|| t1 instanceof PreEval && ((PreEval)t1).hasEllipsis()) {
return true;
}
}
return false;
}
/**
* Does the expression contain trig operations?
*/
public boolean hasTrigFuncs() {
for (Token t : mExpr) {
if (t instanceof Operator) {
Operator o = (Operator)t;
if (KeyMaps.isTrigFunc(o.id)) {
return true;
}
}
}
return false;
}
/**
* Add the indices of unevaluated PreEval expressions embedded in the current expression to
* argument. This includes only directly referenced expressions e, not those indirectly
* referenced by e. If the index was already present, it is not added. If the argument
* contained no duplicates, the result will not either. New indices are added to the end of
* the list.
*/
private void addReferencedExprs(ArrayList<Long> list, ExprResolver er) {
for (Token t : mExpr) {
if (t instanceof PreEval) {
Long index = ((PreEval) t).mIndex;
if (er.getResult(index) == null && !list.contains(index)) {
list.add(index);
}
}
}
}
/**
* Return a list of unevaluated expressions transitively referenced by the current one.
* All expressions in the resulting list will have had er.getExpr() called on them.
* The resulting list is ordered such that evaluating expressions in list order
* should trigger few recursive evaluations.
*/
public ArrayList<Long> getTransitivelyReferencedExprs(ExprResolver er) {
// We could avoid triggering any recursive evaluations by actually building the
// dependency graph and topologically sorting it. Note that sorting by index works
// for positive and negative indices separately, but not their union. Currently we
// just settle for reverse breadth-first-search order, which handles the common case
// of simple dependency chains well.
ArrayList<Long> list = new ArrayList<Long>();
int scanned = 0; // We've added expressions referenced by [0, scanned) to the list
addReferencedExprs(list, er);
while (scanned != list.size()) {
er.getExpr(list.get(scanned++)).addReferencedExprs(list, er);
}
Collections.reverse(list);
return list;
}
/**
* Evaluate the expression at the given index to a UnifiedReal.
* Both saves and returns the result.
*/
UnifiedReal nestedEval(long index, ExprResolver er) throws SyntaxException {
CalculatorExpr nestedExpr = er.getExpr(index);
EvalContext newEc = new EvalContext(er.getDegreeMode(index),
nestedExpr.trailingBinaryOpsStart(), er);
EvalRet new_res = nestedExpr.evalExpr(0, newEc);
return er.putResultIfAbsent(index, new_res.val);
}
/**
* Evaluate the expression excluding trailing binary operators.
* Errors result in exceptions, most of which are unchecked. Should not be called
* concurrently with modification of the expression. May take a very long time; avoid calling
* from UI thread.
*
* @param degreeMode use degrees rather than radians
*/
UnifiedReal eval(boolean degreeMode, ExprResolver er) throws SyntaxException
// And unchecked exceptions thrown by UnifiedReal, CR,
// and BoundedRational.
{
// First evaluate all indirectly referenced expressions in increasing index order.
// This ensures that subsequent evaluation never encounters an embedded PreEval
// expression that has not been previously evaluated.
// We could do the embedded evaluations recursively, but that risks running out of
// stack space.
ArrayList<Long> referenced = getTransitivelyReferencedExprs(er);
for (long index : referenced) {
nestedEval(index, er);
}
try {
// We currently never include trailing binary operators, but include other trailing
// operators. Thus we usually, but not always, display results for prefixes of valid
// expressions, and don't generate an error where we previously displayed an instant
// result. This reflects the Android L design.
int prefixLen = trailingBinaryOpsStart();
EvalContext ec = new EvalContext(degreeMode, prefixLen, er);
EvalRet res = evalExpr(0, ec);
if (res.pos != prefixLen) {
throw new SyntaxException("Failed to parse full expression");
}
return res.val;
} catch (IndexOutOfBoundsException e) {
throw new SyntaxException("Unexpected expression end");
}
}
// Produce a string representation of the expression itself
SpannableStringBuilder toSpannableStringBuilder(Context context) {
SpannableStringBuilder ssb = new SpannableStringBuilder();
for (Token t : mExpr) {
ssb.append(t.toCharSequence(context));
}
return ssb;
}
}